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10. exercise sheet: Particles and Fields

Exercise 28:

In the chiral basis, there are four independent solutions of the free Dirac equation of the
form ψ(x) = u(p)e−ipx, and ψ(x) = v(p)eipx where

us(p) =

( √
p · σ̄ ξs√
p · σ ξs

)
, vs(p) =

( √
p · σ̄ ηs

−√p · σ ηs
)
, s = 1, 2,

Here ξs and ηs denote 2-component base spinors.
Provided the base spinors are orthonormalized∑

s=1,2

ξsξs† = 1 =

(
1 0
0 1

)
,

show that the spin sums satisfy:∑
s

us(p)ūs(p) = γ · p+m,
∑
s

vs(p)v̄s(p) = γ · p−m.

Exercise 29:

In the lectures, we have worked with Weyl as well as Dirac fermions and have written down
the Majorana mass term in terms of the Weyl spinors. The Majorana spinor is defined as a
Dirac spinor with the property of being its own charge conjugate,

ψcM = ψM, where ψc = −iγ2ψ∗ (1)

defines the charge conjugate of a Dirac spinor (i.e. the transformation that turns particles
into antiparticles and vice versa).

(a) Start from an ansatz ψM =

(
η
ξ

)
, and use the defining property to show that the

Majorana spinor can equivalently be written as

ψM =

(
−iσ2ξ∗

ξ

)
=

(
η

iσ2η∗

)
(2)

(b) Compute explicitly the Lagrangian for the Majorana spinor in terms of its chiral com-
ponent η. For this, plug ψM into the Dirac Lagrangian LD = ψ̄iγµ∂µψ − mψ̄ψ. Convince
yourself in this way that the final result is equivalent to the Lagrangian of the Weyl fermion
η including a Majorana mass term up to an irrelevant global factor of 2.
Hint: you may find the relation σ2σ̄µσ2 = (σµ)T useful. Also remember that the component
of a spinor is a Grassmann variable.
Conclusion: The Majorana particle is a particular kind of Dirac fermion that has the property
of being its own charge conjugate. This requirement reduces the number of degrees of freedom
of the particle from 4 for a Dirac fermion to 2 for a Majorana fermion.



Exercise 30:

Motivation: In the lecture, we found the important identity

ĀγµA = Λµ
νγ

ν , (3)

where A is connected with the (1
2
, 0) ⊕ (0, 1

2
) representation of the Lorentz group. There is

an alternative way to interpret this equation: it connects the Lorentz transformation of the
4-vector γµ (RHS) with a “rotation” in spinor space (LHS), precisely such that the Dirac
γ matrices look the same in any Lorentz frame. In fact, this alternative viewpoint is more
general (and also allows for a straightforward generalization to curved space), and hence
deserves to by studied in the following:
Exercise:
(a) Verify that the Dirac algebra

{γµ, γν} = 2gµν (4)

is invariant under generalized “rotations” of spinor space, so called spin-base transformations,
γµ → SγµS−1, where S is allowed to be an element of the general linear group of 4×4 matrices
with complex components GL(4,C).
(b) Verify that the Dirac equation

(iγµ∂
µ −m)ψ(x) = 0, (5)

is invariant under spin base transformations, provided that the Dirac spinor transforms as
ψ → Sψ.
(c) Now, we define the Lorentz-transformed Dirac matrices: γ′µ = Λµ

νγν , i.e., somewhat
contrary to the philospophy of Eq. (3), we accept that the Dirac matrices look differently in
a different Lorentz frame. Show, that also the γ′µ satisfy the Dirac algebra (4).
(d) Use this to show that the Dirac equation (5) is also satisfied in the primed Lorentz system,
provided the Dirac spinors now transform component-wise as scalars, i.e., ψ′(x′) = ψ(x)
under Lorentz transformations.
Conclusion: (a)–(d) demonstrate that the Dirac equation is separately and independently
invariant under spin-base transformations S ∈ GL(4,C) and Lorentz transformations Λν

µ ∈
SO(3, 1).
In this light, Equation (3) can be interpreted as the statement that it is always possible to
perform simultaneously a Lorentz and a spin-base transformation such that the Dirac matri-
ces γµ have the same representation in any Lorentz frame. These spin-base transformations
S = A form a subgroup of GL(4,C) corresponding to two representations of SL(2,C).


