Chiral Phase Boundary of QCD with Many Flavors

Holger Gies

Universität Heidelberg

& J. Braun, J. Jaeckel, J.M. Pawlowski, C. Wetterich

QCD Phase Diagram

[FAIR@www.gsi.de]

"Learning by D o ing"

"Learning by Deforming"

Lattice QCD

[LEINWEBER@

WWW.PHYSICS.ADELAIDE.EDU.AU]

Large N_c

SUSY QCD

"Learning by Deforming"

Lattice QCD

[LEINWEBER@

WWW.PHYSICS.ADELAIDE.EDU.AU]

Large N_c

SUSY QCD

"many-flavor QCD"

▷ charge screening:

 $\triangleright \beta$ function

$$\beta = -2\left(\frac{11}{3}N_{\rm c} - \frac{2}{3}N_{\rm f}\right)\frac{g^4}{16\pi^2} - 2\left(\frac{34N_{\rm c}^3 + 3N_{\rm f} - 13N_{\rm c}^2N_{\rm f}}{3N_{\rm c}}\right)\frac{g^6}{(16\pi^2)^2} + \dots$$

▷ charge screening:

 $\triangleright \beta$ function

$$\beta = -2\left(\frac{11}{3}N_{\rm c} - \frac{2}{3}N_{\rm f}\right)\frac{g^4}{16\pi^2} - 2\underbrace{\left(\frac{34N_{\rm c}^3 + 3N_{\rm f} - 13N_{\rm c}^2N_{\rm f}}{3N_{\rm c}}\right)}_{>0}\frac{g^6}{(16\pi^2)^2} + \dots$$
for $N_{\rm f} > \frac{34N_{\rm c}^3}{13N_{\rm c}^2 - 3} \stackrel{\rm SU(3)}{\simeq} 8.05$

 $\triangleright \beta$ function

$$\beta = -2\left(\frac{11}{3}N_{\rm c} - \frac{2}{3}N_{\rm f}\right)\frac{g^4}{16\pi^2} - 2\left(\frac{34N_{\rm c}^3 + 3N_{\rm f} - 13N_{\rm c}^2N_{\rm f}}{3N_{\rm c}}\right)\frac{g^6}{(16\pi^2)^2} + \dots$$

(BANKS&ZAKS'82)

 $\triangleright \beta$ function

$$\beta = -2\left(\frac{11}{3}N_{\rm c} - \frac{2}{3}N_{\rm f}\right)\frac{g^4}{16\pi^2} - 2\left(\frac{34N_{\rm c}^3 + 3N_{\rm f} - 13N_{\rm c}^2N_{\rm f}}{3N_{\rm c}}\right)\frac{g^6}{(16\pi^2)^2} + \dots$$

 \triangleright N_f dependence of α_*

 $\triangleright \beta$ function

$$\beta = -2\left(\frac{11}{3}N_{\rm c} - \frac{2}{3}N_{\rm f}\right)\frac{g^4}{16\pi^2} - 2\left(\frac{34N_{\rm c}^3 + 3N_{\rm f} - 13N_{\rm c}^2N_{\rm f}}{3N_{\rm c}}\right)\frac{g^6}{(16\pi^2)^2} + \dots$$

 \triangleright rainbow/ladder approximation: $\Gamma \rightarrow g$

 $\implies \chi SB \text{ for } \alpha > \alpha_{cr}$

 $\triangleright \alpha_*$ VS. α_{cr}

adjoint matter: (DIETRICH&SANNINO'06)

Functional RG

(WILSON'71; WEGNER&HOUGHTON'73; POLCHINSKI'84; WETTERICH'93)

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)} + R_k} \partial_t R_k$$

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)} + R_k} \partial_t R_k$$

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)} + R_k} \partial_t R_k$$

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)} + R_k} \partial_t R_k$$

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)} + R_k} \partial_t R_k$$

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)} + R_k} \partial_t R_k$$

▷ RG trajectory:

 R_k scheme independence

RG Flow towards the Chiral Transition

▷ effective action:

$$\Gamma_{k} = \int \frac{1}{2} \frac{\lambda_{\sigma}}{k^{2}} \left[(\bar{\psi}^{a} \psi^{b})^{2} - (\bar{\psi}^{a} \gamma_{5} \psi^{b})^{2} \right]$$

RG flow

$$\partial_t \lambda_{\sigma} = 2\lambda_{\sigma} - \frac{N_c}{4\pi^2} \lambda_{\sigma}^2 \qquad \beta \wedge$$

effective action:

$$\Gamma_{k} = \int \frac{1}{2} \frac{\lambda_{\sigma}}{k^{2}} \left[(\bar{\psi}^{a} \psi^{b})^{2} - (\bar{\psi}^{a} \gamma_{5} \psi^{b})^{2} \right]$$

RG flow

> effective action:

$$\Gamma_{k} = \int \frac{1}{4} F^{z}_{\mu\nu} F^{z}_{\mu\nu} + \dots + \bar{\psi} \left(i\partial \!\!\!/ + \bar{g} A \!\!\!/ \right) \psi \\ + \frac{1}{2} \frac{\lambda_{\sigma}}{k^{2}} \left[(\bar{\psi}^{a} \psi^{b})^{2} - (\bar{\psi}^{a} \gamma_{5} \psi^{b})^{2} \right]$$

▷ RG flow

> effective action:

$$\Gamma_{k} = \int \frac{1}{4} F^{z}_{\mu\nu} F^{z}_{\mu\nu} + \dots + \bar{\psi} \left(i\partial \!\!\!/ + \bar{g} A \!\!\!/ \right) \psi \\ + \frac{1}{2} \frac{\lambda_{\sigma}}{k^{2}} \left[(\bar{\psi}^{a} \psi^{b})^{2} - (\bar{\psi}^{a} \gamma_{5} \psi^{b})^{2} \right]$$

▷ RG flow

Chiral Criticality

 \triangleright effective action: SU(N_c), SU(N_f)_L × SU(N_f)_R

$$\begin{split} \Gamma_{k} &= \int \frac{Z_{\mathsf{F}}}{4} F_{\mu\nu}^{z} F_{\mu\nu}^{z} + \dots + \bar{\psi} \left(\mathsf{i} Z_{\psi} \partial \!\!\!/ + Z_{1} \bar{g} A \!\!\!/ \right) \psi \\ &+ \frac{1}{2} \frac{\lambda_{\sigma}}{k^{2}} \left(\mathsf{S} \mathsf{-} \mathsf{P} \right) + \frac{1}{2} \frac{\lambda_{\mathsf{VA}}}{k^{2}} \left[2(\mathsf{V} \mathsf{-} \mathsf{A})^{\mathsf{adj.}} + (1/N_{\mathsf{c}})(\mathsf{V} \mathsf{-} \mathsf{A}) \right] \\ &+ \frac{1}{2} \frac{\lambda_{+}}{k^{2}} \left(\mathsf{V} \mathsf{+} \mathsf{A} \right) + \frac{1}{2} \frac{\lambda_{-}}{k^{2}} \left(\mathsf{V} \mathsf{-} \mathsf{A} \right) \end{split}$$

▷ RG flow, e.g.,

$$\partial_{t}\lambda_{\sigma} = 2\lambda_{\sigma} - \frac{1}{4\pi^{2}}l_{1}^{(F)}[\boldsymbol{R}_{k}]\left\{2N_{c}\lambda_{\sigma}^{2} - 2\lambda_{-}\lambda_{\sigma} - 2N_{f}\lambda_{\sigma}\lambda_{VA} - 6\lambda_{+}\lambda_{\sigma}\right\}$$
$$-\frac{1}{8\pi^{2}}l_{1,1}^{(FB)}[\boldsymbol{R}_{k}]\left[3\frac{N_{c}^{2} - 1}{N_{c}}g^{2}\lambda_{\sigma} - 6g^{2}\lambda_{+}\right]$$
$$-\frac{3}{128\pi^{2}}l_{1,2}^{(FB)}[\boldsymbol{R}_{k}]\frac{3N_{c}^{2} - 8}{N_{c}}g^{4} \qquad (\text{HG,JAECKEL,WETTERICH'04})$$

(HG, JAECKEL'05)

e.g., for $N_c = 3 = N_f$: $\alpha_{cr} \simeq 0.85$

(HG, JAECKEL'05)

(HG, JAECKEL'05)

Error Estimate

regulator dependence

fermion sector: "optimized" regulator vs. "sharp cutoff"

$$l_1^{(F),4} = \frac{1}{2}, \ l_{1,1}^{(FB),4} = 1, \ l_{1,2}^{(FB),4} = \frac{3}{2}$$
 vs. $l_1^{(F),4} = l_{1,1}^{(FB),4} = l_{1,2}^{(FB),4} = 1$

 \rhd anomalous dimensions, momentum dependencies, higher-order operators $\sim \psi^{\rm 8},$ etc. . . .

 \triangleright gauge sector: 2-loop, 3-loop, 4-loop β function

 $\overline{\text{MS}}$ scheme vs. RG scheme (~10, 30, 50 % variation (?))

▷ SU(3) "conformal phase" for

 $N_{\rm f,cr} = 10.0 \pm 0.29 ({
m fermion})^{+1.55}_{-0.63} ({
m gluon}) \lesssim N_{
m f} < 16.5$

(HG, JAECKEL'05)

Lessons to be learned for "real QCD"

- fermionic screening is rather weak
- fermionic truncation (surprisingly) stable in χ symmetric phase
- phase boundary detectable with fermionic "derivative expansion"
- "real QCD" requires nonperturbative estimate of β_{q²}

Lessons to be learned for "real QCD"

- fermionic screening is rather weak
- fermionic truncation (surprisingly) stable in χ symmetric phase
- phase boundary detectable with fermionic "derivative expansion"
- "real QCD" requires nonperturbative estimate of β_{g²}

$$\Gamma_k = \int \frac{Z_F}{4} F_z^{\mu\nu} F_{\mu\nu}^z + \cdots + \uparrow$$

RG Flow for Gluodynamics

RG Flow of Gluodynamics

> Operator expansion with the background-field method

(REUTER, WETTERICH'94; FREIRE, LITIM, PAWLOWSKI'00)

$$\Gamma_{k}[A] = \int d^{d}x \ W_{k}(F^{2}), \quad F^{2} \equiv F^{a}_{\mu\nu}F^{a}_{\mu\nu}$$
$$W_{k}(F^{2}) = \frac{Z_{F}}{4}F^{2} + \frac{W_{2}}{2!4^{2}}(F^{2})^{2} + \frac{W_{3}}{3!4^{3}}(F^{2})^{3} + \dots$$
(HG[']02)

▷ running coupling:

(ABBOTT'82)

$$g^2 = Z_{\rm F}^{-1} \, \bar{g}^2$$

 $\triangleright \beta$ function:

$$\partial_t g^2 \equiv \beta_{g^2} = -\frac{22N_c}{3}\frac{g^4}{(4\pi)^2}\dots$$

RG Flow of Gluodynamics

> Operator expansion with the background-field method

(REUTER, WETTERICH'94; FREIRE, LITIM, PAWLOWSKI'00)

$$\Gamma_{k}[A] = \int d^{d}x \ W_{k}(F^{2}), \quad F^{2} \equiv F^{a}_{\mu\nu}F^{a}_{\mu\nu}$$

$$W_{k}(F^{2}) = \frac{Z_{F}}{4}F^{2} + \frac{W_{2}}{2!4^{2}}(F^{2})^{2} + \frac{W_{3}}{3!4^{3}}(F^{2})^{3} + \dots$$
(HG'02)
$$\triangleright \text{ running coupling:} \qquad (ABOUT'82)$$

 $g^2 = Z_{\rm F}^{-1} \, \bar{g}^2$

 $\triangleright \beta$ function:

$$\partial_t g^2 \equiv \beta_{g^2} = -\frac{22N_c}{3}\frac{g^4}{(4\pi)^2}\dots$$

-29.3333
-357.83
-191.32
15499.6
-1.88776 · 10 ⁶
1.65315 · 10 ⁷
2.79324 · 10 ⁹
$-1.37622 \cdot 10^{11}$
$-4.21715 \cdot 10^{12}$
8.60663 · 10 ¹⁴
-8.05611 · 10 ¹⁶
5.21052 · 10 ¹⁹
-6.30043 · 10 ²²
9.35648 · 10 ²⁵
$-1.78717 \cdot 10^{29}$
4.35314 · 10 ³²
-1.33397 · 10 ³⁶
5.08021 · 10 ³⁹
$-2.37794 \cdot 10^{43}$
$1.35433 \cdot 10^{47}$

Running Coupling

cf. Landau gauge:

(HG'02)

(V.SMEKAL,ALKOFER,HAUCK'97) (LANGFELD,REINHARDT,GATTNAR'01) (LERCHE,V.SMEKAL'02) (FISCHER,ALKOFER'02) (ZWANZIGER'02) (PAWLOWSKI ET AL.'03) (FISCHER, HG'04) (OLIVEIRA,SILVA'04)

(BLOCK, CUCCHIERI, LANGFELD, MENDES'04)

(Schleifenbau, Lederer, Reinhardt'06)

(EPPLE, REINHARDT, SCHLEIFENBAUM'07)

(MAAS'07)

(CUCCHIERI, MENDES, OLIVEIRA, SILVA'07)

IR fixed point: α_*

Running Coupling

IR fixed point α_* compatible with mass gap

Running Gauge Coupling at finite T

 \triangleright T/k $\rightarrow \infty$: strongly interacting 3D theory

 $\alpha \rightarrow \frac{k}{\tau} \alpha_{3D}, \quad \alpha_{3D} \rightarrow \alpha_{3D,*} \simeq 2.7$

cf. lattice: (CUCCHIERI, MAAS, MENDES'07)

(HG'02)

Chiral Phase Transition

 \triangleright

 $\alpha(k,T)$ vs. $\alpha_{cr}(T/k)$

 $\implies \chi \text{SB}$ triggered by α_{s}

T_c [MeV]	RG (BRAUN, HG'05)
N _f =2	172 ± 37
N _f =3	148 ± 32

single input: $\alpha_s(m_\tau) = 0.322$

 T_c [MeV]
 Lattice (BI) (CHEN ET AL'06)
 Lattice (W) (AOKI ET AL'06)

 N_f =2+1
 192(7)(4)
 151(3)(3)

Chiral Phase Boundary $T - N_{\rm f}$

▷ critical flavor number:

$$\textit{N}_{\rm f}^{\rm cr}\simeq 12$$

(CF. APPELQUIST ET AL.'96; MIRANSKI, YAMAWAKI'96; HG, JAECKEL'05)

Chiral Phase Boundary $T - N_{\rm f}$

 \triangleright fixed-point regime: critical exponent Θ

$$eta_{g^2}\simeq -\Theta\left(g^2-g_*^2
ight)$$

Chiral Phase Boundary $T - N_{\rm f}$

▷ fixed-point regime: critical exponent ⊖

$$eta_{g^2}\simeq -\Theta\left(g^2-g_*^2
ight)$$

▷ shape of the phase boundary for $N_{\rm f} \simeq N_{\rm f}^{\rm cr}$:

(BRAUN, HG'05, '06)

$$T_{
m cr} \sim k_0 \left| \textit{N}_{
m f} - \textit{N}_{
m f}^{
m cr}
ight|^{rac{1}{\left| \Theta
ight|}}, \quad \Theta \simeq -0.71$$

▷ "conformal phase" in many-flavor QCD:

 $N_{\rm f,cr} \simeq 10 - 12 < N_{\rm f} < 16.5$ for SU(3)

... applications to walking technicolor

(DIETRICH ET AL.'06, TERAO ET AL.'07)

▷ relation among universal aspects:

shape of the phase boundary \iff IR critical exponent

▷ functional RG for $\Gamma[\phi]$

- systematic and consistent expansion schemes for QCD
- chiral symmetry
- calculations "from first principles"

Holger Gies Chiral Phase Boundary of QCD with Many Flavors

Chiral Criticality at Finite Temperature

▷ quark modes:

(BRAUN, HG'05)