13. ÜBUNGSBLATT ZUR THERMODYNAMIK/STATISTISCHE PHYSIK

Abgabe am Donnerstag der 14. Semesterwoche auf Moodle.

Aufgabe 33: (6 Punkte)

Betrachten Sie ein System mit zwei Energieniveaus $E_0 = 0$ und $E_1 = \varepsilon$. Darin befinden sich drei Teilchen. Geben Sie jeweils die kanonische Zustandssumme für den Fall an, dass es sich bei den Teilchen um

- (a) Fermionen mit Spin 1/2,
- (b) Bosonen mit Spin 0,
- (c) klassische unterscheidbare Teilchen handelt.

Aufgabe 34: (7 Punkte)

Berechnen Sie die thermodynamischen Eigenschaften eines einfachen Festkörpermodells in Form eines Satzes von N quantenmechanischen, unterscheidbaren nicht-wechselwirkenden harmonischen Oszillatoren der Frequenz ω , (Energieniveaus: $\epsilon_n = \hbar \omega (n + \frac{1}{2}), n = 0, 1, 2, ...$) und gehen Sie dabei folgendermaßen vor:

- (a) Berechnen Sie die kanonische Zustandssumme $Z_{\rm c}$ als Produkt der Einteilchen-Zustandssummen explizit. (Hinweis: Das Ergebnis lautet $Z_{\rm c} = (e^{-\beta\hbar\omega/2}/(1-e^{-\beta\hbar\omega}))^N$.)
- (b) Bestimmen Sie daraus die freie Energie F und die Entropie S. Folgt die Entropie im Limes $T \to 0$ dem Nernst-Theorem?

Aufgabe 35: (10 Punkte)

Berechnen Sie die Stromdichte von Elektronen, die aus einer Glühkathode austreten. Gehen Sie dabei folgendermaßen vor:

- (a) Das Kathodenmetall befinde sich bei $z \leq 0$. Damit Elektronen in den Bereich z > 0 austreten können, müssen Sie (klassisch) eine Potentialbarriere V_0 relativ zur Fermienergie ϵ_F überwinden. Überzeugen Sie sich davon, dass dies nur den Elektronen gelingt, die im Metall nahe der Oberfläche einen Impuls in z Richtung mit $p_z > p_0$ besitzen; hierbei ist $p_0 = \sqrt{2m(\epsilon_F + V_0)}$.
- (b) Zeigen Sie, dass nach der Fermi-Dirac-Statistik die mittlere Teilchenzahl (pro Spinkomponente) mit Impuls p bei kleinen Temperaturen $V_0 \gg k_{\rm B}T$ und $\mu \simeq \epsilon_{\rm F}$ gegeben ist durch

 $\langle N_p \rangle \simeq \exp\left(-\frac{p^2}{2mk_{\rm B}T}\right)e^{\beta\epsilon_{\rm F}}.$

(c) Die Stromdichte senkrecht zur Metalloberfläche ergibt sich nun schematisch aus

$$j_z = -2\frac{e}{V} \int_p \langle N_p \rangle v_z, \quad \text{mit } v_z = \frac{p_z}{m}, \quad \int_p = \frac{V}{(2\pi\hbar)^3} \int_{p_z > p_0} d^3p.$$

Zeigen Sie, dass diese mit $j_z \sim (k_{\rm B}T)^2 e^{-\frac{V_0}{k_{\rm B}T}}$ stark temperaturabhängig ist, so dass es sich empfiehlt, die Kathode zu heizen, um effizient Elektronen freizusetzen.