Exercise 4: The effective action

Consider a free massive scalar field in d dimensions with action
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and the path integral
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The physical interpretation of the path integral above goes as follows: the field x are fluctua-
tions over a background field ¢. By integrating the fuctuations we are obtaining an effective
action for the field configuration ¢ which is valid at (x) = 0.

Part 1:
Use the path-integral to show that the effective action is
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in which © = —9? + m?.
Hints for part 1:
The action is free and therefore the dependences on y and ¢ are separable (exactly like when

we did momentum shell RG in class). Use the Gaussian integral formula for the functional
determinant.

Part 2:
Apply the Laplace transform method to show
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in which £71[f](s) is the inverse Laplace transform of the function f(z) = log .

Hints for part 2:
Given a function f(z), the relation with its inverse Laplace transform is
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Part 3:
Show that the inverse Laplace transform of the logarithm is
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Hints for part 3:
The relation of the inverse Laplace transform with the original function is
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with v € R such that all the poles z; of f(z) lie on the left part of the complex plane with
respect to v: v > Re(z;) Vi. You might want to use the following property of the inverse
Laplace transform:

L7HfN(s) = =sL7Hf](s),
with f’ the derivative of f.

Part 4:
Use the momentum space representation of the operator
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for a normalized state |p), and of the trace
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to find an explicit formula for
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(integrate first in p and then in s). What are the assumptions that you have to make on d and
m? for the integral to be convergent? When do you have to make these assumptions? What
happens if m? = 0?7

Hints for part 4:
Recall the integral form of the Euler Gamma function:
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which is convergent for z > 0.




