03. ÜBUNGSBLATT ZUR VORLESUNG QUANTENTHEORIE

Moodle-Abgabe der Wertungsaufgaben bis Mittwoch der 4. Semesterwoche um 19:00 Uhr

Aufgabe 5: (6 Punkte)

Betrachten Sie einen Ket-Vektorraum mit der orthonormalen Basis $\{|a'\rangle\}$ von Eigenkets eines hermiteschen Operators A. Das Eigenwertspektrum sei nicht entartet, d.h. keine zwei Eigenwerte sind gleich.

- (a) Zeigen Sie, dass $\prod_{a'} (A a')$ der Nulloperator ist.
- (b) Welche Bedeutung und Eigenschaften hat der folgende Operator:

$$P_{a'} = \prod_{a'' \neq a'} \frac{(A - a'')}{(a' - a'')}$$

(c) Verdeutlichen Sie (a) und (b) anhand von $A = S_z$ für ein Spin- $\frac{1}{2}$ System.

Aufgabe 6: (6 Punkte)

Sei X ein linearer Operator und $\{|a'\rangle\}$ eine orthonormale Basis eines Ket-Vektorraums. Die Spur eines Operators ist definiert durch

$$\operatorname{tr} X := \sum_{a'} \langle a' | X | a' \rangle.$$

Zeigen Sie folgende Eigenschaften:

- (a) $\operatorname{tr} X$ ist unabhängig von der Wahl der Basis, d.h. $\operatorname{tr} X = \sum_{b'} \langle b' | X | b' \rangle, \text{ für eine alternative orthonormale Basis } \{ |b' \rangle \}$
- (b) $\operatorname{tr} X^{\dagger} = (\operatorname{tr} X)^*$
- (c) $\operatorname{tr}(\lambda X) = \lambda \operatorname{tr} X, \quad \lambda \in \mathbb{C}$
- (d) $\operatorname{tr}(X+Y) = \operatorname{tr}(Y+X)$
- (e) $\operatorname{tr}(XY) = \operatorname{tr}(YX)$
- (f) $\operatorname{tr}(|a'\rangle\langle a''|) = \delta_{a'a''}$

Präsenzaufgabe P03:

Betrachten Sie die Unschärferelation für die Drehimpulsoperatoren S_x und S_y im Stern-Gerlach-Experiment: $\langle (\Delta S_x)^2 \rangle \langle (\Delta S_y)^2 \rangle \geq \frac{1}{4} |\langle [S_x, S_y] \rangle|^2$. Ist die Unschärferelation immer erfüllt? Bestimmen Sie diejenigen Zustände, für die das Gleichheitszeichen gilt. (Hinweis: arbeiten Sie in der $|\pm\rangle = |S_z;\pm\rangle$ Basis und überzeugen Sie sich zunächst, dass ein allgemeiner normierter Stern-Gerlach-Zustand ohne Beschränkung der Allgemeinheit als $|\cdot\rangle = \cos\frac{\theta}{2}|+\rangle + \sin\frac{\theta}{2}\,e^{i\phi}|-\rangle$ geschrieben werden kann.)