Excerpt from Lecture Notes: Holger Gies, “Introduction to the Functional RG; and Appli-
cations to Gauge Theories”, Ed. A. Schwenk et al., Springer LNP XXX, (2007)

.1 Basics of QFT

In quantum field theory (QFT), all physical information is stored
in correlation functions. For instance, consider a collider experi-
ment, with two incident beams and (n — 2) scattering products. All
information about this process can be obtained from the n-point
function, a correlator of n quantum fields. In QFT, we obtain
this correlator by definition from the product of n field operators
at different spacetime points p(z,,) averaged over all possible field
configurations (quantum fluctuations).

In Euclidean QFT, the field configurations are weighted with an
exponential of the action S|y,
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where we fix the normalization N by demanding that (1) = 1. We
assume that Minkowski-valued correlators can be defined from the
Fuclidean ones by analytic continuation. We also assume that a
proper regularized definition of the measure can be given (for in-
stance, using a spacetime lattice discretization), which we formally
writeas [ Dy — [, De; here, A denotes an ultraviolet (UV) cutoff.
This regularized measure should also preserve the symmetries of the
theory: for a symmetry transformation U which acts on the fields,
¢ — @V and leaves the action invariant, S[p] — S[pY] = S|y,
the invariance of the measure implies
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For simplicity, let ¢ denote a real scalar field; the following discus-
sion also holds for other fields such as fermions with minor modifi-
cations. All n-point correlators are summarized by the generating
functional ZJ|,
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with source term f Jo = [dPz J(z)p(z). All n-point functions
are obtained by functional dxﬂerentmtzon.
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Once the generating functional is computed, the theory is solved.

In Eq. (3), we have also introduced the generating functional of
connected correlatorst, W[J] = In Z[J], which, loosely speaking,
is a more efficient way to store the physical information. An even
more efficient information storage is obtained by a Legendre trans-
form of W[J|: the effective action I':
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For any given ¢, a special J = Js,p, = J|[¢@] is singled out for which
[ J¢ — WJ] approaches its supremum. Note that this definition
of I' automatically guarantees that I' is convex. At J = Jyp, we
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n this short introduction, we use but make no attempt at fully explaining the standard QFT nomen-
clature; for the latter, we refer the reader to any standard QFT textbook, such as [2, 2].
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This implies that ¢ corresponds to the expectation value of ¢ in
the presence of the source J. The meaning of I becomes clear by
studying its derivative at J = Jgp
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This is the quantum equation of motion by which the effective
action ['[¢] governs the dynamics of the field expectation value,
taking the effects of all quantum fluctuations into account.

From the definition of the generating functional, we can straight-
forwardly derive an equation for the effective action:

e = /A Dy exp (—S (6 + ] + f %ﬂ 90) . (8

Here, we have performed a shift of the integration variable, o — @+
&. We observe that the effective action is determined by a nonlinear
first-order functional differential equation, the structure of which is
itself a result of a functional integral. An exact determination of
I"[¢] and thus an exact solution has so far been found only for rare,
special cases.

As a first example of a functional technique, a solution of Eq. (8)
can be attempted by a verter expansion of I'|¢],

F[(]ﬁ] - go ;_Ll‘!‘ /dDZE}_ . dﬂxn F(n)(xlv e 9xn) Qb(xl) T @(l‘n);
(9)

where the expansion coefficients "™ correspond to the one-particle
irreducible (1PI) proper vertices. Inserting Eq. {9) into Eq. (8)
and comparing the coefficients of the field monomials results in an
infinite tower of coupled integro-differential equations for the I'™):
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the Dyson-Schwinger equations. This functional method of con-
structing approximate solutions to the theory via truncated Dyson-
Schwinger equations, i.e., via a finite truncation of the series Eq. (9)
has its own merits and advantages; their application to gauge the-
ories is well developed; see, e.g., [3, 4, 5, 6]. Here, we proceed by
amending the RG idea to functional techniques in QF'T.
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