Particle Physics in Modified Quantum Vacua – puzzles from the PVLAS experiment –

Holger Gies

Universität Heidelberg

Boundary conditions: Casimir effect

probing non-Newtonian gravity

(GR302@DPG: LAUX, WARRING, SCHMIDT, DEKIEVIET)

> Heat bath: quantum & thermal fluctuations

▷ electric fields: Schwinger pair production "vacuum decay"

Light Propagation.

classical Maxwell equation in vacuo

(MAXWELL 1864)

$$\mathbf{0} = \partial_{\mu} \mathbf{F}^{\mu\nu}$$

▷ velocity of a plane-wave solution:

$$v = 1 \quad (= c)$$

▷ quantum Maxwell equation

(HEISENBERG, EULER'36; WEISSKOPF'36)

$$0 = \partial_{\mu} \left(F^{\mu\nu} - \frac{1}{2} \frac{8}{45} \frac{\alpha^2}{m^4} F^{\alpha\beta} F_{\alpha\beta} F^{\mu\nu} - \frac{1}{2} \frac{14}{45} \frac{\alpha^2}{m^4} F^{\alpha\beta} F_{\alpha\beta} \tilde{F}^{\mu\nu} \right)$$

 \triangleright quantum Maxwell equation for a "light probe" $f^{\mu\nu}$

$$0 = \partial_{\mu} f^{\mu\nu} - \frac{8}{45} \frac{\alpha^2}{m^4} F_{\alpha\beta} F^{\mu\nu} \partial_{\mu} f^{\alpha\beta} - \frac{14}{45} \frac{\alpha^2}{m^4} \tilde{F}_{\alpha\beta} \tilde{F}^{\mu\nu} \partial_{\mu} f^{\alpha\beta}$$

⇒ magnetized quantum vacuum induces birefringence

Content of the section schemes: (PVLAS, BMV, Q&A, HEINZL ET AL.'06, DIPIAZZA, HATSAGORTSYAN, KEITEL'06)

observable: birefringence induces ellipticity

ellipticity: $\psi_{\text{ell}} = \pi \frac{L}{\lambda} \Delta v \sin 2\theta$, $\Delta v (5.5T) \simeq 10^{-22}$

 \triangleright absorption: in QED only above pair-production threshold $\omega > 2m$

rotation: $|\Delta \theta| \simeq \frac{1}{4} \Delta \kappa \ell \sin 2\theta$

PVLAS Detection Method.

Polarizzazione del Vuoto con LASer

(BAKALOV ET AL.'94, CANTATORE ET AL.'00, ZAVATTINI ET AL.'05)

PVLAS Design.

- magnet: 6T, 4.2K, 1m
- magnet rotation: \simeq 0.3Hz
- laser: $\lambda = 1064$ nm (532nm)
- cavity: high-finesse ($N \sim 10^5$) Fabry-Perot, $\implies \ell \simeq 60$ km

PVLAS @ LNL.

Holger Gies

Particle Physics in Modified Quantum Vacua

Vacuum Birefringence?

Frequenza [unità di freq. di rot. del magnete]

(CANTATORE@IDM2004,IDM2006)

Vacuum Birefringence?

Vacuum Rotation: loss of photons.

Vacuum Rotation: loss of photons.

Options: Error or Physical Signal?

(CANTATORE@IAS-AXION-WORKSHOP'06)

Candidate	Test/Cure	Comment
residual gas	pressure measurement	excluded
mirror coating birefringence/ rotation	direct measurement	excluded
electrical pick-up	measurement without the cavity	excluded
diffusion from magnetised surfaces	pinhole insertion	excluded
polarizer/QWP movement	measurement without the cavity	excluded
residual Faraday rotation (static and modulated)	study freq. locking offset eliminate fringe fields	possible source of birefr/ rotation at Ω_{mag}
yet uknown magnet-polarisation coupling	study freq. locking offset eliminate fringe fields	possible source of birefr/ rotation at Ω _{mag}
beam pointing instability	correlation with measured position signal	possible source of birefringence at Ω _{mag}

Options: Error or Physical Signal?

(CANTATORE@IAS-AXION-WORKSHOP'06)

Candidate	Test/Cure	Comment
residual gas	pressure measurement	excluded
mirror coating birefringence/ rotation	direct measurement	excluded
electrical pick-up	measurement without the cavity	excluded
diffusion from magnetised surfaces	pinhole insertion	excluded
polarizer/QWP movement	measurement without the cavity	excluded
residual Faraday rotation (static and modulated)	study freq. locking offset eliminate fringe fields	possible source of birefr/ rotation at Ω_{mag}
yet uknown magnet-polarisation coupling	study freq. locking offset eliminate fringe fields	possible source of birefr/rotation at Ω_{mag}
beam pointing instability	correlation with measured position signal	possible source of birefringence at Ω _{mag}

"The possibility that this effect is due to an unknown, albeit very subtle, instrumental artifact has been investigated at length without success." (HEP-EX/0507107, PRL'05)

Standard (Model) Explanations ?

• Quantum light cone deformations ...?

 $\sim \frac{\pi^2 T^4}{15}, \quad -\frac{\pi^2}{720a^4}, \dots$ too small!

(LATORRE, PASCUAL, TARRACH'95; SHORE'96; DITTRICH, HG'98)

• Photon Splitting ... ? (ADLER'71) PVLAS mean free path $1/\kappa \sim \simeq 3 \cdot 10^{57} \times SoU$ also experimentally ruled out by PVLAS (CANTATORE@IAS-AXION-WORKSHOP'06)

• neutrino $\bar{\nu}\nu$ pair emission in EM fields ...?

too small!

(HG,SHAISULTANOV'00)

• QED effect due to magnet rotation ...? (MENDONCA ET AL'06)

too small!

(HG'06; ADLER'06; BISWAS, MELNIKOV'06)

Standard (Model) Explanations ?

• Quantum light cone deformations ...?

 $\sim rac{\pi^2 T^4}{15}, \quad -rac{\pi^2}{720a^4}, \ldots ext{ too small!}$

(LATORRE, PASCUAL, TARRACH'95; SHORE'96; DITTRICH, HG'98)

• QED effect due to magnet rotation ...? (MENDONCA ET AL'06)

too small!

(HG'06; ADLER'06; BISWAS, MELNIKOV'06)

Low-Energy Effective Theories?

Axion-Like Particle Milli-Charged Particle

$$\mathcal{L}_{ALP} = \frac{g}{4} \phi F^{\mu\nu} \stackrel{(\sim)}{F}_{\mu\nu} \\ -\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m_{\phi}^2 \phi^2$$

$$\mathcal{L}_{\mathsf{MCP}} = -ar{\psi}(i\partial\!\!\!/ + \epsilon e\!\!\!/ A)\psi + m_{\epsilon}ar{\psi}\psi$$

scalar or pseudo-scalar

scalar of fermion

2 parameters

neutral

charged

Low-Energy Effective Theories?

ALP Global Fit.

> pseudoscalar ALP, fit to all published data (AHLERS, HG, JAECKEL, RINGWALD'06)

MCP Global Fit.

 ϵ

▷ fermionic MCP, fit to all published data (AHLERS, HG, JAECKEL, RINGWALD'06)

 $m_{\epsilon} \lesssim 0.1 eV, \quad \epsilon \simeq 10^{-6}$

(HG, JAECKEL, RINGWALD'06)

Astrophysical Bounds: ALPs

▷ Axion production:

CAST: (T316@DPG07: KUSTER, NORDT, HOFFMANN)

Astrophysical Bounds: ALPs

Resolving the CAST-PVLAS puzzle.

▷ suppress solar ALP production:

(JACKEL, MASSO, REDONDO, RINGWALD, TAKAHASHI'06)

 $\boldsymbol{g} = f(T, n, B, Q^2 \ldots)$

Resolving the CAST-PVLAS puzzle.

\triangleright e.g., U(1)×U(1)×U(1) paraphoton model

(MASSO, REDONDO'06)

 \implies can naturally be embedded in string theory (ABEL, JAECKEL, KHOZE, RINGWALD'06)

⊳ other options:

- T suppression (Mohapatra, Nasri'06)
- trapping (JAIN ET AL'05'06)

GABRIELLI&GIOVANNINI'07; BESWICK&RIZZO'07; FOOT&KOBAKHIDZE'07; HU&LIAO'07; KRUGLOV'07; CHEUNG&YUAN'07;

GAETE&SCHMIDT'06; FLACKE&MAYBURY'06; KASTRUP'06; RODRIGUES'06; FAIRBAIN&RASHBA&TROITSKY'06 . . .)

"Near-Future" Data.

"Near-Future" Data.

▷ scalar MCP, fit including preliminary PVLAS data (CANTATORE@IDM2006)

ALPs vs. MCPs

(AHLERS, HG, JAECKEL, RINGWALD'06)

Holger Gies Particle

Future Experiments.

- ▷ New polarization experiments:
 - Q&A (Taiwan) (CHEN, MEI, NI'06)
 - BMV (Toulouse)
 - TW or PW standing-wave laser fields (Jena) (HEINZL ET AL'06)
 - Double-pulsar observations J0737-3039 (DUPAYS&RONCADELLI'06)

Future Experiments.

▷ New polarization experiments:

(RIZZO@CERN-AXION-TRAINING2005)

Future Experiments: ALPs

▷ "light-shining-through-walls" experiments:

- PVLAS upgrade
- ALPS (DESY)
- APFEL (DESY) (VUV-FEL at TTF)
- LIPSS (JLAB)
- ??? (CERN)

(T316@DPG07: MEYER)

Future Experiments: ALPs

⊳ e.g., ALPS @ DESY

(A.LINDNER'06)

Installed and ready for operation!

Future Experiments: MCPs

Conclusions

▷ Why quantum-vacuum physics ...?

- " . . . exploring some issues of fundamental physics that have eluded man's probing so far" (TAJIMA'01)
- QFT: high energy (momentum) vs. high amplitude

• "new physics" discovery potential:

- hypothetical NG bosons (axion, majoron, familon, etc.)
- millicharged particles
- sub-millimeter forces
- ...

Holger Gies Particle Physics in Modified Quantum Vacua

Bonus Material

Astrophysical Bounds: MCPs

Astrophysical Bounds: MCPs

- Does PVLAS observe a signal of unconventional/new physics ?
- Is there a (particle-physics) low-energy effective description of the PVLAS signal ?
- Is there a valid microscopic foundation of such an effective description ?