
Exercise 10: Heat kernel methods

Some theory first.
Consider the representation of the one loop effective action

Γ[ϕ] =
1

2
Tr log

(
O +m2

)
with the operator O = −∂2 + g

2ϕ
2. We also define the flat space Laplacian as ∆ = −∂2. We

have already seen that the action can be represented as

Γ[ϕ] = −1

2
Tr

∫
ds

s
e−sm

2 H(s)

with H(s) ≡ e−sO known as the heat kernel of the operator O. The parameter s is often called
proper time. (The mass is assumed here to be a number that commutes with everything.)

The trace can be performed by giving a representation toH(s). In coordinate space it is a matrix
which is formally written as H(s;x, x′) ≡ 〈x|e−sO|x′〉. In practice H(s;x, x′) is the solution of
the differential equation

∂sH(s;x, x′) +OxH(s;x, x′) = 0 H(0;x, x′) = δ(x, x′)

This function can be interpreted as the propagation to the location x and in the time s of some
heat from a point source located at the point x = x′ and time s = 0 according to the operator
O. The heat kernel forms an Abelian one dimensional semigroup∫

ddx′H(s1;x, x
′)H(s2;x

′, x′′) = H(s1 + s2;x, x
′′)

We define also the heat kernel H0(s) of the simpler operator ∆ = −∂2 analogously

∂sH0(s;x, x
′) + ∆xH0(s;x, x

′) = 0 H0(0;x, x′) = δ(x, x′)

This latter heat kernel is simpler because it can be computed easily in momentum space and
becomes a Gaussian distribution

H̃0(s; p)δp,p′ = 〈p|H0(s)|p′〉 = e−sp
2
δp,p′

in which we used momentum conservation to factor out a delta function in the definition of
H̃0(s; p). In coordinate space it is also a Gaussian after Fourier transforming

H0(s;x, x
′) =

1

(4πs)d/2
exp

(
−|x− x

′|2

4s

)
You can see that ∆ is covariant under Euclidean transformations (translations and rotations)
because H0(s;x, x

′) is just a function of |x− x′|.
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Let E = g
2ϕ

2 be the endomorphism that distinguishes the two operators O = ∆ + E. The
endomorphism is a local function E = Ex = g

2ϕ(x)2, so it is not a differential operator like

∆, and we indicate by Ẽp its Fourier transform. We can write the heat kernel of O using the
simpler H0(s) thanks to the (proper time) ordered expansion in E

H(s;x, x′) = H0(s;x, x
′)− s

∫
y

∫ 1

0
dt1H0(s(1− t1);x, y)EyH0(st1; y, x

′)

+s2
∫
y1,y2

∫ 1

0
dt1

∫ t1

0
dt2H0(s(1− t1);x, y1)Ey1H0(s(t1 − t2); y1, y2)Ey2H0(st2; y2, x

′)

+ . . .

in which spacetime integrations are condensed
∫
y ≡

∫
ddy. (We are going to show how to derive

this expansion in class.) Inserting the above expression in the one of the effective action

Γ[ϕ] = −1

2

∫
ds

s

∫
ddx e−sm

2 H(s;x, x)

and considering only the part quadratic in E we get

Γ|E2 = −1

2

∫
ds s e−sm

2

∫
y1,y2

∫ 1

0
dt1

∫ t1

0
dt2H0(s(1− t1 + t2); y2, y1)Ey1 ×

×H0(s(t1 − t2); y1, y2)Ey2

after using the semigroup property (and the cyclicity of the trace).

Part 1:
Compute the Fourier transform of∫

y1,y2

H0(s(1− t1 + t2); y2, y1)Ey1H0(s(t1 − t2); y1, y2)Ey2 =

∫
p,q
ẼpA(s; t1, t2; p, q) Ẽ−p

Hint:
Recall that Ẽp is the Fourier transform of the endomorphism.

Part 2:
Define the variable ξ = t1 − t2 and show that

(1− t1 + t2)q
2 + (t1 − t2)(q + p)2 = (q + ξp)2 + ξ(1− ξ)p2

then insert this result in the amplitude A and perform the integration over q.

Hint:
After the manipulation of the exponent recall that the integration measure ddq is invariant under
translations.
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Part 3:
Use the result of the previous point (keeping the dependence on the momentum p) to compute
the integration over the proper time s inside Γ|E2 .

Hint:
You can rewrite the integration over the two parameters t1 and t2 using the fact that:∫ 1

0
dt1

∫ t1

0
dt2 g(t1 − t2) =

1

2

∫ 1

0
dξ g(ξ) ,

for g a function such that g(ξ) = g(1− ξ).

Part 4:
Expand Γ|E2 in ε = 4− d (including the finite part at ε0) and compute the integration over ξ.

Hint:
You can make use of the following primitive function

∫
dξ log

(
m2 + ξ(1− ξ)p2

)
= −

√
p2 + 4m2

p2
arctanh

 2ξ − 1√
p2+4m2

p2


−ξ +

(
ξ − 1

2

)
log
(
m2 + ξ(1− ξ)p2

)
and recall that arctanh(−x) = − arctanh(x).
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