1. exercise sheet: Particles and Fields

Exercise 1:

Use the relation $\hbar c \simeq 197 \mathrm{MeV} \mathrm{fm}$ valid in SI units to compute your body height in inverse eV for those units where $\hbar=1=c$.

Exercise 2:

Show that the particular Lorentz transformation Λ discussed in the lecture, corresponding to a boost along the x axis, can be written as $e^{-\zeta K_{1}}$, where

$$
K_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \zeta=\operatorname{Artanh} \beta \quad \Longrightarrow \quad \Lambda=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Convince yourself that a boost in a general direction given by the relative velocity vector $\boldsymbol{\beta}$ can be written as $e^{-\zeta \cdot \boldsymbol{K}}$. Work out the relation between $\boldsymbol{\beta}$ and $\boldsymbol{\zeta}$ as well as the form of the matrices K_{2} and K_{3}. (We have $\gamma=1 / \sqrt{1-\beta^{2}}$.)

Exercise 3:

Verify that the matrix Λ given above satisfies the relation

$$
g_{\mu \nu}=g_{\kappa \lambda} \Lambda^{\kappa}{ }_{\mu} \Lambda^{\lambda}{ }_{\nu},
$$

where the metric is $g=\operatorname{diag}(1,-1,-1,-1)$.

