New Physics below the Standard Model? – puzzles from the PVLAS experiment –

Holger Gies

Institute for Theoretical Physics Heidelberg University

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

The Quantum Vacuum

- A view on the quantum vacuum
- From QED to nonlinear ED
- 2 The PVLAS Experiment
 - Experimental Setup & Results
 - Standard(-Model) Explanations?
 - ALP model

Implications of PVLAS.

- ALP bounds
- Options
- Future

A view on the quantum vacuum From QED to nonlinear ED

Outline

- The Quantum Vacuum
 - A view on the quantum vacuum
 - From QED to nonlinear ED
- 2 The PVLAS Experiment
 - Experimental Setup & Results
 - Standard(-Model) Explanations?
 - ALP model
- Implications of PVLAS.
 - ALP bounds
 - Options
 - Future

PVLAS Experiment

A view on the quantum vacuum From QED to nonlinear ED

A view on the quantum vacuum.

Holger Gies New Physics below the Standard Model?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

큰

e PVLAS Experiment polications of PVLAS. A view on the quantum vacuum From QED to nonlinear ED

A view on the quantum vacuum From QED to nonlinear ED

A view on the quantum vacuum From QED to nonlinear ED

A view on the quantum vacuum From QED to nonlinear ED

A view on the quantum vacuum

A view on the quantum vacuum From QED to nonlinear ED

Outline

The Quantum Vacuum A view on the quantum vacuum From QED to nonlinear ED

- 2 The PVLAS Experiment
 - Experimental Setup & Results
 - Standard(-Model) Explanations?
 - ALP model
- Implications of PVLAS.
 - ALP bounds
 - Options
 - Future

A view on the quantum vacuum From QED to nonlinear ED

From QED to nonlinear ED.

Observation: the electron is very "heavy"

•
$$m \simeq 511 \text{ keV} \simeq 9 \cdot 10^{-31} \text{ kg}$$

•
$$m \simeq 7.6 \cdot 10^{11} \, \mathrm{GHz} \simeq 6 \cdot 10^9 \, \mathrm{Kelvin}$$

•
$$m^2 \simeq 1.3 \cdot 10^9$$
 Tesla $\simeq 4 \cdot 10^{17}$ Volt/m

Critical field strengths:

$$B_{
m cr}=rac{m^2}{e}\simeq 4.3\cdot 10^9$$
 Tesla, $E_{
m cr}=rac{m^2}{e}\simeq 1.3\cdot 10^{18}$ Volt/m

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A view on the quantum vacuum From QED to nonlinear ED

From QED to nonlinear ED.

> mass scale m divides quantum fluctuations in

hard $|p^2| > m^2$ soft $|p^2| < m^2$

(photons and electrons)

(only photons =EM fields)

Physics of the soft fields:

average over \int integrate out hard modes

 \implies Heisenberg-Euler effective action Γ

A view on the quantum vacuum From QED to nonlinear ED

Heisenberg-Euler effective action.

(EULER, KOCKEL'35; HEISENBERG, EULER'36; WEISSKOPF'36; SCHWINGER'51; RITUS'76)

Conventions: $\mathcal{F} = \frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}(B^2 - E^2), \quad \mathcal{G} = \frac{1}{4}F_{\mu\nu}\tilde{F}^{\mu\nu} = -B \cdot E$

A view on the quantum vacuum From QED to nonlinear ED

Heisenberg-Euler effective action.

(EULER, KOCKEL'35; HEISENBERG, EULER'36; WEISSKOPF'36; SCHWINGER'51; RITUS'76)

▷ weak-field expansion

Conventions: $\mathcal{F} = \frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}(B^2 - E^2), \quad \mathcal{G} = \frac{1}{4}F_{\mu\nu}\tilde{F}^{\mu\nu} = -B \cdot E$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A view on the quantum vacuum From QED to nonlinear ED

Why is it interesting ...?

"... QED is the world's best-tested theory !?"

< □ > < □ > < □ > < □ >

(KINOSHITA'96; JENTSCHURA ET AL.'02-05)

- " ... exploring some issues of fundamental physics that have eluded man's probing so far" (TAJIMA'01
- QFT: high energy (momentum) vs. high amplitude
- "new physics" discovery potential: hypothetical NG bosons (axion, majoron, familon, etc.)

A view on the quantum vacuum From QED to nonlinear ED

Why is it interesting ...?

"... QED is the world's best-tested theory !?"

< □ > < □ > < □ > < □ >

(KINOSHITA'96; JENTSCHURA ET AL.'02-05)

• " ... exploring some issues of fundamental physics that have eluded man's probing so far" (TAJIMA'01)

- QFT: high energy (momentum) vs. high amplitude
- "new physics" discovery potential: hypothetical NG bosons (axion, majoron, familon, etc.)

A view on the quantum vacuum From QED to nonlinear ED

Why is it interesting ...?

"... QED is the world's best-tested theory !?"

< □ > < □ > < □ > < □ >

(KINOSHITA'96; JENTSCHURA ET AL.'02-05)

• " ... exploring some issues of fundamental physics that have eluded man's probing so far" (TAJMA'01)

- QFT: high energy (momentum) vs. high amplitude
- "new physics" discovery potential: hypothetical NG bosons (axion, majoron, familon, etc.)

A view on the quantum vacuum From QED to nonlinear ED

Why is it interesting ...?

"... QED is the world's best-tested theory !?"

(KINOSHITA'96; JENTSCHURA ET AL.'02-05)

- "... exploring some issues of fundamental physics that have eluded man's probing so far" (TAJIMA'01)
- QFT: high energy (momentum) vs. high amplitude
- "new physics" discovery potential: hypothetical NG bosons (axion, majoron, familon, etc.)

A view on the quantum vacuum From QED to nonlinear ED

Light Propagation in a *B* field.

p quantum Maxwell equation

$$0 = \partial_{\mu} \left(F^{\mu\nu} - 2\frac{8}{45} \frac{\alpha^2}{m^4} \mathcal{F} F^{\mu\nu} - 2\frac{14}{45} \frac{\alpha^2}{m^4} \mathcal{G} \tilde{F}^{\mu\nu} \right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

큰

A view on the quantum vacuum From QED to nonlinear ED

Light Propagation in a *B* field.

 \triangleright quantum Maxwell equation for a "light probe" $f^{\mu\nu}$

$$0 = \partial_{\mu} f^{\mu\nu} - \frac{8}{45} \frac{\alpha^2}{m^4} F_{\alpha\beta} F^{\mu\nu} \partial_{\mu} f^{\alpha\beta} - \frac{14}{45} \frac{\alpha^2}{m^4} \tilde{F}_{\alpha\beta} \tilde{F}^{\mu\nu} \partial_{\mu} f^{\alpha\beta}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

⇒ magnetized quantum vacuum induces birefringence

A view on the quantum vacuum From QED to nonlinear ED

Light Propagation in a *B* field.

 \triangleright quantum Maxwell equation for a "light probe" $f^{\mu\nu}$

$$0 = \partial_{\mu} f^{\mu\nu} - \frac{8}{45} \frac{\alpha^2}{m^4} F_{\alpha\beta} F^{\mu\nu} \partial_{\mu} f^{\alpha\beta} - \frac{14}{45} \frac{\alpha^2}{m^4} \tilde{F}_{\alpha\beta} \tilde{F}^{\mu\nu} \partial_{\mu} f^{\alpha\beta}$$

 \Rightarrow magnetized quantum vacuum induces birefringence

Content of the section schemes: (PVLAS, BMV, Q&A, HEINZL ET AL.'06, DIPIAZZA, HATSAGORTSYAN, KEITEL'06)

A view on the quantum vacuum From QED to nonlinear ED

Light Propagation in a **B** field.

ellipticity phase shift: $\Delta \phi = 2\pi \frac{L}{\lambda} \Delta v$, $\Delta v (5.5T) \simeq 10^{-22}$

< □ > < 同 > < 回 > < Ξ > < Ξ

A view on the quantum vacuum From QED to nonlinear ED

Light Propagation in a **B** field.

 \triangleright absorption: in QED only above threshold $\omega > 2m$

A view on the quantum vacuum From QED to nonlinear ED

Light Propagation in a **B** field.

• • • • • • • • • • • • •

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Outline

- The Quantum Vacuum
 - A view on the quantum vacuum
 - From QED to nonlinear ED
- 2 The PVLAS Experiment
 - Experimental Setup & Results
 - Standard(-Model) Explanations?
 - ALP model
 - Implications of PVLAS.
 - ALP bounds
 - Options
 - Future

Experimental Setup & Results Standard(-Model) Explanations? ALP model

PVLAS Detection Method.

(BAKALOV ET AL.'94, CANTATORE ET AL.'00, ZAVATTINI ET AL.'05)

Experimental Setup & Results Standard(-Model) Explanations? ALP model

PVLAS Design.

- magnet: 6T, 4.2K, 1m
- magnet rotation: ~ 0.3Hz
- laser: $\lambda = 1064$ nm
- cavity: high-finesse ($N \sim 10^5$) Fabry-Perot, $\implies L \simeq 60$ km

< ロ > < 同 > < 三 > < 三 > 、

Experimental Setup & Results Standard(-Model) Explanations? ALP model

PVLAS @ LNL.

Holger Gies New Physics below the Standard Model?

Experimental Setup & Results Standard(-Model) Explanations? ALP model

PVLAS Calibration.

- Cotton-Mouton effect with residual gas ("classical physics")
- Fourier analysis of signal
- physical signal at

$$\omega_{
m signal} = 2\omega_{
m Magnet}$$

A D > A A P >

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Vacuum Birefringence?

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Dati in vuoto con B = 5.5 T

Vacuum Birefringence?

630 µs)

Ellitticità [Yad] normalizzata a t = 6. Experimental Setup & Results Standard(-Model) Explanations? ALP model

Vacuum Birefringence?

BUT:

- almost everything is birefringent
- variable birefringence from small beam movements

Dati in vuoto con B = 5.5 T

Frequenza [unità di freq. di rot. del magnete]

(CANTATORE@IDM2004)

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Vacuum Rotation.

⁽CANTATORE@CERN-AXION-TRAINING2005)

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Vacuum Rotation.

⁽CANTATORE@CERN-AXION-TRAINING2005)

observed rotation $\sim 2.0 \pm 0.3 \cdot 10^{-7}$ rad

(ZAVATTINI ET AL., HEP-EX/0507107, PRL'06)

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Vacuum Rotation.

Holger Gies New Physics below the Standard Model?

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Vacuum Rotation.

- experimental facts:
 - $\bullet~$ observed rotation $\sim 2.0 \pm 0.3 \cdot 10^{-7}$ rad
 - selective absorption of photons with

e || B

 $\bullet~SNR \sim$ 5-10 within seconds

(ZAVATTINI ET AL., HEP-EX/0507107, PRL'06)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Experimental Setup & Results Standard(-Model) Explanations? ALP model

Outline

The Quantum Vacuum

- A view on the quantum vacuum
- From QED to nonlinear ED
- The PVLAS Experiment

 Experimental Setup & Results
 Standard (Model) Supposition
 - Standard(-Model) Explanations?
 - ALP model
- Implications of PVLAS.
 - ALP bounds
 - Options
 - Future

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Modified Light Propagation?

Light cone condition, polarization sum rule

 $k^2 = Q \langle T^{\mu
u}
angle k_\mu k_
u$

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Modified Light Propagation?

Light cone condition, polarization sum rule

$$k^2 = Q \langle T^{\mu
u}
angle k_{\mu} k_{
u}$$

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Photon Splitting?

(ADLER'71)

$$\kappa(\bot \to \| + \|) \simeq \begin{cases} 0.1 \text{cm}^{-1} \left(\frac{\partial B}{m^2}\right)^6 \sin^6 \theta_B \left(\frac{\omega}{m}\right)^5, \ B \ll B_{\text{cr}} \\ 0.5 \text{cm}^{-1} \sin^6 \theta_B \left(\frac{\omega}{m}\right)^5, \ B \gg B_{\text{cr}} \end{cases}$$

 \triangleright PVLAS mean free path 1/ $\kappa \sim \simeq 3 \cdot 10^{57} \times$ SoU

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Photon Splitting?

(ADLER'71)

 \triangleright PVLAS mean free path 1/ $\kappa \sim \simeq 3 \cdot 10^{57} \times$ SoU

くロト (同) (ヨト (ヨ)

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Neutrino Production?

• • • • • • • • • • • • •

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Neutrino Production?

- ∢ ⊒ ▶

Experimental Setup & Results Standard(-Model) Explanations? ALP model

Outline

The Quantum Vacuum

- A view on the quantum vacuum
- From QED to nonlinear ED

2 The PVLAS Experiment

- Experimental Setup & Results
- Standard(-Model) Explanations?
- ALP model

Implications of PVLAS.

- ALP bounds
- Options
- Future

ALP model.

- ▷ selective absorption of photons with e||B
- \implies effective interaction:

 $\mathcal{L}_{ALP} = \text{ something } \times \mathbf{E} \cdot \mathbf{B}$

イロト イポト イヨト イヨト

큰

ALP model.

- \triangleright selective absorption of photons with **e**||**B**
- \implies effective interaction:

$$\mathcal{L}_{\mathsf{ALP}} = oldsymbol{g} \, \phi \, \mathbf{E} \cdot \mathbf{B} = - rac{1}{4} oldsymbol{g} \, \phi F_{\mu
u} \, \widetilde{F}^{\mu
u}$$

イロト イポト イヨト イヨト

큰

ALP model.

- \triangleright selective absorption of photons with **e**||**B**
- \implies effective interaction:

$$\mathcal{L}_{\mathsf{ALP}} = \frac{g}{\phi} \mathbf{E} \cdot \mathbf{B} - \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} \frac{m_{\phi} \phi^2}{2}$$

 \implies 2 parameters: $m_{\phi}, g \equiv \frac{1}{M}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ALP model.

- \triangleright selective absorption of photons with **e**||**B**
- \implies effective interaction:

$$\mathcal{L}_{\mathsf{ALP}} = \boldsymbol{g} \phi \, \mathbf{E} \cdot \mathbf{B} - \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} \boldsymbol{m}_{\phi} \phi^2$$

 \implies 2 parameters: $m_{\phi}, g \equiv \frac{1}{M}$

- pseudoscalar particle ϕ
- weakly coupled to matter
- can be light

ALP model.

- \triangleright selective absorption of photons with $\textbf{e} \| \textbf{B}$
- \implies effective interaction:

$$\mathcal{L}_{\mathsf{ALP}} = \frac{g}{\phi} \boldsymbol{\mathsf{E}} \cdot \boldsymbol{\mathsf{B}} - \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m_{\phi} \phi^2$$

 \Rightarrow 2 parameters: $m_{\phi}, g \equiv \frac{1}{M}$

- pseudoscalar particle ϕ
- weakly coupled to matter
- can be light

 \sim NG boson of "axial" SB?

natural candidate: Axion

⇒ (breaking of U(1)_{PQ}, "strong-CP problem", QCD axion: $g \sim \frac{1}{M}$)

Axion-Like-Particle (RINGWALD'06)

Experimental Setup & Results Standard(-Model) Explanations? ALP model

ALP effects.

(MAIANI, PETRONZIO, ZAVATTINI'86; RAFFELT, STODOLSKY'88)

⊳ dicroism / rotation:

$$\epsilon = -N \left(\frac{BL}{4M}\right)^2 \left[\frac{\sin\left(\frac{m_{\phi}^2 L}{4\omega}\right)}{\left(\frac{m_{\phi}^2 L}{4\omega}\right)}\right]^2$$

イロト イポト イヨト イヨト

-

Experimental Setup & Results Standard(-Model) Explanations? ALP model

ALP effects.

(MAIANI, PETRONZIO, ZAVATTINI'86; RAFFELT, STODOLSKY'88)

 \sim

⊳ dicroism / rotation:

$$\epsilon = -N \left(rac{BL}{4M}
ight)^2 \left[rac{\sin\left(rac{m_{\phi}^2 L}{4\omega}
ight)}{\left(rac{m_{\phi}^2 L}{4\omega}
ight)}
ight]^2$$

$$\Delta \phi = -N \frac{B^2 \,\omega L}{2M^2 m_{\phi}^2} \left[1 - \frac{\sin\left(\frac{m_{\phi}^2 L}{4\omega}\right)}{\left(\frac{m_{\phi}^2 L}{4\omega}\right)} \right]$$

イロト イヨト イヨト

큰

BS

Experimental Setup & Results Standard(-Model) Explanations? ALP model

PVLAS Rotation from ALP?

Experimental Setup & Results Standard(-Model) Explanations? ALP model

PVLAS Rotation from ALP?

Experimental Setup & Results Standard(-Model) Explanations? ALP model

"Physical Test" of ALP signal.

⊳ dicroism / rotation :

$$\epsilon = -N \left(\frac{BL}{4M}\right)^2 \left[\frac{\sin\left(\frac{m_{\phi}^2 L}{4\omega}\right)}{\left(\frac{m_{\phi}^2 L}{4\omega}\right)}\right]^2$$

イロト イポト イヨト イヨト

-

Experimental Setup & Results Standard(-Model) Explanations? ALP model

"Physical Test" of ALP signal.

▷ dicroism / rotation with residual gas:

$$\epsilon = -N \left(\frac{BL}{4M}\right)^2 \left[\frac{\sin\left(\frac{(m_{\phi}^2 - 2\omega^2 \frac{P_{\text{gas}}}{P_{\text{atm}}}(n_{\text{gas}} - 1))L}{4\omega}\right)}{\left(\frac{(m_{\phi}^2 - 2\omega^2 \frac{P_{\text{gas}}}{P_{\text{atm}}}(n_{\text{gas}} - 1))L}{4\omega}\right)}\right]^2$$

イロト イ団ト イヨト イヨト

큰

Experimental Setup & Results Standard(-Model) Explanations? ALP model

"Physical Test" of ALP signal.

▷ dicroism / rotation with residual gas:

$$\epsilon = -N \left(\frac{BL}{4M}\right)^2 \left[\frac{\sin\left(\frac{(m_{\phi}^2 - 2\omega^2 \frac{P_{\text{gas}}}{P_{\text{atm}}}(n_{\text{gas}} - 1))L}{4\omega}\right)}{\left(\frac{(m_{\phi}^2 - 2\omega^2 \frac{P_{\text{gas}}}{P_{\text{atm}}}(n_{\text{gas}} - 1))L}{4\omega}\right)}\right]^2$$

$$egin{array}{rcl} m_{\phi} &=& 1.0 \pm 0.1 \ {
m meV} \ M &=& 3.8 \pm 0.35 \cdot 10^5 \ {
m GeV} \end{array}$$

(CANTATORE@CERN-AXION-TRAINING2005)

Experimental Setup & Results Standard(-Model) Explanations? ALP model

"Physical Test" of ALP signal.

Holger Gies New Physics below the Standard Model?

ALP bounds Options Future

Outline

- The Quantum Vacuum
 - A view on the quantum vacuum
 - From QED to nonlinear ED
- 2 The PVLAS Experiment
 - Experimental Setup & Results
 - Standard(-Model) Explanations?
 - ALP model

Implications of PVLAS.

- ALP bounds
- Options
- Future

ALP bounds Options Future

Collider Bounds.

scattering process

$$\mathcal{L}_{ ext{int}} = -rac{m{g}}{m{4}}\,\phi\,m{F}_{\mu
u}\,m{ ilde{F}}^{\mu
u}$$

▷ signature:

(MASSO, TOLDRA'95)

cross section

(KLEBAN, RABADAN'05)

$$\sigma_{e\bar{e} o \gamma \phi} = \left(rac{g}{10^{-5} \text{GeV}^{-1}}
ight) imes 1.2 \cdot 10^{-5} \, \text{pb}$$

ALP bounds Options Future

Collider Bounds.

Holger Gies New Physics below the Standard Model?

ALP bounds Options Future

 \sim

Ze

Astrophysical Bounds.

⊳ Axion production:

Primakov process in stellar plasma

Axion emission

weakly interacting particles leave the star

▷ Axion luminosity

$$\mathcal{L}_{\phi} \sim 10^{-3} \left(rac{m{g}}{10^{-10} ext{GeV}^{-1}}
ight)^2 \mathcal{L}_{\gamma} \ \ \stackrel{ ext{PVLAS}}{\simeq} 10^6 \, \mathcal{L}_{\gamma}$$

ALP bounds Options Future

Astrophysical Bounds.

Cern Axion Solar Telescope

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ALP bounds Options Future

Astrophysical Bounds.

Holger Gies New Physics below the Standard Model?

э

ALP bounds Options Future

Astrophysical Bounds.

Holger Gies

New Physics below the Standard Model?

ALP bounds Options Future

Outline

- The Quantum Vacuum
 - A view on the quantum vacuum
 - From QED to nonlinear ED
- 2 The PVLAS Experiment
 - Experimental Setup & Results
 - Standard(-Model) Explanations?
 - ALP model
- Implications of PVLAS.
 - ALP bounds
 - Options
 - Future

The Quantum Vacuum ALP bounds The PVLAS Experiment Options Implications of PVLAS. Future

Options.

PVLAS could be

Holger Gies New Physics below the Standard Model?

<ロト <回ト < 回ト < 回ト :

Options.

PVLAS could be

wrong

<ロト <回ト < 回ト < 回ト :

ALP bounds Options Future

Options.

<ロ> <同> <同> < 同> < 同> 、

ALP bounds Options Future

Options.

Candidate	Test	Comment
residual gas	pressure measurement	excluded
mirror coating birefringence	direct measurement	excluded
electrical pick-up	measurement without the cavity	excluded
beam pointing instability	correlation with measured position signal	possibility
polarizer movement	measurement without the cavity	excluded
diffusion from magnetised surfaces	pinhole insertion	excluded
physical signal	must satisfy signal conditions	NOT excluded

Holger Gies New Physics below the Standard Model?

<ロト <回ト < 回ト < 回ト :

ALP bounds Options Future

Options.

Candidate	Test	Comment
residual gas	pressure measurement	excluded
mirror coating birefringence	direct measurement	excluded
electrical pick-up	measurement without the cavity	excluded
beam pointing instability	correlation with measured position signal	possibility.
polarizer movement	measurement without the cavity	excluded
diffusion from magnetised surfaces	pinhole insertion	excluded
physical signal	must satisfy signal conditions	NOT excluded

"The possibility that this effect is due to an unknown, albeit very subtle, instrumental artifact has been investigated at length without success." (HEP-EX/0507107)

- A - E - N

The Quantum Vacuum ALP bounds The PVLAS Experiment Options Implications of PVLAS. Future

Options.

PVLAS could be

Holger Gies New Physics below the Standard Model?

<ロト <回ト < 回ト < 回ト :

Options Implications of PVLAS.

PVLAS could be

Options.

right

"CAST-PVLAS puzzle" \implies

イロト イポト イヨト イヨト

-
ALP bounds Options Future

Options.

ALP interpretation could be wrong.

(... rotation, ellipticity, res. gas effect ?)

イロト イ団ト イヨト イヨ

▷ ALP interpretation could be right.

(... requires mechanism that avoids fast solar cooling)

• trap ALPs in the sun (Masso, Redondo'05; JAIN, MANDAL'05)

(CAVE: solar physics & other astrophysical/collider bounds)

suppress solar ALP production

(Masso, Redondo'05; Jäckel, Masso, Redondo, Ringwald, Takahashi'06)

ALP bounds Options Future

Options.

ALP interpretation could be wrong.

(... rotation, ellipticity, res. gas effect ?)

▷ ALP interpretation could be right.

(... requires mechanism that avoids fast solar cooling)

• trap ALPs in the sun (Masso, Redondo'05; JAIN, MANDAL'05)

(CAVE: solar physics & other astrophysical/collider bounds)

suppress solar ALP production

(Masso, Redondo'05; Jäckel, Masso, Redondo, Ringwald, Takahashi'06)

The Quantum Vacuum ALF The PVLAS Experiment Opt Implications of PVLAS. Future

ALP bounds Options Future

Options.

ALP interpretation could be wrong.

(... rotation, ellipticity, res. gas effect ?)

▷ ALP interpretation could be right.

(... requires mechanism that avoids fast solar cooling)

• trap ALPs in the sun (MASSO, REDONDO'05; JAIN, MANDAL'05)

(CAVE: solar physics & other astrophysical/collider bounds)

suppress solar ALP production

(MASSO, REDONDO'05; JÄCKEL, MASSO, REDONDO, RINGWALD, TAKAHASHI'06)

The Quantum Vacuum		
he PVLAS Experiment	Options	
mplications of PVLAS.		

Options.

- ▷ PVLAS vs. Sun:
 - temperature T
 - ۲
 - density n
 - ۲
 - (electro-)magnetic fields E, B
 - ٩
 - neutrino flux, ...

solar ALP production could be suppressed by

```
m_{\phi}, \boldsymbol{g} = f(T, n, B, \ldots)
```

(JACKEL, MASSO, REDONDO, RINGWALD, TAKAHASHI'06)

The Quantum Vacuum Implications of PVLAS.

Options

▷ e.g., temperature suppression:

Options.

$$Q^2_{Sun} \sim \mathcal{T}^2 \sim \text{keV}^2$$
 $Q^2_{PVLAS} \sim 7 \cdot 10^{-13} \text{eV}^2$

 \triangleright assume: ALP is composite (e.g., $\sim \pi^0$ in QCD)

(MASSO, REDONDO'05)

ALP bounds Options Future

Outline

- The Quantum Vacuum
 - A view on the quantum vacuum
 - From QED to nonlinear ED
- 2 The PVLAS Experiment
 - Experimental Setup & Results
 - Standard(-Model) Explanations?
 - ALP model

Implications of PVLAS.

- ALP bounds
- Options
- Future

ALP bounds Options Future

Future Experiments.

- ▷ New laser polarization experiments:
 - Q&A (Taiwan)
 - BMV (Toulouse)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ALP bounds Options Future

Future Experiments.

(a) < (a) < (b) < (b)

큰

ALP bounds Options Future

Future Experiments.

큰

ALP bounds Options Future

Future Experiments.

< • • • **•**

ALP bounds Options Future

Future Experiments.

▷ "light-shining-through-walls" experiments:

- PVLAS upgrade
- APFEL (DESY) (VUV-FEL at TTF)

ALP bounds Options Future

Future Experiments.

▷ "light-shining-through-walls" experiments:

• • • • • • • • • • • • •

The Quantum Vacuum ALP The PVLAS Experiment Opti Implications of PVLAS. Futu

ALP bounds Options Future

Future Experiments.

The Quantum Vacuum	
The PVLAS Experiment	
Implications of PVLAS.	Future

Conclusion.

★週 ▶ ★ 臣 ▶ ★ 臣

The Quantum Vacuum	ALP bounds
The PVLAS Experiment	Options
Implications of PVLAS.	Future

Conclusion.

... yet another "Who-ordered-the-muon?" problem

.