
Exercise 1: Ising model in d = 1

Consider the Hamiltonian of the one dimensional Ising model

H = −J
N∑
i=1

σiσi+1 − h
N∑
i=1

σi = −
N∑
i=1

{
Jσiσi+1 +

h

2
(σi + σi+1)

}
and the partition function expressed as a product of transfer matrices

Z =
∑
{σ}

e
∑N
i=1{βJσiσi+1+

βh
2
(σi+σi+1)} =

∑
{σ}

N∏
i=1

T (σi, σi+1)

The components of the transfer matrix are

T (σi, σi+1) = eβJσiσi+1+
βh
2
(σi+σi+1)

Part 1. Write down the matrix

T =

[
T (+1,+1) T (+1,−1)
T (−1,+1) T (−1,−1)

]
in the basis σi ⊗ σi+1.

Part 2. Compute the eigenvalues λ1,2 of the transfer matrix in this basis. Use them to express the partition
function and then take the thermodynamical limit N →∞.

Optional: Part 3. Compute the spin-spin correlator 〈σiσj〉 − 〈σi〉〈σj〉.

Hint: Part 3 is much more difficult, so feel free to use Mathematica to compute the eigenvalues (and the
eigenvectors if necessary!) It is convenient to modify the Hamiltonian by adding a further space-dependent
magnetic field H → H[bi] = H+

∑N
i=1 biσi. The spin-spin correlator can then be obtained from the partition

function

〈σiσj〉 =
1

Z

1

β2
δ2

δbiδbj
Z

∣∣∣∣
bi=0
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Exercise 2: Scaling relations and universal properties

Assume the generalized homogeneous scaling form of the free energy near criticality

Fs(λ
att, λahh) = λFs(t, h)

The number λ is a dimensionless constant of arbitrary value. All thermodynamical exponents can be
computed from the above expression.

Let us compute one as example: First take a derivative with respect to h on both sides

∂

∂h
Fs(λ

att, λahh) = λ
∂

∂h
Fs(t, h)

We use the fact that the derivative of Fs with respect to h is the (negative of the) magnetization

λahMs(λ
att, λahh) = λMs(t, h)

and solve for Ms(t, h) as follows

Ms(t, h) = λah−1Ms(λ
att, λahh)

Finally eliminate from the argument on the right hand side by taking λ = t
− 1

at . We get the scaling form

Ms(t, h) = t
1−ah
at Ms(1, t

−ah
at h) = t

1−ah
at Ms(1, t

−∆h) ≡ t
1−ah
at gM

(
h

t∆

)
The exponent β is defined from the scaling at zero magnetic field Ms(t, 0) ∼ tβ, and the function gM is
regular by definition. This implies

β =
1− ah
at

Part 1. Use the same procedure to determine the exponents α, γ and δ.

Part 2. Use the determined exponents to check the scaling relations (Rushbrooke’s, Griffiths’ and Widom’s
identities). Alternatively feel free to derive them as described in class.

In class we have seen that following hyperscaling arguments it is possible to introduce two new critical
exponents ν and η of field-theoretical nature and relate them to α and γ (Josephson’s and Fisher’s identities).

Part 3. Use all identies to show

α = 2− νd γ = ν(2− η)

β = 1
2(d− 2 + η)ν δ = d+2−η

d−2+η

(You do not have to derive hyperscaling identities here, feel free to bring them from the notes.)

The critical exponents are universal features of the phase transition. However, they are not the only
universal features that one can compute. In general, a quantity such as the correlation length ξ behaves as

ξ =

{
ξ+

0 t
−ν for t > 0 and h = 0

ξ−0 (−t)−ν for t < 0 and h = 0

We have introduced two overall coefficients ξ±0 known as amplitudes which normalize the powerlaw behavior
and are related to the scaling form. Similar amplitudes can be introduced for the other quantities, but their

value is not universal. However the ratio
ξ+0
ξ−0

, which is often called amplitude ratio, is a universal quantity

that can be estimated (for example) with mean-field analysis.

Optional: Part 4. Using the Ginzburg-Landau approach of the notes with r = r0 |t|, and the analysis of
the two-point function show (

ξ+
0

ξ−0

)2

= 2
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Exercise 3: Real space renormalization of the two-dimensional Ising model

The objective of this exercise is to construct a real-space renormalization of the two dimensional Ising model
using only the analysis that we have made for the one dimensional case. Keep in mind that you should be
able to infer the renormalization without doing any actual computation besides the last numerical estimate
that you can do with your favorite programming language.

First recall how we perform a renormalization step of the one dimensional model: we explicitly sum over
half of the spins and we conclude that the Ising’s coupling K = βJ of the original lattice is mapped to the
coupling K ′ = RG[K] = 1

2 ln cosh(2K) in the resulting lattice. The renormalization group flow is obtained
by nesting this operation and it is easy to see that after few steps the flow leads the coupling to the (high
temperature) fixed point K∗ = 0. The figure below summarizes the procedure: circles correspond to spins,
and lines to the bond interactions. Full black circles are spins that are not summed over, while circles with
a cross are spins that we sum. The figure shows the first two steps of the blocking procedure.

K

K ′′ = RG[K ′]

K ′ = RG[K]

The explicit RG transformation derived in class is repeated here K ′ = RG[K] = 1
2 ln cosh(2K) and will be

needed later.

Now we move to a two dimensional lattice. In class we discused how to sum an alternating sublattice, but
for this exercise we are going to do something different. We are going to contruct the RG procedure in three
steps. First let us introduce the unit vectors x̂ and ŷ as shown in the figure below.

x̂ =

ŷ =

A spin σi located in position i = {x, y} couples with the four neigboring spins as follows

−βH ∼ K
{
σiσi+x̂ + σiσi−x̂ + σiσi+ŷ + σiσi+ŷ

}
in which we are showing only the terms of the Hamiltonian which include σi. The first procedure’s step
is to allow the interaction K to be anisotropic as follows

−βH ∼ Kx

{
σiσi+x̂ + σiσi−x̂

}
+Ky

{
σiσi+ŷ + σiσi+ŷ

}
Spins are now interacting with different strengths for different cardinal directions, but clearly requiring
Kx = Ky = K we can get to the original Hamiltonian!
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The second procedure’s step is to approximate the Hamiltonian by “sliding” half of the bond interactions
in the ŷ direction to the other half as shown in the figure blow. In practice: we neglect half of the vertical
bond interactions, while the other half becomes twice as strong.

The third procedure’s step is to sum over the spins which are interacting only in the horizontal direction
as shown in the following figure.

Together the three procedure’s steps form our initial RG step.

Question 1: Write down the effect of an RG step to the couplings: {K ′x,K ′y} = RG1[{Kx,Ky}].

From the answer to the first question it should be clear that it doesn’t make sense to iterate this single RG
step.

Question 2: Can you explain qualitatively why?

Now consider another RG step which we call {K ′x,K ′y} = RG2[{Kx,Ky}] which is of the same form but has
x and y switched (so it is rotated by π/2).

Question 3: Consider the nested steps {K ′x,K ′y} = RG2[RG1[{Kx,Ky}]]. What are the fixed points for
Kx and Ky? (Do it numerically.) Using either fixed point estimate the exponent α as done in class with
scaling methods. Using Josephson’s hyperscaling identity estimate the exponent ν too.

Optional question 4: Are these estimates better or worse than those obtained with the method shown in
class? Can you give some qualitative argument why?
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Exercise 4: The effective action

Consider a free massive scalar field in d dimensions with action

S[ϕ] =
1

2

∫
ddx

{
(∂ϕ)2 +m2ϕ2

}
=

1

2

∫
ddxϕ

(
−∂2 +m2

)
ϕ

and the path integral

e−Γ[ϕ] =

∫
Dχ e−S[ϕ+χ]

The physical interpretation of the path integral above goes as follows: the field χ are fluctua-
tions over a background field ϕ. By integrating the fuctuations we are obtaining an effective
action for the field configuration ϕ which is valid at 〈χ〉 = 0.

Part 1:
Use the path-integral to show that the effective action is

Γ[ϕ] = S[ϕ] +
1

2
Tr logO

in which O = −∂2 +m2.

Hints for part 1:
The action is free and therefore the dependences on χ and ϕ are separable (exactly like when
we did momentum shell RG in class). Use the Gaussian integral formula for the functional
determinant.

Part 2:
Apply the Laplace transform method to show

1

2
Tr logO =

1

2

∫ ∞
0

dsL−1[f ](s) Tr e−sO

in which L−1[f ](s) is the inverse Laplace transform of the function f(x) = log x.

Hints for part 2:
Given a function f(x), the relation with its inverse Laplace transform is

f(x) =

∫ ∞
0

dsL−1[f ](s)e−sx
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Part 3:
Show that the inverse Laplace transform of the logarithm is

L−1[log](s) = −1

s

and therefore
1

2
Tr logO = −1

2

∫ ∞
0

ds

s
Tr e−sO

Hints for part 3:
The relation of the inverse Laplace transform with the original function is

L−1[f ](s) =
1

2πi

∫ γ+i∞

γ−i∞
dz f(z)esz

with γ ∈ R such that all the poles zi of f(z) lie on the left part of the complex plane with
respect to γ: γ > Re(zi) ∀ i. You might want to use the following property of the inverse
Laplace transform:

L−1[f ′](s) = −sL−1[f ](s) ,

with f ′ the derivative of f .

Part 4:
Use the momentum space representation of the operator

e−sO |p〉 = e−s(p
2+m2) |p〉

for a normalized state |p〉, and of the trace

Tr(...) =

∫
ddp

(2π)d
〈p| (...) |p〉

to find an explicit formula for
1

2
Tr logO

(integrate first in p and then in s). What are the assumptions that you have to make on d and
m2 for the integral to be convergent? When do you have to make these assumptions? What
happens if m2 = 0?

Hints for part 4:
Recall the integral form of the Euler Gamma function:

Γ(z + 1) =

∫ ∞
0

dt e−t tz−1 ,

which is convergent for z > 0.
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Exercise 5: Three states Potts model

Consider the vertices eαa for a ∈ {1, 2} and α ∈ {1, 2, 3} of the regular 2-simplex often known as
“equilateral triangle”

e1 = {0, 1} e2 = {−
√

3/2,−1/2} e3 = {
√

3/2,−1/2} (1)

(Notice that we are using a normalization which is different from the notes.)

Introduce two scalar fields φa(x) and combine them in the field ψα =
∑

a=1,2 e
α
aφa. We define

an action for the 3-states Potts model

S[φ] =

∫
ddx

3∑
α=1

{1

3
∂µψ

α∂µψα + g(ψα)3
}

(2)

The model is invariant under the group S3 of the permutations of three objects: a permutation
p ∈ S3 acts on the vertices of the triangle as

p : {e1, e2, e3} → {ep(1), ep(2), ep(3)}

Geometrically, the permutations of three elements correspond to the transformations that leave
the triangle invariant. They are

• the identity transformation: {1, 2, 3} → {1, 2, 3},

• two rotational symmetries: {1, 2, 3} → {2, 3, 1} and {1, 2, 3} → {3, 1, 2}
(for 120o and 240o),

• and three reflections: {1, 2, 3} → {1, 3, 2}, {1, 2, 3} → {3, 2, 1} and {1, 2, 3} → {2, 1, 3}.
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Part 1:
Give an explicit expression of S[φ] in terms of φ1 and φ2. In particular show that the potential
becomes

V (φ1, φ2) =
3

4
(φ2)

3 − 9

4
(φ1)

2φ2 (3)

Part 2:
Consider the rotations with angles ω = ±2π

3 in the (φ1, φ2)-plane given by the matrices

R(2π/3) =

[
−1/2

√
3/2

−
√

3/2 −1/2

]
R(−2π/3) = R(2π/3)T = R(2π/3)−1 (4)

The rotations act on the fields as

φa → φ′a = R(ω)a
b φb (5)

Show that the potential V (φ1, φ2) is invariant under those two rotations, V (φ1, φ2) = V (φ′1, φ
′
2).

Part 3:
Why is the potential invariant under two rotations? How many more nontrivial symmetries do
you expect the potential to have?

(Optional but very easy!) Part 4:
Consider a generic rotation R(α) of an angle α, and the reflection along the φ2 axis

I =

[
−1 0
0 1

]
(6)

Can you write all transformations that leave the potential invariant as products of one specific
rotation and the reflection I? If yes, which angle α did you find convenient to use and why?
There are multiple answers and you should be able to solve this graphically.

A bit more theory.
If instead we consider the action with quartic interaction there are in general two couplings

S[φ] =

∫
ddx
{1

3

3∑
α=1

∂µψ
α∂µψα + λ1

3∑
α,β=1

(ψα)2(ψβ)2 + λ2

3∑
α=1

(ψα)4
}

(7)

but in the case q = 3 the potential is a function of only the combination λ = 9
4λ1 + 9

8λ2. The
potential becomes

V (φ1, φ2) = λ
(
(φ1)

2 + (φ2)
2
)

(8)

In general the quartic interaction will have additional parity Z2 symmetries φi → −φi as com-
pared to Sq, but, after direct inspection, in the case q = 2 the potential becomes a function of
the norm of {φ1, φ2} and therefore has symmetry enhanced to the full O(2) group.
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Exercise 6: Dimensionless variables and critical properties

Consider a scale k dependent potential Vk(φ) with renormalization group flow:

k∂kVk(φ) = kdF

(
V ′′(φ)

Zkk2

)
(1)

Assume that the function F is nowhere singular. The above notation means that the potential is
a function of φ that depends also on k: the derivative ∂k only acts on the explicit dependence of
Vk and not on the argument φ. In other words, the renormalization group flow of the potential
Vk(φ) is the logarithmic derivative with respect to k at fixed field φ.

The scale dependent constant Zk has renormalization group flow k∂kZk = −ηZk and it normal-
izes the kinetic term Zk

2 (∂φ)2. Define the dimensionless renormalized field

ϕ ≡ k−d/2+1Z
1/2
k φ (2)

and the dimensionless potential

vk(ϕ) ≡ k−dVk(φ) = k−dVk(k
d/2−1Z

−1/2
k ϕ) (3)

The dimensionless renormalized field has canonically normalized kinetic term in units of the
scale k.

Part 1:
Show that the renormalization group flow of the dimensionless potential (that is the logarithmic
scale derivative at fixed ϕ) is

k∂kvk(ϕ) = −dv(ϕ) +
1

2
(d− 2 + η)ϕv′k(ϕ) + F (v′′k(ϕ)) (4)

Some definitions: the first few terms of the scale derivative depend only on the rescaling

−dv(ϕ) +
1

2
(d− 2 + η)ϕv′k(ϕ)

and generally are referred to as scaling part to distinguish it from F (v′′k(ϕ)) which carries the
quantum or statistical effects.

Part 2:
Approximate the potential to two couplings vk(ϕ) = 1

2g2ϕ
2 + 1

4!g4ϕ
4 and project the flow as

k∂kvk(ϕ) =
1

2
βg2ϕ

2 +
1

4!
βg4ϕ

4 (5)

Give explicit expressions for the beta functions βg2 and βg4 and identitfy their scaling parts.



(Optional) Part 3:
Take η = Bg24 and F (x) = Ax2 for A and B two positive constants. Expand in d = 4 − ε and
find the fixed points of βg2 = 0 = βg4 and the eigenvalues of the stability matrix at the leading
order in ε.

Does the result depend on A and B? Why?

Some comments that will be discussed during the standard or the exercise class:

Assuming in general that η ∼ g24, it is possible to construct the leading orders in the ε expansion
of both fixed points and eigenvalues for a general function F , making the above result universal.

From βg4 = 0 you can find g4 = ε/(3F ′′(g2)), and substituting it in βg2 = 0 you find g2 =
εF ′(g2)/(6F

′′(g2)). Using the fact that both g4 and g2 are proportional to ε and the regularity
of F (x) in zero we get that to O(ε) the nontrivial fixed point is

g∗2 =
ε

6

F ′(0)

F ′′(0)
g∗4 =

ε

3F ′′(0)

The stability matrix at this fixed point becomes[
−2 + ε

3

(
1 + ε

6

)
F ′(0)

0 ε

]
and the eigenvalues can be found trivially because it is a triangular matrix. The negative of
these eigenvalues are (related to) the critical exponents.

Consider the eigenvector of the critical exponent θ = 2− ε
3 . In the above basis it is {1, 0} which

corresponds to the operator ϕ2. This means that close to the fixed point we can deform

v(ϕ) = v∗(ϕ) +

(
k

k0

)θ
ϕ2

with k0 an arbitrary reference mass scale.

Now identify v∗(ϕ) with the critical point of a system: the reduced temperature is thus T−Tc
Tc
∼

(k/k0)
θ. (We do not use the symbol t for the reduced temperature to not confuse it with the

logarithm of the scale.)

Finally perform a rescaling of the system. The momentum scale transforms as k → λ · k, which
implies that T−Tc

Tc
∼ λθ. Recalling that the exponent ν is related to the scaling of T−Tc

Tc
as

T−Tc
Tc
∼ λ1/ν under the hyperscaling hypothesis, we deduce that ν = 1/θ = 1/2 + ε/12.
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Exercise 7: Vertex expansion

Consider the Wetterich equation

k∂kΓk[φ] =
1

2
TrGkk∂kRk

in which we denoted the (modified) propagator as

Gk =
(

Γ
(2)
k +Rk

)−1

If you graphically represent the propagator as

Gk(x, y) =

(
δ2Γk

δφ(x)δφ(y)
+Rk(x, y)

)−1

=
[

x y
]

and the derivative of the cutoff as

k∂kRk(x, y) =
[

x y
]

then the RG flow equation has the following representation

k∂kΓk[φ] =
1

2




in which a closed loop means that we are taking the trace.

We want to construct the vertex expansion by acting with functional derivatives on the RG
flow of the effective average action. We need to know how a derivative acts on the propagator

δ

δφ(z)
Gk(x, y) = −

∫
ddz1d

dz2 Gk(x, z1)
δ3Γk

δφ(z1)δφ(z2)δφ(z)
Gk(z2, y)

Graphically the action becomes very simple

δ

δφ(z)
Gk(x, y) = −

 x y

z


in which we denoted with a black dot the vertex coming from the derivatives of Γk[φ]. We
distinguish internal from external lines by denoting the former with a double line and the latter
with a standard line, so we remember to not attach propagators to the external ones.
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Part 1:
Give the graphical representation of the first derivative of the flow

δ

δφ(x)
k∂kΓk[φ]

This is the flow of the one-point function (which is the first vertex of the theory).

Part 2:
Show (graphically) that the following representation is correct

δ2

δφ(x)δφ(y)
k∂kΓk[φ] =

1

2

 x y

+ (x↔ y)

−1

2

 x

y


in which (x ↔ y) repeats the preceeding term with an exchange of x and y. Assuming full
symmetry in the exchange of the two coordinates {x, y} how many “topologically” different
diagrams do you have?

(Optional) Part 3:
Assuming full symmetry under the exchange of the three coordinates {x, y, z}, give a graphical
representation of the third derivative of the flow

δ3

δφ(x)δφ(y)δφ(z)
k∂kΓk[φ]

(Optional) Part 4:
Assuming full symmetry under the exchange of the four coordinates {x, y, z, w}, give a graphical
representation of the fourth derivative of the flow

δ4

δφ(x)δφ(y)δφ(z)δφ(w)
k∂kΓk[φ]
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Exercise 8: Projection of the vertex expansion

In this exercise we want to evaluate the vertex expansion of Exercise 7 for an action truncated
to the local potential approximation

Γk[φ] =

∫
ddx

{
1

2
(∂φ)2 + Vk(φ)

}
We want to evaluate the renormalization group flow of each vertex at constant field φ in mo-
mentum space. You can begin to familiarize with some steps of the procedure:

• The propagator is a function of one momentum conjugate to the difference of the coordi-
nates

Gk(x, y) =

∫
q
Gk
(
q2
)

eiq·(x−y)

We choose the Fourier transform to be a function of q2 using rotational and translational
invariance.

• The cutoff and its derivative are also functions of q2 for the same reasons

Rk(x, y) =

∫
q
Rk
(
q2
)

eiq·(x−y) , k∂kRk(x, y) =

∫
q
k∂kRk

(
q2
)

eiq·(x−y)

The functions Gk(q
2) and Rk(q

2) are obviously related

Gk(q
2) =

(
q2 + V ′′k (φ) +Rk(q

2)
)−1

• The vertices with three or more legs become local because the potential is local. For
example

δ3Γk[φ]

δφp1δφp2δφp3
= V

(3)
k (φ) (2π)d δ(p1 + p2 + p3)

Part 1:
The evaluation of the zero point function gives

k∂kΓ[φ]|φ=const. =
1

2

∫
ddx

∫
q
Gk
(
q2
)
k∂kRk

(
q2
)

Evaluate the right hand side of the above formula for the cutoff Rk
(
q2
)

=
(
k2 − q2

)
θ
(
k2 − q2

)
with θ(x) the Heaviside theta function. Deduce the flow of Vk(φ).

Hints:
The momentum integral is

∫
q ≡

∫ ddq
(2π)d

and can immediately be changed to polar coordinates.

Furthermore, you might find the following property useful

f (Aθ(x− x0) +Bθ(x0 − x)) = f(A)θ(x− x0) + f(B)θ(x0 − x)

(Heaviside thetas are projectors over the space of functions.)
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Part 2:
The evaluation of the two point function gives

k∂k
δ2

δφpδφ−p
Γ[φ]

∣∣∣∣
φ=const.

= V (3)(φ)2
∫
q
Gk
(
(q + p)2

)
Gk
(
q2
)2
k∂kRk

(
q2
)

−1

2
V (4)(φ)

∫
q
Gk
(
q2
)2
k∂kRk

(
q2
)

Show that upon Taylor expanding the above formula in pµ, the coefficient of p2 of the right hand
side of the above formula is

V (3)(φ)2
∫
q

(
G′k
(
q2
)

+ q2
2

d
G′′k
(
q2
))

Gk
(
q2
)2
k∂kRk

(
q2
)

Hints:
Use the following properties that can be proved through invariance under rotational symmetry∫

q
qµf(q2) = 0 ,

∫
q
qµqνf(q2) =

1

d
gµν

∫
q
q2f(q2)

(Optional) Part 3:
Evaluate

V (3)(φ)2
∫
q

(
G′k
(
q2
)

+ q2
2

d
G′′k
(
q2
))

Gk
(
q2
)2
k∂kRk

(
q2
)

for the cutoff Rk
(
q2
)

=
(
k2 − q2

)
θ
(
k2 − q2

)
.

Hints:
The derivative of the Heaviside function is the Dirac delta and they satisfy the following prop-
erties ∫

dx θ(x− x0)θ(x0 − x)f(x) = 0 ,

∫
dx θ(x− x0)δ(x− x0)f(x) =

1

2
f(x0)

(Delta and Heaviside functions are distributions: a distribution is defined as the limit of a
sequences of functions in the space of all functions. The formula on the right assumes that
the elements of limiting sequence for the Dirac delta are the derivatives of the elements of the
limiting sequence of the Heviside theta.)

(Optional) Part 4:
We have not introduced a wavefunction normalization Zk in the truncation to the local potential
of Γk[φ], but it should be clear that it is generated by the flow. Assuming that we start from
Zk = 1, after one infinitesimal RG step it becomes

Zk+δk = Zk + δZk = Zk +
∂Zk
∂k

δk = Zk (1− η δk) = 1− η δk
k

in which we used η = −∂ logZk/∂ log k. Can you estimate the anomalous dimension η from the
result of Part 3? What value does it have for φ = 0 if the potential is symmetric?
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Exercise 9: Perturbative RG and the renormalized potential

In this exercise we want to give a functional representation based on a renormalized potential
to our lecture’s results based on perturbation theory for small coupling.

Recall that during the lecture we promoted the standard φ4 Lagrangian in d = 4 dimensions

L4 =
1

2
∂µφ∂

µφ+
1

2
g2φ

2 +
1

4!
g4φ

4

to a d-dimensional action by introducing a scale µ as

Ld =
1

2
∂µφ∂

µφ+
1

2
g2φ

2 +
1

4!
µ4−dg4φ

4

The “promotion” was done in such a way that the field φ has always canonical dimension, but
the couplings g2 and g4 have maintained the same dimension when 4→ d. The potential is for
now restricted to be a polynomial of the fourth order.

Part 1:
Consider the generalization of L4 to a full functional potential

L4 =
1

2
∂µφ∂

µφ+ V (φ)

The original Lagrangian can be recovered by expanding V (φ) = 1
2g2φ

2+ 1
4!g4φ

4 and the couplings
are the Taylor coefficients of this expansion. Find the generalization of the potential that is
needed to promote the Lagrangian to Ld and leaves the dimension of the couplings invariant.

Hint:
You may try the ansatz

Ld =
1

2
∂µφ∂

µφ+ µAV (µBφ)

and determine the unknown constants A and B by comparing with the coupling’s Lagrangian.

After 1) dimensional regularization, 2) minimal subtraction of the 1
ε poles and 3) an unimportant

rescaling of factors of 4π, the beta function of the coupling g4 at two loops in d = 4 is

βg4 = 3g24 −
17

3
g34

and the anomalous dimension is

η =
1

6
g24

1



Part 2:
Assume that in the functional representation the potential has beta function

βV = C1

(
V ′′(φ)

)2
+ C2 V

′′(φ)
(
V ′′′(φ)

)2
+

1

2
η φV ′(φ)

and the anomalous dimension η has the form

η = C3

(
V (4)(0)

)2

Determine the constants C1, C2 and C3.

Hint:
There is no need to compute them from diagrams if you substitute V (φ) = 1

4!g4φ
4 + . . . and

interpret βV as the generator of the beta functions βV = 1
4!βg4φ

4+ . . . . It is probably convenient
to determine the constant C3 of the anomalous dimension first.

Now we are interested in computing the critical exponents below four dimensions using the beta
functions and the perturbative expansion of d = 4.

One trick to do this is to “trade” the expansion in g4 for a ε = 4− d expansion. We use the fact
that V (φ) and φ are canonically normalized in d dimensions and switch to a dimensionless poten-
tial v(ϕ) = µ−dV (µd/2−1ϕ). (Notice that the field φ is already renormalized and the contribution
of η is already inside βV above so there is no need to rescale by a further wavefunction.)

We are purposedly distinguishing between d = 4− ε (which parametrizes any dimension below
the upper critical one for statistical field theory) and d = 4 − ε (which analytically continued
the theory to make it finite). After the new additional rescaling all couplings are dimensionless
and the beta function is

βv = −dv(ϕ) +
d− 2

2
ϕv′(ϕ) + βV |V→v

= −dv(ϕ) +
d− 2 + η

2
ϕv′(ϕ) +

1

2

(
v′′(ϕ)

)2 − 1

2
v′′(φ)

(
v′′′(φ)

)2
η = =

1

6
(v(4)(0))2

(This expression has a familiar scaling term that should remind you of another exercise. It
should also suggest you the correct values of C1, C2 and C3 as a check of part 2!) The fixed
point solutions of βv = 0 are of the form v∗(ϕ) = 1

4!λ
∗
4(ε)ϕ

4.

(Optional) Part 3:

• Find all the fixed points λ∗4(ε) up to order ε2. How many are they and why?

• Which fixed point is the one that we need for the ε expansion and why?

• Find a simple way to determine the critical exponent η and ν to order ε2.
(The results should be η = ε2

54 and ν = 1
2 + ε

12 + 7ε2

162 .)
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Exercise 10: Heat kernel methods

Some theory first.
Consider the representation of the one loop effective action

Γ[ϕ] =
1

2
Tr log

(
O +m2

)
with the operator O = −∂2 + g

2ϕ
2. We also define the flat space Laplacian as ∆ = −∂2. We

have already seen that the action can be represented as

Γ[ϕ] = −1

2
Tr

∫
ds

s
e−sm

2 H(s)

with H(s) ≡ e−sO known as the heat kernel of the operator O. The parameter s is often called
proper time. (The mass is assumed here to be a number that commutes with everything.)

The trace can be performed by giving a representation toH(s). In coordinate space it is a matrix
which is formally written as H(s;x, x′) ≡ 〈x|e−sO|x′〉. In practice H(s;x, x′) is the solution of
the differential equation

∂sH(s;x, x′) +OxH(s;x, x′) = 0 H(0;x, x′) = δ(x, x′)

This function can be interpreted as the propagation to the location x and in the time s of some
heat from a point source located at the point x = x′ and time s = 0 according to the operator
O. The heat kernel forms an Abelian one dimensional semigroup∫

ddx′H(s1;x, x
′)H(s2;x

′, x′′) = H(s1 + s2;x, x
′′)

We define also the heat kernel H0(s) of the simpler operator ∆ = −∂2 analogously

∂sH0(s;x, x
′) + ∆xH0(s;x, x

′) = 0 H0(0;x, x′) = δ(x, x′)

This latter heat kernel is simpler because it can be computed easily in momentum space and
becomes a Gaussian distribution

H̃0(s; p)δp,p′ = 〈p|H0(s)|p′〉 = e−sp
2
δp,p′

in which we used momentum conservation to factor out a delta function in the definition of
H̃0(s; p). In coordinate space it is also a Gaussian after Fourier transforming

H0(s;x, x
′) =

1

(4πs)d/2
exp

(
−|x− x

′|2

4s

)
You can see that ∆ is covariant under Euclidean transformations (translations and rotations)
because H0(s;x, x

′) is just a function of |x− x′|.

1



Let E = g
2ϕ

2 be the endomorphism that distinguishes the two operators O = ∆ + E. The
endomorphism is a local function E = Ex = g

2ϕ(x)2, so it is not a differential operator like

∆, and we indicate by Ẽp its Fourier transform. We can write the heat kernel of O using the
simpler H0(s) thanks to the (proper time) ordered expansion in E

H(s;x, x′) = H0(s;x, x
′)− s

∫
y

∫ 1

0
dt1H0(s(1− t1);x, y)EyH0(st1; y, x

′)

+s2
∫
y1,y2

∫ 1

0
dt1

∫ t1

0
dt2H0(s(1− t1);x, y1)Ey1H0(s(t1 − t2); y1, y2)Ey2H0(st2; y2, x

′)

+ . . .

in which spacetime integrations are condensed
∫
y ≡

∫
ddy. (We are going to show how to derive

this expansion in class.) Inserting the above expression in the one of the effective action

Γ[ϕ] = −1

2

∫
ds

s

∫
ddx e−sm

2 H(s;x, x)

and considering only the part quadratic in E we get

Γ|E2 = −1

2

∫
ds s e−sm

2

∫
y1,y2

∫ 1

0
dt1

∫ t1

0
dt2H0(s(1− t1 + t2); y2, y1)Ey1 ×

×H0(s(t1 − t2); y1, y2)Ey2

after using the semigroup property (and the cyclicity of the trace).

Part 1:
Compute the Fourier transform of∫

y1,y2

H0(s(1− t1 + t2); y2, y1)Ey1H0(s(t1 − t2); y1, y2)Ey2 =

∫
p,q
ẼpA(s; t1, t2; p, q) Ẽ−p

Hint:
Recall that Ẽp is the Fourier transform of the endomorphism.

Part 2:
Define the variable ξ = t1 − t2 and show that

(1− t1 + t2)q
2 + (t1 − t2)(q + p)2 = (q + ξp)2 + ξ(1− ξ)p2

then insert this result in the amplitude A and perform the integration over q.

Hint:
After the manipulation of the exponent recall that the integration measure ddq is invariant under
translations.
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Part 3:
Use the result of the previous point (keeping the dependence on the momentum p) to compute
the integration over the proper time s inside Γ|E2 .

Hint:
You can rewrite the integration over the two parameters t1 and t2 using the fact that:∫ 1

0
dt1

∫ t1

0
dt2 g(t1 − t2) =

1

2

∫ 1

0
dξ g(ξ) ,

for g a function such that g(ξ) = g(1− ξ).

Part 4:
Expand Γ|E2 in ε = 4− d (including the finite part at ε0) and compute the integration over ξ.

Hint:
You can make use of the following primitive function

∫
dξ log

(
m2 + ξ(1− ξ)p2

)
= −

√
p2 + 4m2

p2
arctanh

 2ξ − 1√
p2+4m2

p2


−ξ +

(
ξ − 1

2

)
log
(
m2 + ξ(1− ξ)p2

)
and recall that arctanh(−x) = − arctanh(x).
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Exercise 11: Form-factors and decoupling

In the last exercise we computed some local and non-local contributions to the effective action
for an interacting scalar field theory. Using the notation for which [ϕ2]p is the Fourier transform
of the square of the field ϕ, we established that at order ϕ4 the one loop effective action is

Γ|ϕ4 = − g2

2 · 4(4π)2ε

∫
x
ϕ4 +

∫
p
[ϕ2]−pF (p,m; g) [ϕ2]p +O(ε)

in which we defined the non-local form-factor F as

F (p,m; g) =
2g2

(4π)2
m

p

√
4 +

p2

m2
arctanh

 p

m
√

4 + p2

m2

+
g2

(4π)2

[
γ − 2 + log

(
m2

4π

)]

The 1
ε pole is the divergence that requires first regularization and then renormalization. The pro-

cess of renormalization forces us to introduce a reference scale µ and results in a renormalization
group beta function for the coupling

βMS =
3g2

(4π)2

after minimal subtraction (MS) of the divergence as we have seen during the lectures. After
subtraction the renormalized effective will contain only the finite part of Γ|ϕ4 .

Through this exercise we want to understand if we can give a more physical intuition to the
renormalization group in particle physics. First recall that the finite effective action is now

Γ|ϕ4 =

∫
p
[ϕ2]−pF (p,m; g) [ϕ2]p

which can be related to the scattering of four scalar field’s states by taking the appropriate
number of functional derivatives. Qualitatively, we can imagine that the form-factor F (p,m; g)
is a momentum-dependent coupling constant g(p) ≡ F (p,m; g) in which the relevant
momentum scale p = |pµ| is related to some scattering energy (and in particular to the variables
s, t and u of the notes, even if we do not work out this relation explicitly here).

Having made this definition, we are naturally lead to interpret p as a renormalization group
scale and β = p d

dpg(p) as the (new) renormalization group running according to this scale. This
running is certainly richer than the one of βMS because of the explicit presence of the mass,
below we want to see how much richer it is and what can we learn from it.

Part 1:
Define the variable x = p2

m2 and rewrite the form-factor of Γ|ϕ4 in terms of x. Rewrite the

renormalization group operator p d
dp in terms of the variable x as well.

1



Part 2:
Compute the beta function

β = 4! p
d

dp
F (p,m; g)

up to order g2. Make sure that the final result is expressed in terms of x.

Hint: You better use the results of the previous point. Also recall that β ∼ g2 and βm ∼ g!

Part 3:
Expand the beta function to find the leading contributions in the asymptotic regimes x ∼ ∞
and x ∼ 0.

Hint: Use the following limits

arctanh

(√
x

4 + x

)
=


1

x
, for x ∼ ∞
√
x

2
, for x ∼ 0

Part 4:
Verify that

β(x) = βMS for x ∼ ∞
β(x)→ 0 for x→ 0

It should be clear that the limits x ∼ ∞ (p2 � m2) and x ∼ 0 (p2 � m2), represent the UV and
IR behaviors of the momentum-dependent coupling respectively. Once this connection is done
then we understand that

• In the ultraviolet the new beta function β coincides with βMS. It happens because the scale
µ of dimensional regularization is a very high energy scale that is bigger, in particular,
of any physical mass µ2 � m2. In UV all the beta functions coincide because they are
universal (here used with a slightly different meaning than in statistical mechanics).

• In the infrared the new beta function goes to zero. This is known as the decoupling of
the field’s fluctuations: below the field’s mass quantum fluctuations stop propagating and
cannot contribute to the quantum effects! The decoupling is predicted by the Appelquist-
Carazzone theorem of QFT. It is very important to consider decoupling effects when
studying the standard model of particle physics, because in different energy ranges there
are different matter fields that contribute to the running!
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Exercise 12: Coincidence limits

This is going to be the most tedious exercise so far. Do not get intimidated: it took me less than
four A4 pages and I am very bad at computations!

Consider the crucial relations of the Synge’s function σ(x, x′)

σµσ
µ = 2σ (1)

and the (root of the) van Vleck’s determinant ∆(x, x′)1/2

∆1/2σµ
µ + 2σµ∆1/2

µ = d∆1/2 (2)

Consider also the equation satisfied by the second heat kernel coefficient a1(x, x
′)

a1 + σµ∇µa1 + ∆−1/2Ox(∆1/2a0) = a1 + σµ∇µa1 −∆−1/2∇2(∆1/2a0) + Ea0 = 0 (3)

We denote coincidence limits of bi-tensors as

[B] = B(x, x)

The first few coincidence limits to begin with are

[σ] = 0 [∆1/2] = 1 [a0] = 1

It is convenient to use a notation for which covariant derivatives are denoted as indices

∇µn . . .∇µ2∇µ1σ = σµ1µ2...µn

Notice that the new notation reverses the order of the indices!

Part 1:
Use (1) to show that

[σµ] = 0

Part 2:
Take two covariant derivatives of (1) and use the resulting equation to show that

[σµν ] = gµν

Hint: The metric is the only tensor for which gµν g
ν
ρ = gµρ.

1



Part 3:
Take three covariant derivatives of (1) and use the resulting equation to show that

[σµνρ] = 0

Hint: It is useful to arrange all expressions of [σµνρ] with the indices in the same order. In
doing so a useful manipulation is

σµρν = ∇ν∇ρ σµ = [∇ν ,∇ρ]σµ +∇ρ∇ν σµ = −Rνρθµσθ + σµνρ

Notice also that curvatures are standard tensors, so in the coincidence limit they factor out[
Rνρ

θ
µ σθ

]
= Rνρ

θ
µ[σθ] = 0

Part 4:
Take four covariant derivatives of (1) and use the resulting equation to show that

[σµνρθ] = −1

3
(Rµρνθ +Rµθνρ)

Hint: Sort all covariant derivatives as in the previous exercise. Furthermore, some standard
symmetries of the Riemann tensor could be useful: Rµρνθ = −Rρµνθ, Rµρνθ = Rνθµρ, and
Rµρνθ +Rµνθρ +Rµθρν = 0.

Part 5:
Take one covariant derivative of (2) and use the resulting equation to show that

[∆1/2
µ] = 0

Hint: Consider ∆(x, x′)1/2 instead of ∆(x, x′) as the relevant tensor.

Part 6:
Take two covariant derivatives of (2) and use the resulting equation to show that

[∆1/2
µν ] =

Rµν
6

Part 7:
Take the coincidence limit of (3) and show that

[a1] =
R

6
− E
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