Theory Colloquium

Renormalizability of Yang-Mills theories in extra dimensions

Holger Gies, Heidelberg U.

(PRD 68:085015,2003, hep-th/0305208 & PRD 66:025006,2002, hep-th/0202207)

Theory Colloquium

Renormalizability of Yang-Mills theories in extra dimensions

Holger Gies, Heidelberg U.

extra dimensional renormalization:

Why ? How ? $\partial_t \Gamma_k = rac{1}{2} \partial_t R_k$ What ?

(PRD 68:085015,2003, HEP-TH/0305208 & PRD 66:025006,2002, HEP-TH/0202207)

Renormalizability of Yang-Mills theories in extra dimensions

Holger Gies, Heidelberg U.

extra dimensional renormalization:

Why ? How ? $\partial_t \Gamma_k = rac{1}{2} \partial_t R_k$ What ?

(PRD 68:085015,2003, HEP-TH/0305208 & PRD 66:025006,2002, HEP-TH/0202207)

▷ appear in abundance in string theory

▷ appear in abundance in string theory

▷ "explains" weakness of gravity

$$F_4 \sim -G \; \frac{m_1 \, m_2}{r^2}$$

 $\triangleright \hbar = c = 1$

$$F_4 \sim -\frac{1}{M_{Pl}^2} \, \frac{m_1 \, m_2}{r^2}$$

▷ "explains" weakness of gravity

$$F_4 \sim -G \ \frac{m_1 m_2}{r^2} \qquad \qquad F_{N-\text{ExtraD}} \sim -G_{N-\text{ExtraD}} \ \frac{m_1 m_2}{r^{2+N}}$$

 $\vartriangleright \hbar = c = 1$

$$F_4 \sim -\frac{1}{M_{Pl}^2} \frac{m_1 m_2}{r^2} \qquad \qquad F_{N-\text{ExtraD}} \sim -\frac{1}{M_{\star}^{2+N}} \frac{m_1 m_2}{r^{2+N}}$$

▷ "explains" weakness of gravity

$$F_4 \sim -G \; \frac{m_1 \, m_2}{r^2} \qquad \qquad F_{N-\text{ExtraD}} \sim -G_{N-\text{ExtraD}} \; \frac{m_1 \, m_2}{r^{2+N}}$$

 $\triangleright \hbar = c = 1$

$$F_4 \sim -\frac{1}{M_{Pl}^2} \frac{m_1 m_2}{r^2} \qquad \qquad F_{N-\text{ExtraD}} \sim -\frac{1}{M_{\star}^{2+N}} \frac{m_1 m_2}{r^{2+N}}$$

▷ "decompose" Planck scale:

(Arkani-Hamed, Dimopoulos, Dvali'98)

$$G \sim \frac{1}{M_{Pl}^2} \sim 10^{-38} \, {\rm GeV}^2 \sim \frac{1}{M_\star^{2+N} \, R^N}$$

 \triangleright for instance, N=6: $(1/R)\sim 10~{\rm TeV}$, $M_{\star}\sim 10^7{\rm GeV}$

▷ "explains" (reparametrizes) weakness of gravity

$$F_4 \sim -G \; \frac{m_1 \, m_2}{r^2} \qquad \qquad F_{N-\text{ExtraD}} \sim -G_{N-\text{ExtraD}} \; \frac{m_1 \, m_2}{r^{2+N}}$$

 $\triangleright \hbar = c = 1$

$$F_4 \sim -\frac{1}{M_{Pl}^2} \frac{m_1 m_2}{r^2} \qquad \qquad F_{N-\text{ExtraD}} \sim -\frac{1}{M_{\star}^{2+N}} \frac{m_1 m_2}{r^{2+N}}$$

▷ "decompose" Planck scale:

(Arkani-Hamed, Dimopoulos, Dvali'98)

$$G \sim \frac{1}{M_{Pl}^2} \sim 10^{-38} \, {\rm GeV}^2 \sim \frac{1}{M_\star^{2+N} \, R^N}$$

▷ for instance, N = 6: $(1/R) \sim 10$ TeV, $M_{\star} \sim 10^7$ GeV $\ll M_{Pl}$

more natural symmetry-breaking mechanisms

(KAWAMURA'99; HEBECKER, MARCH-RUSSELL'02)

▷ perturbative expansion

$$\langle \phi \dots \phi \rangle = \sum_{n=0}^{\infty} a_n g^n$$

▷ perturbative expansion

$$\langle \phi \dots \phi \rangle = \sum_{n=0}^{\infty} a_n g^n$$

▷ regularization

▷ perturbative expansion

▷ regularization

Question:

"How many physical parameters do we have to fix for obtaining Λ -independent predicitions ?"

Answer:

of physical parameters =
$$\Delta$$
 :

$$\begin{cases} \Delta < \infty & \text{for } D = 4 \text{ (p. renormalizable)} \\ \Delta \to \infty & \text{for } D > 4 \text{ (p. nonrenormalizable)} \end{cases}$$

Scenarios with extra dimensions

D = 4 standard model

Scenarios with extra dimensions

Scenarios with extra dimensions

Why renormalizability ?

 \triangleright IR physics well separated from UV physics (cutoff Λ independence)

ightarrow # of physical parameters $\Delta < \infty$

▷ QFT should be predictive

 \implies realized in perturbative QFT

Why renormalizability ?

 \triangleright IR physics well separated from UV physics (cutoff Λ independence)

ightarrow # of physical parameters $\Delta < \infty$

▷ QFT should be predictive

 \implies realized in perturbative QFT

beyond perturbation theory?

⇒ Scenario of "Asymptotic Safety"

(WEINBERG'76)

(Gell-Mann, Low'54)

Why extra dimensional renormalizability ?

coincidence

D = 4

spacetime manifold

D = 4

critical dimension of pQFT

Why extra dimensional renormalizability ?

coincidence

$$D=4$$

spacetime manifold

critical dimension of pQFT

D = 4

An Example

▷ Nambu–Jona-Lasinio / Gross-Neveu in D = 3 dimensions, $[\overline{\lambda}] = -1 \equiv (2 - D)$:

$$\Gamma_k = \int \bar{\psi} \mathrm{i} \partial \!\!\!/ \psi + \frac{1}{2} \, \overline{\lambda} (\bar{\psi} \psi)^2 + \dots$$

 \triangleright flow of the dim'less coupling $\lambda = k \overline{\lambda}$

$$\beta := k \partial_k \lambda = \underbrace{\epsilon}_{D-2=1} \lambda - c \, \lambda^2 + \mathcal{O}(\epsilon^2)$$

 ϵ expansion

 \triangleright UV fixed point $\lambda_* = 1/c$

 \implies asymptotically safe

ϵ-expanded Yang-Mills theory

 $\triangleright D > 4$: bare coupling \bar{g}_D has negative mass dimension $[\bar{g}_D] = (4 - D)/2$:

$$S = \int_{x} d^{D}x \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu}, \quad F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + \bar{g}_{D}f^{abc}A^{b}_{\mu}A^{c}_{\nu}$$

 $\triangleright D - 4 = \epsilon$ expansion, dim'less coupling: $g^2 \sim k^{D-4} \bar{g}_D^2$

(PESKIN'80)

$$\partial_t g^2 \equiv \beta_{g^2} = (\mathbf{D} - 4)g^2 - \frac{22N}{3}\frac{g^4}{16\pi^2} + \dots, \quad \partial_t \equiv k\frac{d}{dk}$$

ϵ-expanded Yang-Mills theory

 $\triangleright D > 4$: bare coupling \bar{g}_D has negative mass dimension $[\bar{g}_D] = (4 - D)/2$:

$$S = \int_{x} d^{\mathbf{D}} x \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu}, \quad F^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + \bar{g}_{\mathbf{D}} f^{abc} A^{b}_{\mu} A^{c}_{\nu}$$

 $\triangleright D - 4 = \epsilon$ expansion, dim'less coupling: $g^2 \sim k^{D-4} \bar{g}_D^2$

(PESKIN'80)

$$\partial_t g^2 \equiv \beta_{g^2} = (D-4)g^2 - \frac{22N}{3} \frac{g^4}{16\pi^2} + \dots, \quad \partial_t \equiv k \frac{d}{dk}$$
(Gross&Wilczek'73, Politzer'73)

ϵ-expanded Yang-Mills theory

 $\triangleright D > 4$: bare coupling \bar{g}_D has negative mass dimension $[\bar{g}_D] = (4 - D)/2$:

$$S = \int_{x} d^{D}x \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu}, \quad F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + \bar{g}_{D}f^{abc}A^{b}_{\mu}A^{c}_{\nu}$$

 $\triangleright D - 4 = \epsilon$ expansion, dim'less coupling: $g^2 \sim k^{D-4} \bar{g}_D^2$

(PESKIN'80)

$$\partial_t g^2 \equiv \beta_{g^2} = (\mathbf{D} - 4)g^2 - \frac{22N}{3}\frac{g^4}{16\pi^2} + \dots, \quad \partial_t \equiv k\frac{d}{dk}$$

⊳ UV fixed point:

 $g_*^2 = (24\pi^2/11N)\epsilon$

for all ϵ . . . ?

naive ϵ expansion

A D > 4 scenario

 $\triangleright \beta$ function:

$$\partial_t g^2 \equiv \beta_{g^2} = (D-4)g^2 - \beta_{\text{fluct}}^D(g^2), \qquad \beta_{\text{fluct}}^D(g^2) = -b_0^D g^4 + \mathcal{O}(g^6)$$

dimensional running \longleftrightarrow fluctuational running

▷ CAVEAT I: definition dependence of the running coupling

running coupling from RG flow of gauge-invariant operators \implies

A $D \ge 4$ scenario cont'd

scale-dependent effective action

$$\Gamma_k = \int \frac{Z_{\mathsf{F}}}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \frac{Y}{2} (D^{ab}_{\mu} F^b_{\kappa\lambda})^2 + \frac{W_2}{2} \frac{1}{16} (F^a_{\mu\nu} F^a_{\mu\nu})^2 + \frac{\widetilde{W}_2}{2} \frac{1}{16} (\widetilde{F}^a_{\mu\nu} F^a_{\mu\nu})^2 \dots,$$

▷ running coupling:

$$g^2 = k^{D-4} Z_{\rm F}^{-1} \bar{g}_D^2$$

 \implies UV fixed point in $g^2 \quad \rightarrow \quad {\rm renormalizable \ operator} \ \sim F^2$

▷ CAVEAT II: running coupling is regulator-scheme dependent

mass-dependent regulator scheme required for nonperturbative problems (e.g. threshold behavior, mass generation, etc.)

A $D \ge 4$ scenario: D = 4 vs. D > 4

- \triangleright **D** = 4: Yang-Mills mass gap M
 - \implies threshold behavior for $k^2 \ll M$
 - \implies freeze-out of couplings in the $|\mathsf{R}|$
 - \implies IR fixed point expected

 \triangleright combined evidence for D = 4 SU(3) Yang-Mills theory

A $D \ge 4$ scenario: D = 4 vs. D > 4, cont'd

 \triangleright *D*-analyticity & (*D* = 4) **IR** behavior \implies existence of *D*_{cr}

IR:
$$k \to 0$$

 $\partial_t \Gamma_k = \frac{1}{2} \operatorname{Tr} \partial_t R_k (\Gamma_k^{(2)} + R_k)^{-1} =$
(Wetterich'93)

Operator expansion

Standard ghost and gauge-fixing terms

▷ Gluonic truncation: $\Gamma_k[A] = \int d^d x \ W_k(F^2)$, $F^2 \equiv F^a_{\mu\nu}F^a_{\mu\nu}$

$$W_k(F^2) = \frac{Z_{\mathsf{F}}}{4} F^2 + \frac{1}{16} W_2 (F^2)^2 + \frac{1}{3! \cdot 4^3} W_3 (F^2)^3 + \frac{1}{4! \cdot 4^4} W_4 (F^2)^4 + \dots$$

(cf. Savvidy model of confinement)

▷ spectrally adjusted flow equation:

$$\partial_t Z_{\mathsf{F}} \curvearrowleft \partial_t W_2 \curvearrowleft \partial_t W_3 \curvearrowleft \partial_t W_4 \curvearrowleft \partial_t W_5 \dots$$

 \triangleright running coupling: $g^2 = k^{D-4} Z_F^{-1} \bar{g}^2$

 $\triangleright \beta$ function:

$$\partial_t g^2 \equiv \beta_{g^2} = (D - 4 + \eta) g^2$$
 $\eta = -\partial_t \ln Z_{\mathsf{F}}$

β function for SU(2)

β function for SU(3)

 $D_{\rm cr}=5.26\pm0.01$

▷ SU(5): $D_{cr} = 5.05 \pm 0.05$

Comments I

 $D_{\rm cr}^{\rm SU(2)} \simeq 5.46, \quad D_{\rm cr}^{\rm SU(3)} \simeq 5.26 \pm 0.01, \quad D_{\rm cr}^{\rm SU(5)} \simeq 5.05 \pm 0.05,$

 $\triangleright D = 4$ analogue:

upper bound: $D_{\rm cr}^{\rm true} \lesssim D_{\rm cr}^{\rm trunc}$

 \triangleright lattice studies

(CREUTZ'79; KAWAI,NIO,OKAMOTO'92; NISHIMURA'96)

 $\begin{array}{ccc} \text{spin-wave phase} & \stackrel{\text{1st order}}{\longleftrightarrow} \end{array}$ confining phase

 \implies no QFT continuum limit found (with Wilson action)

Comments II

▷ conservative viewpoint

 $D_{\rm cr}^{\rm true} < 5$

▷ alternative viewpoint

UV fixed point exists, but $\Delta > 1$

▷ naive inclusion of fermions: 1-loop running

$$\beta_{g^2}^{\text{fermion}} = +\frac{4}{3} N_{\text{f}} \frac{g^4}{16\pi^2} + \dots$$

with fermions: $4 < D_{\rm cr} < 5$

Compactified extra dimensions ?

Conclusions

• $4 \leq D < D_{cr}$ can be asymptotically safe

= (nonperturbatively) renormalizable

no asymptotic safety for $D\geq 6$

model building based on (partial) UV fixed points ?

... not recommended

Coincidence ?

$$D=4$$

spacetime manifold

 $D \simeq 4$

RG critical dimension

 $\triangleright \epsilon$ expansion to 4-loop order:

(MORRIS'04)

- UV fixed point exists formally for any D > 4
- D = 5: asymptotic series predictive for <10-loop
- $D \gtrsim 6$: ϵ series in asymptotic regime (loss of predictivity)

β function

 \triangleright asymptotic series with R_k -dependent coefficients a_m^D

$$\eta = \sum_{m=1}^{\infty} a_m^{\mathbf{D}} \left(\frac{g^2}{(4\pi)^2}\right)^m$$

 \triangleright perturbative beta function, SU(N_c), D = 4:

$$\beta(g^2) = -\frac{22N_c}{3}\frac{g^4}{(4\pi)^2} - \left(\frac{77N_c^2}{3} - \frac{127(3N_c^2 - 2)}{45}f(\mathbf{R}_k)\right)\frac{g^6}{(4\pi)^4} + \dots$$

▷ 1 loop: <u>exact</u>

2 loop: <u>99%</u> for SU(2), 95% for SU(3), (for exponential regulator)

1	-29.3333
2	-357.83
3	-191.32
4	15499.6
5	-1.88776 • 10 ⁶
б	$1.65315 \cdot 10^{7}$
7	2.79324 • 10 ⁹
8	$-1.37622 \cdot 10^{11}$
9	$-4.21715 \cdot 10^{12}$
10	8.60663 · 10 ¹⁴
11	$-8.05611 \cdot 10^{16}$
12	$5.21052 \cdot 10^{19}$
13	$-6.30043 \cdot 10^{22}$
14	9.35648 • 10 ²⁵
15	$-1.78717 \cdot 10^{29}$
16	$4.35314 \cdot 10^{32}$
17	$-1.33397 \cdot 10^{36}$
18	5.08021 · 10 ³⁹
19	$-2.37794 \cdot 10^{43}$
20	$1.35433 \cdot 10^{47}$