Exercise 10: Heat kernel methods

Some theory first.
Consider the representation of the one loop effective action

Ty = %Tr log (O + m2)

with the operator @ = —9% + %@2. We also define the flat space Laplacian as A = —92. We
have already seen that the action can be represented as

[[e] = —;Tr/dse_sm2 H(s)

S

with H(s) = e~*C known as the heat kernel of the operator O. The parameter s is often called
proper time. (The mass is assumed here to be a number that commutes with everything.)

The trace can be performed by giving a representation to #(s). In coordinate space it is a matrix
which is formally written as H(s;z,2') = (z|eC|2’). In practice H(s;z, ') is the solution of
the differential equation

OsH(s;x,2') + O H(s;z,2') =0 H(0;z,2") = §(x, ")

This function can be interpreted as the propagation to the location z and in the time s of some
heat from a point source located at the point # = 2’ and time s = 0 according to the operator
O. The heat kernel forms an Abelian one dimensional semigroup

/ddac'”;‘-l(sl;x, o YH(so; 7', 2") = H(sy + so; 2, 2")

We define also the heat kernel H(s) of the simpler operator A = —9? analogously
OsHo(s;z,2') + AyHo(s;2,2') =0 Ho(0;z,2") = §(x, 2")

This latter heat kernel is simpler because it can be computed easily in momentum space and
becomes a Gaussian distribution

Ho(s: )8y = (p|Ho(s)|P) = e~ P"5,

in which we used momentum conservation to factor out a delta function in the definition of
Ho(s;p). In coordinate space it is also a Gaussian after Fourier transforming

1 z —a'|?
HD(S;CC,$/) = Wexp <_|45|>

You can see that A is covariant under Euclidean transformations (translations and rotations)
because Ho(s;x,z’) is just a function of |z — 2/|.



Let F = %4,02 be the endomorphism that distinguishes the two operators O = A + E. The
endomorphism is a local function E = E, = %¢(z)?, so it is not a differential operator like
A, and we indicate by Ep its Fourier transform. We can write the heat kernel of O using the
simpler Ho(s) thanks to the (proper time) ordered expansion in £

1
H(s;z,2') = Ho(s;z,2") — s// dt1 Ho(s(1 —t1); 2, y) EyHo(sti; y, ')
yJ0O

1 t1
+82/ /dtl/ dta Ho(s(1 — t1); 2, y1) Ey, Ho(s(t1 — t2); y1, y2) Ey, Ho(st2; y2, 2')
y1,y2 40 0
+...

in which spacetime integrations are condensed fy =/ d%y. (We are going to show how to derive
this expansion in class.) Inserting the above expression in the one of the effective action

T[e] = —;/dss/ddxe_sm2 H(s;x,x)

and considering only the part quadratic in £ we get

1 1 t1
Dl = —/dSSeSmQ/ / dtl/ dta Ho(s(1 — t1 4+ t2); y2, y1) By, ¥
2 y1,y2 40 0
xHo(s(tr —t2);y1,y2) Ey,

after using the semigroup property (and the cyclicity of the trace).

Part 1:
Compute the Fourier transform of

Ho(s(1 —t1 +t2);y2, y1) By, Ho(s(t1 — t2);y1, y2) By, = / E, A(s;t1,ta;p,q) E—p

Y1,Y2 p.q

Hint:
Recall that Ep is the Fourier transform of the endomorphism.

Part 2:
Define the variable £ = t; — t2 and show that

(1=t +t2)¢* + (t1 — t2) (g +p)* = (qa+ &p)* + £(1 = p®

then insert this result in the amplitude A and perform the integration over q.

Hint:
After the manipulation of the exponent recall that the integration measure d%q is invariant under
translations.




Part 3:
Use the result of the previous point (keeping the dependence on the momentum p) to compute
the integration over the proper time s inside I'|ge.

Hint:
You can rewrite the integration over the two parameters t; and to using the fact that:

1 t1 1 L
/0 dt1/0 dty g(t] —to) = 2/0 d¢ g(§),

for g a function such that g(&) = g(1 —&).

Part 4:
Expand T'|g2 in € = 4 — d (including the finite part at €) and compute the integration over &.

Hint:
You can make use of the following primitive function

/d§ log (m? + £(1— €)p?) = — ]ﬂ—;);lmZarctanh 252:4;2
pom
—£+ <§ — ;) log (m2 +&(1— f)PZ)

and recall that arctanh(—x) = — arctanh(z).




