9. exercise sheet: Particles and Fields

Exercise 25:

(a) Use the fundamental defining property of the Dirac algebra,

$$
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 g_{\mu \nu}
$$

to show that $\gamma_{5}:=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ anti-commutes with all γ^{μ}, i.e., $\left\{\gamma_{5}, \gamma^{\mu}\right\}=0$, independently of the representation.
(b) Also show that $\gamma_{5}^{2}=\mathbb{1}$ holds independently of the representation.
(c) Verify that the right- and left-handed projectors

$$
P_{\mathrm{R}}:=\frac{1}{2}\left(1+\gamma_{5}\right), \quad P_{\mathrm{L}}:=\frac{1}{2}\left(1-\gamma_{5}\right),
$$

satisfy the projector algebra

$$
P_{\mathrm{R}, \mathrm{~L}}^{2}=P_{\mathrm{R}, \mathrm{~L}}, \quad P_{\mathrm{R}} P_{\mathrm{L}}=0, \quad P_{\mathrm{R}}+P_{\mathrm{L}}=1
$$

(d) Use this to show that the kinetic term of Dirac's theory can be decomposed into separate kinetic terms for ψ_{L} and ψ_{R}, where $\psi_{\mathrm{R}, \mathrm{L}}=P_{\mathrm{R}, \mathrm{L}} \psi$. Show in addition that this does not hold for the mass term.
Hint: Note that $\bar{\psi}_{\mathrm{L}, \mathrm{R}}=\bar{\psi} P_{\mathrm{R}, \mathrm{L}}($ why? $)$.

Exercise 26:

Show that a theory defined by the action

$$
S=\int d^{4} x\left(\bar{\psi} i \partial_{\mu} \gamma^{\mu} \psi-\frac{\lambda}{2}\left[(\bar{\psi} \psi)^{2}-\left(\bar{\psi} \gamma_{5} \psi\right)^{2}\right]\right)
$$

is invariant under vector transformations $\mathrm{U}(1)_{\mathrm{V}}$ as well as axial transformations $\mathrm{U}(1)_{\mathrm{V}}$,

$$
\begin{array}{ll}
\mathrm{U}(1)_{\mathrm{V}}: & \psi \rightarrow e^{i \alpha} \psi, \quad \bar{\psi} \rightarrow e^{-i \alpha} \bar{\psi} \\
\mathrm{U}(1)_{\mathrm{A}}: & \psi \rightarrow e^{i \alpha \gamma_{5}} \psi, \quad \bar{\psi} \rightarrow \bar{\psi} e^{i \alpha \gamma_{5}}
\end{array}
$$

(Hint: it is sufficient to consider infinitesimal transformations), and compute the corresponding Noether currents.

Exercise 27:

Consider the action of a fermion theory

$$
S=\int d^{4} x\left(\bar{\psi}^{a} i \partial_{\mu} \gamma^{\mu} \psi^{a}-\frac{\lambda}{2}\left(\bar{\psi}^{a} \gamma_{\mu} \psi^{a}\right)^{2}\right), \quad a=1, \ldots, N_{\mathrm{f}},
$$

where N_{f} denotes the number of fermion flavors. What are the continuous symmetries of the theory?

