05. ÜBUNGSBLATT ZUR VORLESUNG QUANTENTHEORIE

Moodle-Abgabe der Wertungsaufgaben bis Mittwoch der 6. Semesterwoche um 19:00 Uhr

Aufgabe 9: (5 Punkte)

Verifizieren Sie für Operatoren A und B und $\epsilon > 0$ die Baker-Campbell-Hausdorff-Relation bis zur 3. Ordnung in ϵ : $e^{\epsilon A}e^{\epsilon B} = e^{\epsilon A + \epsilon B + \frac{\epsilon^2}{2}[A,B] + \frac{\epsilon^3}{12}[A,[A,B]] + \frac{\epsilon^3}{12}[B,[B,A]] + \dots}.$

Aufgabe 10: (8 Punkte)

Betrachten Sie ein Gaußsches Wellenpaket der Breite d im Ortsraum,

$$\psi(x') = \langle x' | \psi \rangle = N \exp\left(ikx' - \frac{x'^2}{2d^2}\right).$$

- (a) Bestimmen Sie die Normierung N, so dass $\langle \psi | \psi \rangle = 1$.
- (b) Berechnen Sie die Erwartungswerte $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$, und $\langle p^2 \rangle$.
- (c) Bestimmen Sie die Varianzen $\langle (\Delta x)^2 \rangle$ und $\langle (\Delta p)^2 \rangle$ und zeigen Sie, dass das Gaußsche Wellenpaket die Unschärferelation minimal erfüllt.
- (d) Berechnen Sie die Wellenfunktion $\psi(p') = \langle p' | \psi \rangle$ im Impulsraum.
- (e) Diskutieren Sie die Limites $d \to 0$ und $d \to \infty$ in Orts- und Impulsraum.

Präsenzaufgabe P05:

Der Translationsoperator für eine endliche räumliche Verschiebung ist gegeben durch

$$T(\mathbf{a}) = \exp\left(-\frac{i}{\hbar}\mathbf{p}\cdot\mathbf{a}\right)$$

- (a) Berechnen Sie $[\mathbf{x}, T(\mathbf{a})]$.
- (b) Betrachten Sie den Erwartungswert $\langle |\mathbf{x}| \rangle$ des Betrages des Ortsoperators $|\mathbf{x}|$ bezüglich eines beliebigen Zustands $|\psi\rangle$ und zeigen Sie, wie sich der Erwartungswert bei einer Translation des Zustands $|\psi\rangle \to T(\mathbf{a})|\psi\rangle$ ändert.