Strong Fields as a Probe for Fundamental Physics

Holger Gies

Friedrich-Schiller-Universität Jena

mini review: J. Phys. A 41, 164039 (2008), arXiv:0711.1337

▷ QFT: quantum fluctuations

BUT: ... just a picture !

External fields: Heisenberg-Euler effective action

(B7@SFB-TR18)

Effective action

for the electromagnetized quantum vacuum

Light Propagation

classical Maxwell equation in vacuo

(MAXWELL 1861, 1865)

$$S = -\int d^4x \, rac{1}{4} F^{\mu
u} F_{\mu
u} \implies 0 = \partial_\mu F^{\mu
u}$$

▷ velocity of a plane-wave solution:

$$v = 1 \quad (= c)$$

superposition principle

$$\mathcal{F}^{\mu
u}=\mathcal{F}^{\mu
u}_{1}+\mathcal{F}^{\mu
u}_{2}$$

 \Rightarrow no self-interactions

Self-interactions from the Quantum Vacuum

Mind the e^+e^- fluctuations

Electron mass scale

▷ the electron ...

 $m\simeq 511\,\mathrm{keV}\simeq 9\cdot 10^{-31}\,\mathrm{kg}$

... is very heavy!

 $\triangleright \hbar = 1 = c$

- $E_{cr} \simeq 4 \cdot 10^{17} \text{ Volt/m}$
- $m \simeq 7.6 \cdot 10^{11} \, \text{GHz}$
- $m \simeq 6 \cdot 10^9$ Kelvin

Electron mass scale

⊳ the electron ...

 $m \simeq 511 \,\mathrm{keV} \simeq 9 \cdot 10^{-31} \,\mathrm{kg}$

... is very heavy!

 $\triangleright \hbar = 1 = c$

- $E_{cr} \simeq 4 \cdot 10^{17} \text{ Volt/m}$
- $m \simeq 7.6 \cdot 10^{11} \,\text{GHz}$ $I_{cr} \equiv E_{cr} \simeq 4.4 \times 10^{29} \,\text{W/cm}^2$
- $m \simeq 6 \cdot 10^9$ Kelvin \implies Polaris: $\sim 1\% m$
- $m^2 \simeq 1.3 \cdot 10^9$ Tesla

 \implies ELI: $\sim 25\% m$

From QED to Nonlinear ED

▷ mass scale m divides quantum fluctuations in

hard $|p^2| > m^2$

 $\text{soft} |p^2| < \textit{m}^2$

(photons and electrons)

(only photons =EM fields)

Physics of the soft fields:

average over \int (integrate out) hard modes

 \implies Heisenberg-Euler effective action Γ

▷ vacuum energy

$$E=rac{1}{2}\hbar\omega$$

vacuum energy

$$E = \frac{1}{2}\hbar \sum_{n} \omega_{n}$$

▷ electron modes

$$\omega_n = \sqrt{\vec{p}^2 + m^2}$$

vacuum energy

$$E = \frac{1}{2}\hbar \sum_{n} \omega_{n}$$

electron modes

$$\omega_n = \sqrt{p_{\parallel}^2 + m^2 + eB(2n + 1 \pm 1)}$$

vacuum energy

$$E = \frac{1}{2}\hbar \sum_{n} \omega_{n}$$

electron modes

$$\omega_n = \sqrt{p_{\parallel}^2 + m^2 + eB(2n+1\pm 1)}$$

▷ Heisenberg-Euler effective action Γ

(HEISENBERG& EULER'36; WEISSKOPF'36)

$$\begin{split} \frac{\Gamma^{1}}{L_{t}} &= -\Delta E(B) = -\frac{1}{2}\hbar \sum_{n} \left(\omega_{n}(B) - \omega_{n}(B=0)\right) \\ &= \frac{1}{8\pi^{2}} \int_{0}^{\infty} \frac{ds}{s^{3}} e^{-m^{2}s} \left(\frac{eBs}{\tanh eBs} - 1\right) \qquad \text{(unrenormalized)} \end{split}$$

(EULER, KOCKEL'35; HEISENBERG, EULER'36; WEISSKOPF'36; SCHWINGER'51; RITUS'76)

[DUNNE @ THISWORKSHOP]

Conventions: $\mathcal{F} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu} = \frac{1}{2} (B^2 - E^2), \quad \mathcal{G} = \frac{1}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} = -B \cdot E$

(EULER, KOCKEL'35; HEISENBERG, EULER'36; WEISSKOPF'36; SCHWINGER'51; RITUS'76)

▷ weak-field expansion

[MARKLUND @ THISWORKSHOP]

Conventions: $\mathcal{F} = \frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}(B^2 - E^2), \quad \mathcal{G} = \frac{1}{4}F_{\mu\nu}\tilde{F}^{\mu\nu} = -B \cdot E$

Light Propagation.

classical Maxwell equation in vacuo

(MAXWELL 1861, 1865)

 $\mathbf{0} = \partial_{\mu} F^{\mu
u}$

▷ velocity of a plane-wave solution:

 $v = 1 \quad (= c)$

Light Propagation in a *B* field.

> quantum Maxwell equation

(HEISENBERG, EULER'36; WEISSKOPF'36)

$$0 = \partial_{\mu} \left(F^{\mu\nu} - \frac{1}{2} \frac{8}{45} \frac{\alpha^2}{m^4} F^{\alpha\beta} F_{\alpha\beta} F^{\mu\nu} - \frac{1}{2} \frac{14}{45} \frac{\alpha^2}{m^4} F^{\alpha\beta} F_{\alpha\beta} \tilde{F}^{\mu\nu} \right)$$

Light Propagation in a *B* field.

 \triangleright quantum Maxwell equation for a "light probe" $f^{\mu\nu}$

$$0 = \partial_{\mu} f^{\mu\nu} - \frac{8}{45} \frac{\alpha^2}{m^4} F_{\alpha\beta} F^{\mu\nu} \partial_{\mu} f^{\alpha\beta} - \frac{14}{45} \frac{\alpha^2}{m^4} \tilde{F}_{\alpha\beta} \tilde{F}^{\mu\nu} \partial_{\mu} f^{\alpha\beta}$$

Phase and group velocity

$$egin{array}{rcl} v_{\parallel} &\simeq& 1-rac{14}{45}rac{lpha^2}{m^4}B^2\sin^2 heta_B\ v_{\perp} &\simeq& 1-rac{8}{45}rac{lpha^2}{m^4}B^2\sin^2 heta_B \end{array}$$

(ADLER'71)

⇒ magnetized quantum vacuum induces birefringence

[DIPIAZZA @ THISWORKSHOP]

b detection schemes: PVLAS, BMV, Q&A, OSQAR, TR18-B7

Light Propagation in a *B* field.

⊳ ellipticity:

$$\Delta \phi = \pi \, rac{L}{\lambda} \, \Delta v \, \sin 2 heta, \quad \Delta v (5.5 {\mathsf T}) \simeq 10^{-22}$$

Quantum Vacuum@Jena

▷ birefringence at a photon collider (HEINZL,LIESFELD,AMTHOR,SCHWOERER,SAUERBREY,WIPF'06)

(SFB-TR18-PROPOSAL: HG,KALUZA,WIPF,PAULUS'08)

[HEINZL @ THISWORKSHOP]

high-intensity laser

Birefringence@Jena

▷ back-scattered Thomson photons $\omega \simeq 2 \times 10^{-3} m$ (KOCH, HEINZL, WIPF'05) $I = 2 \times 10^{-8} I_{cr} \simeq 10^{22} W/cm^2$

 \triangleright parameters (ω in keV, λ in nm, z_0 in μ m)

	ω	λ	L	$\Delta \phi$ (rad)
Polaris	1	1.2	10	1.2 × 10 ⁻⁶
	12	0.1	10	$1.4 imes 10^{-5}$
XFEL	15	0.08	25	$4.4 imes 10^{-5}$

▷ vacuum: pre-pulse?

ho x-ray optics, in principle $\Delta\phi\simeq 6 imes 10^{-6}$? (Alp et al.'00)

Why quantum vacuum physics?

- Heisenberg-Euler/Casimir in mathematical physics
 - QFT in strong fields or with boundaries
 - functional determinants
- applied quantum vacuum physics
 - quantum fluctuations as a building block
 - dispersive forces in micro/nano machinery [Dekieviet @ ThisWorkshop]
- fundamental effect of QFT
 - (~ Lamb shift, g 2, ...)
- fundamental physics
 - search for new physics
 - new particles or forces

Discovery Potential

Discovery Potential

beyond SM

e.g. SUSY (heavy)

[ZMS.DESY.DE]

[WWW.CERN.DE]

Discovery Potential

beyond SM

e.g. SUSY (heavy)

[WWW.CERN.DE]

[ZMS.DESY.DE]

[AHLERS@DESY]

Hidden Sector (weakly coupled & light)

Optical Experiments

Optical Experiments

Low-Energy Effective Theories

Low-Energy Effective Theories?

⊳ Axion-Like Particle

(PECCEI, QUINN'77; WEINBERG'78; WILCZEK'78)

$$\mathcal{L}_{ALP} = \frac{g}{4} \phi F^{\mu\nu} \stackrel{(\sim)}{F}_{\mu\nu} - \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m_{\phi}^2 \phi^2$$

▷ 2 parameters:

- ALP mass: m_{ϕ} (potentially very light)
- ALP- γ coupling: $g = \frac{1}{M}$ (weak, e.g., $M = 10^X$ GeV)

Low-Energy Effective Theories?

(OKUN'82; HOLDOM'85)

$$\mathcal{L}_{\mathsf{MCP}} = -ar{\psi}(i\partial\!\!\!/ + \epsilon e\!\!\!/ A)\psi + m_{\epsilon}ar{\psi}\psi$$

▷ 2 parameters:

- MCP mass: m_{ϵ}
- MCP- γ coupling: ϵ

(potentially very light) (weak, e.g., $\epsilon = 10^{-X}$)

Bounds on m_{ϕ} , g, ϵ , m_{ϵ} , χ , μ , ...?

Astrophysical Bounds from Stellar Energy Loss

▷ ALP production:

Primakov process

Ze

ALP emission

(VAN BIBBER ET AL.'89)

Astrophysical Bounds from Stellar Energy Loss

(VAN BIBBER ET AL.'89)

laboratory: $|q| \sim \text{micro eV}$

(VAN BIBBER ET AL.'89)

(JAECKEL, MASSO, REDONDO, RINGWALD, TAKAHASHI'06)

- milliscale observations
 - neutrino masses:
 - $\sum m_i < 0.7 \,\mathrm{eV}$,
 - $|\Delta m_{21}|\simeq 9\,\mathrm{meV},$
 - $|\Delta m_{23}| \simeq 56 \,\mathrm{meV}$
 - cosmological constant:
 - $\Lambda \sim (2\,meV)^4$

- milliscale observations
 - neutrino masses:
 - $\sum m_i < 0.7 \,\mathrm{eV}$,
 - $|\Delta m_{21}|\simeq 9\,\mathrm{meV},$
 - $|\Delta m_{23}| \simeq 56 \,\mathrm{meV}$
 - cosmological constant:
 - $\Lambda \sim (2\,meV)^4$

▷ physicist's imperative:

Do experiments!

- milliscale observations
 - neutrino masses:
 - $\sum m_i < 0.7 \,\mathrm{eV}$,
 - $|\Delta m_{21}|\simeq 9\,\mathrm{meV},$
 - $|\Delta m_{23}| \simeq 56 \,\mathrm{meV}$
 - cosmological constant:
 - $\Lambda \sim (2\,meV)^4$

▷ theorist's imperative:

Ask for experiments!

- milliscale observations
 - neutrino masses:
 - $\sum m_i < 0.7 \,\mathrm{eV}$,
 - $|\Delta m_{21}|\simeq 9\,\mathrm{meV},$
 - $|\Delta m_{23}| \simeq 56 \,\mathrm{meV}$
 - cosmological constant:
 - $\Lambda \sim (2\,meV)^4$

▷ theorist's categoric imperative:

Ask only for those experiments for which you are willing to do calculations.

Optical Signatures

Light Propagation in a *B* field.

⊳ ellipticity:

$$\psi_{\mathsf{ell}} = \pi \, rac{L}{\lambda} \, \Delta v \, \sin 2 heta$$

Light Propagation in a *B* field.

▷ observable:

dichroism (polarization-dependent absorption) induces rotation

rotation: $|\Delta \theta| \simeq \frac{1}{4} \Delta \kappa L \sin 2\theta$, κ : absorption coefficient

Light Propagation in a *B* field.

 \triangleright absorption: in QED only above pair-production threshold $\omega > 2m$

200000

too small!

(HG,SHAISULTANOV'00)

MCP Results from Birefringence& Rotation Data

▷ PVLAS'07: (ZAVATTINI ET AL.'07)

(cf. BFRT (CAMERON'93), Q&A (CHEN'06))

birefringence: $\Delta v \leq 1.1 \times 10^{-19}$ /pass at B = 2.3Tdicroism: $\Delta \kappa \leq 5.4 \times 10^{-15}$ cm⁻¹ at B = 5.5T

(HG, JAECKEL, RINGWALD'06; AHLERS, HG, JAECKEL, REDONDO, RINGWALD'08)

MCP Results from Birefringence Rotation Data

▷ PVLAS'07: (ZAVATTINI ET AL.'07)

(cf. BFRT (CAMERON'93), Q&A (CHEN'06))

birefringence: $\Delta v \leq 1.1 \times 10^{-19}$ /pass at B = 2.3T Orthopositronium dicroism: $\Delta \kappa \leq 5.4 \times 10^{-15}$ cm⁻¹ at B = 5.5T Lamb shift

(HG.JAECKEL, RINGWALD'06: AHLERS, HG.JAECKEL, REDONDO, RINGWALD'08)

MCP Results from Birefringence& Rotation Data

▷ PVLAS'07: (ZAVATTINI ET AL.'07)

(cf. BFRT (CAMERON'93), Q&A (CHEN'06))

birefringence: $\Delta v \leq 1.1 \times 10^{-19}$ /pass at B = 2.3Tdicroism: $\Delta \kappa \leq 5.4 \times 10^{-15}$ cm⁻¹ at B = 5.5T Orthopositronium Lamb shift

(MITSUI'93)

(DAVIDSON ET AL.'00)

(HG, JAECKEL, RINGWALD'06; AHLERS, HG, JAECKEL, REDONDO, RINGWALD'08)

ALP Effects.

(MAIANI, PETRONZIO, ZAVATTINI'86; RAFFELT, STODOLSKY'88)

⊳ dicroism / rotation:

$$\Delta\theta = -N\left(\frac{g}{4}\frac{BL}{4}\right)^2\left[\frac{\sin\left(\frac{m_{\phi}^2L}{4\omega}\right)}{\left(\frac{m_{\phi}^2L}{4\omega}\right)}\right]^2$$

ALP Effects.

(MAIANI, PETRONZIO, ZAVATTINI'86; RAFFELT, STODOLSKY'88)

$\Delta \theta = -N \left(g \frac{BL}{4} \right)^2 \left[\frac{\sin \left(\frac{m_{\phi}^2 L}{4\omega} \right)}{\left(\frac{m_{\phi}^2 L}{4\omega} \right)} \right]^2$ B

▷ birefringence / ellipticity:

$$\Delta \phi = -N \frac{g^2 B^2 \omega L}{2m_{\phi}^2} \left[1 - \frac{\sin\left(\frac{m_{\phi}^2 L}{4\omega}\right)}{\left(\frac{m_{\phi}^2 L}{4\omega}\right)} \right]$$

ALP Results from PVLAS

▷ PVLAS'07: (ZAVATTINI ET AL.'07)

(AHLERS, HG, JAECKEL, REDONDO, RINGWALD'08)

ALP: Light-Shining-Through-Walls Experiments

(SIKIVIE'83; ANSELM'85; GASPERINI'87; VAN BIBBER ET AL.'87)

⊳ photon regeneration:

$$n_{\text{out}} = n_{\text{in}} \left\lfloor \frac{N_{\text{pass}} + 1}{2} \right\rfloor \frac{1}{16} \left(\frac{gBL\cos\theta}{4} \right)^4 \left(\frac{\sin(\frac{Lm_{\phi}^2}{4\omega})}{\frac{Lm_{\phi}^2}{4\omega}} \right)^4$$

ALP: Light-Shining-Through-Walls Experiments

(SIKIVIE'83; ANSELM'85; GASPERINI'87; VAN BIBBER ET AL.'87)

- BMV (Toulouse)
- LIPSS (JLAB)
- OSQAR (CERN)
- GammeV (Fermilab)
- ALPS (DESY)

1st run: 2006; 1st data: Oct 2007 1st run: Mar 2007; 1st data: Apr 2008 1st run: Jun 2007; 1st data: Nov 2007 1st run: Jul 2007; 1st data: Jan 2008 1st run: Sep 2007; 1st data: soon

ALP Results from LSTW

▷ GammeV: Light-Shining-Through-Wall

(CHOU ET AL.'08)

ELI potential for LSTW

▷ photon regeneration:

$$n_{\rm out} = n_{\rm in} \left\lfloor \frac{N_{\rm pass} + 1}{2} \right\rfloor \frac{1}{16} \left(\frac{gBL\cos\theta}{4} \right)^4 \left(\frac{\sin(\frac{Lm_{\phi}^2}{4\omega})}{\frac{Lm_{\phi}^2}{4\omega}} \right)^4$$

▷ PVLAS:

$$\left({m{g}} {m{BL}}
ight)
ight|_{
m PVLAS} \simeq 5 imes \left[{m{g} \over {
m GeV}^{-1}}
ight]$$

 \implies sensitivity scale:

$$g \gtrsim 5 \times 10^{-7} \mathrm{GeV}^{-1}$$

ELI potential for LSTW

⊳ photon regeneration:

$$n_{\rm out} = n_{\rm in} \left\lfloor \frac{N_{\rm pass} + 1}{2} \right\rfloor \frac{1}{16} \left(\frac{gBL\cos\theta}{4\omega} \right)^4 \left(\frac{\sin(\frac{Lm_{\phi}^2}{4\omega})}{\frac{Lm_{\phi}^2}{4\omega}} \right)^4$$

⊳ ELI:

$$\left. \left(gBL \right) \right|_{\mathsf{ELI}} \simeq 3.3 \times 10^3 \left[rac{g}{\mathsf{GeV}^{-1}}
ight] \left[rac{L}{50 \mu \mathsf{m}}
ight]$$

 \implies sensitivity scale:

$$g\gtrsim 3 imes 10^{-9}{
m GeV}^{-1}$$

Strong Fields and Cosmology?

▷ Dark Energy?

... cosmological constant, quintessence, ...

▷ matter couplings?

... "5th-force problem"

Chameleon Dark Energy

density-dependent couplings:

(KHOURY, WELTMAN'04)

$$\mathcal{L} = \int d^4x \sqrt{-g} \left(\frac{1}{2\kappa^2} R - g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) - \frac{e^{\frac{\phi}{M}}}{4} F^2 + S_m(e^{\frac{\phi}{Mm}} g_{\mu\nu}, \psi_m) \right)$$

$$\implies m_{\phi} = m_{\phi}(\rho_m)$$

ALP bounds: density suppression in the sun

(BRAX, VAN DE BRUCK, DAVIS, MOTA, SHAW'07)

ho in vacuo: chameleon-photon coupling \sim ALP

$$\mathcal{L}_{ ext{int}}\simeq -rac{1}{4}\, rac{g}{g}\, \phi F_{\mu
u}F^{\mu
u}, \quad rac{g}{M}=rac{1}{M}$$

Chameleonic Afterglow

(HG,MOTA,SHAW'07)

(AHLERS, LINDNER, RINGWALD, SCHREMPP, WENINGER'07)

(GAMMEV COLLARBORATION'07)

[A.WELTMAN@0809.4293]

▷ afterglow rate:

$$n_{\rm out} = n_{\rm in} \, \frac{1}{16} \left(\frac{gBL\cos\theta}{\frac{Lm_{\phi}^2}{4\omega}} \right)^2 \left(\frac{\sin(\frac{Lm_{\phi}^2}{4\omega})}{\frac{Lm_{\phi}^2}{4\omega}} \right)^2$$

Chameleonic ALP Results

⊳ GammeV:

(CHOU ET AL.'08)

Chameleonic ALP Results

⊳ GammeV:

(CHOU ET AL.'08)

▷ ELI potential:

 $g\gtrsim 3 imes 10^{-9} {
m GeV}^{-1}$

Conclusions

- ▷ Why strong-field physics ...?
 - "... exploring some issues of fundamental physics that have eluded man's probing so far" (TAJIMA'01)
 - QFT: high energy (momentum) vs. high amplitude
 - "Fundamental-Physics" discovery potential:
 - ALPs: hypothetical NG bosons (axion, majoron, familon, etc.)
 - MCPs: minicharged particles
 - paraphotons
 - sub-millimeter forces
 - ...
 - high physics/costs ratio

[A.LINDNER @ DESY]

Fundamental Physics

Heisenberg-Euler:

e.g., light propagation in strong fields

▷ scale of sensitivity:

 $\begin{array}{ll} \text{magnet:} & B = \mathcal{O}(1-10\text{T}), \quad \lambda \simeq 1\mu\text{m}, \quad L = \mathcal{O}(1\text{m}-100\text{km}) \\ \text{laser:} & B = \mathcal{O}(10^4-10^7\text{T}), \quad \lambda \simeq 1\text{nm}, \quad L = \mathcal{O}(10-100\mu\text{m}) \end{array}$

$$\implies \mu \leq \mathcal{O}(10 \text{keV})$$

Future Experiments

Future Experiments: MCPs

Future Experiments: MCPs

Accelerator Cavity Dark Current

Future Experiments: MCPs

ON, HANNESTAD, HAFFELT UU)

Astrophysical Bounds: MCPs

ALPs vs. MCPs

(AHLERS, HG, JAECKEL, RINGWALD'06)

Polaris@Jena

▷ birefringence at a photon collider (HEINZL, LIESFELD, AMTHOR, SCHWOERER, SAUERBREY, WIPF'06)

high-intensity laser

[WIPF@JENA]

Low-Energy Effective Theories?

 \triangleright Paraphotons γ' : gauge-kinetic mixing with further U(1)'s

(OKUN'82)

$${\cal L}_{\gamma\gamma'} = -rac{1}{4} {\cal F}_{\mu
u} {\cal F}^{\mu
u} - rac{1}{4} {\cal F}'_{\mu
u} {\cal F}'^{\mu
u} - rac{1}{2} \chi \, {\cal F}^{\mu
u} {\cal F}'_{\mu
u} - rac{1}{2} \mu {\cal A}'_{\mu} {\cal A}'^{\mu}$$

▷ 2 parameters:

- γ' mass: μ (potentially very light)
- γ' - γ coupling: χ (weak, e.g., χ =10^{-X})