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Plan

what are Group Field Theories
relation with other QG approaches (and with GR/gravity)
basics of RG set-up for GFTs

perturbative renormalizability in GFTs - key results
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Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ...... )

Quantum field theories over group manifold G (or corresponding Lie algebra) © : GX d  C

QFT of spacetime, not defined on spacetime
: “ ”. b S X d X d
relevant classical phase space for “GFT quanta”: (T G) ~ (g X G)

can reduce to subspaces in specific models depending on conditions on the field

d is dimension of “spacetime-to-be”; for gravity models, G = local gauge group of gravity (e.g. Lorentz group)
example:d=4 (g1, 92,93,94) < p(B1, B2, B3, By) — C

can be defined for any (Lie) group and dimension d, any signature, .....

very general framework; interest rests on specific models/use
(most interesting QG models are for Lorentz group in 4d)
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Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)
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Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

S(0.9) = 5 [ WgleladK(aele) + 7 [dgilelgn)-p@p)V (giasgin)  + e

“combinatorial non-locality” /
in pairing of field arguments

simplest example (case d=4): simplicial setting

combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common
triangles, to form 4-simplex (“building block of spacetime”)



Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 A

S(p,P) = 5/[d9i]¢(gi)’c(gi)%0(gi) + ﬁ/[dgm]@(gzl)----Sﬁ(giD)V(gz’a,giD) + c.c

“combinatorial non-locality” /
in pairing of field arguments

simplest example (case d=4): simplicial setting
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Feynman perturbative expansion around trivial vacuum
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Group field theories

Feynman perturbative expansion around trivial vacuum
ANT

EF: sym(I’) Ar

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =

z /D@D@ RESNCHD)

= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices in arbitrary ways)

e U
Feynman amplitudes (model-dependent): m T k

equivalently: l B
spin foam models (sum-over-histories of 7 j - » j
spin networks) % k %)
Reisenberger,Rovelli, ’00
lattice path integrals

(with group+Lie algebra variables) /”_]\ ;

A. Baratin, DO, ‘11 W
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other QG formalisms

(relation to discrete gravity)




Group Field Theory: convergence of approaches

4 )

(e.g. quantum Regge calculus)

LQG Simplicial gravity path integrals [ Matrix models J

O\

Spin foam models

U J

/

( Non-commutative geometry J

Tensor models

l
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(causal) Dynamical
Triangulations

\




GFT as 2nd quantisation of LQG

see talk by Hanno

ANT

the GFT proposal: zZ = /DSOD¢ et AP = Z sym (D) Ar

spin networks as many-body systems and 2nd quantisation —-> GFT Fock space DO, 13;Kittel, DO, Tomlin, to appear
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see talk by Hanno
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1
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GFT as 2nd quantisation of LQG

see talk by Hanno

S (0B ANT
the GFT proposal: Z = / DyDp ' NP = ) sym(D)

spin networks as many-body systems and 2nd quantisation —-> GFT Fock space DO, '13;Kittel, DO, Tomlin, to appear

1

. 5 (= space of “disconnected spin network vertices”)

€ 9 FHo) = BY, sym{( 5”@%5)2)@---@%5)”)}
N Hy = L (G*1/G)

Ar

H, CHy WG = ] /Gda%b Sv (.. Giaalf,. . gipegss ) = Uy(gialgm) ")
[(ia),(5b)]

need to accept technical differences . sgme type of functions + same scalar product for
given graph

h - states for different graphs (same vertices) overlap

*  no continuum embedding

and change in perspective
— —> fundamental discreteness
(not “quantising continuum fields”, not canonical GR) . no cylindrical equivalence

for any canonical observable (incl. Hamiltonian constraint) -> GFT observable in 2nd quantisation
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guantum amplitudes for all spin foam complexes + organization principle
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GFT as completion of spin foam models

quantum spin network history = spin foam (complex with algebraic data)

basic element of SF model: qguantum amplitude for spin foam complex

{T'} zmy = > J[Ar0) HA (J, 1) HA (J, 1)

{JrAI}5,5" 57 f

complete (formal) definition of SF model:

guantum amplitudes for all spin foam complexes + organization principle

/
the GFT proposal: (Ap(J)
Z(T) ¢ 4 A(J 1) ~i— {K(J L)~ K(g) < S(p,p)
Ay(J, 1) V(1) ~V(g)

spin foam model

J

A —

F/dgm (9i1)----0(§ip)V(Gia: gip) +  c.c.
with sum over complexes

(9i) +
as GFT perturbative expansion t
(valid for any SF model) Z — / D@D@ ez' Sx(p,p) _




GFTs, loop guantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G
example: d=3 ©p 50(3)3/50(3) R +  simplicial interaction
Vh € SO(3), we(hgi, hga, hgs) = ©e(g1,82,83) with only delta functions

valid for GFT definition of BF theory in any dimension
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Quantum 3d simplicial geometry (

Riemannian)

-

. . . 3
classical triangle in R

3 edge vectors that close

Tr1,T2,I3 GRS S.t. ZCEZ:O
J y

~N

N
—

part of classical phase space [T* SU(Q)]

90(817827 g3) — Sp(xlpx27-x3)

X 3

unique intrinsic geometry (up to rotations)

Phase space for triangle in discrete 3d gravity

Vh € SO(3),

su(2) ~ R?

we(hgi,hg2, hg3)

©e(g1,82,83)
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into lattice gauge theories/discrete gravity path integrals/spin foam models
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Vh € SO(3), we(hgi, hga, hgs) = ©e(g1,82,83) with only delta functions
valid for GFT definition of BF theory in any dimension

can be computed in different (equivalent) representations (group, spin, Lie algebra)
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appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes
into lattice gauge theories/discrete gravity path integrals/spin foam models
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appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G

example: d=3 ©p 50(3)3/50(3) R +  simplicial interaction
Vh € SO(3), we(hgi, hga, hgs) = ©e(g1,82,83) with only delta functions
valid for GFT definition of BF theory in any dimension

can be computed in different (equivalent) representations (group, spin, Lie algebra)
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| D 3d gravity/BF theory
| | ]T ]5 ]g . 3 iy Trx.H,

] T T T - dh d Xe e ¢
T { ]4 ]5 ]6 } / ];[ [ l] ];[ [ ] \

/ discrete 1st order path integral for 3d gravity/BF theory
on simplicial complex dual to GFT Feynman diagram

|
N
=

spin foam formulation of 3d gravity/BF theory



GFTs, loop guantum gravity,discrete gravity

GFT models of 4d gravity:

based on classical (Plebanski) formulation of GR as BF theory + (simplicity) constraints

start from GFT formulation of 4d BF theory
+ impose simplicity constraints (geometricity of simplicial structures)

(Barbieri, Baez, Barrett, Crane, Reisenberger, Perez, De Pietri, Engle, Pereira, Freidel, Krasnov, Rovelli, Livine, Speziale, Baratin, DO, ...... )
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GFT models of 4d gravity:

based on classical (Plebanski) formulation of GR as BF theory + (simplicity) constraints

start from GFT formulation of 4d BF theory
+ impose simplicity constraints (geometricity of simplicial structures)

(Barbieri, Baez, Barrett, Crane, Reisenberger, Perez, De Pietri, Engle, Pereira, Freidel, Krasnov, Rovelli, Livine, Speziale, Baratin, DO, ...... )

inspired by Plebanski-Holst gravity: Sp;.;, = L Jaq {B A F(w) + % x* BN Fw)+ ¢BAB

Becso(3,1)  ounkrn = OKL|IJ]

concrete, well-defined GFT (spin foam) model(s) for 4d QG dynamics - nice discrete geometry, lots of results .....
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GFT models of 4d gravity:

based on classical (Plebanski) formulation of GR as BF theory + (simplicity) constraints

start from GFT formulation of 4d BF theory
+ impose simplicity constraints (geometricity of simplicial structures)

(Barbieri, Baez, Barrett, Crane, Reisenberger, Perez, De Pietri, Engle, Pereira, Freidel, Krasnov, Rovelli, Livine, Speziale, Baratin, DO, ...... )

inspired by Plebanski-Holst gravity: Sp;.;, = L Jaq {B A F(w) + % x* BN Fw)+ ¢BAB

Becso(3,1)  ounkrn = OKL|IJ]

concrete, well-defined GFT (spin foam) model(s) for 4d QG dynamics - nice discrete geometry, lots of results .....

decompose GFT field in SU(2) data +

. . geometricity conditions
simplicity constraints =

= specific relation between SL(2,C) data and SU(2) data i
GFT dynamics to LQG quantum states
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see talk by Razvan

same combinatorics (of states/observables and histories/Feynman diagrams), additional group-theoretic data

dropping group/algebra data

example: d=3 (or restricting to finite group)

Ty : 753 — C
90(91,92,93) . GX3 —> C # jk N
Tijk : AXX3 — C
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see talk by Razvan

same combinatorics (of states/observables and histories/Feynman diagrams), additional group-theoretic data

. dropping group/algebra data
example: d=3 (or restricting to finite group)
Tz’jk : ZX,B — C
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Group field theories and tensor models

see talk by Razvan

same combinatorics (of states/observables and histories/Feynman diagrams), additional group-theoretic data

. dropping group/algebra data
example: d=3 (or restricting to finite group)
Tz’jk : ZX,B — C

TijleXB%C

o(g1,92,93) : G*° = C

1 A
S(T) = §ZTijkajz’ NG > Tk TitmTmgn Tt

i'I' n'

1,7,k 17klmn

AVT AVT

analogous to

Z — DT —S(T,)\) — Z — NFF—%VF ]
/ e ; Sym(r) T ; Sym(r) Dynamical

Triangulations

many results on topology, scaling, constructive aspects, phase transitions, ...
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(Tensorial) Group Field Theories vs Tensor Models

many results of tensor models apply to GFTs as well

e same combinatorics, but more algebraic and geometric structures: proper QFTs

. “more gravity-conscious model building” in 3d and 4d
. proper renormalization group analysis
. new symmetries (new universality classes?)
. link with other approaches (and all the corresponding results and insights):
. loop quantum gravity and spin foam models
. simplicial quantum gravity

(richer discrete gravity path integral, QFT embedding of DT)

. more interesting effective physics?

. make use of geometric interpretation of data and field
. easier to make contact with continuum physics
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how GFT help tackling open issues in QG

- how to constrain quantisation and construction ambiguities in model building?

(in many ways, background independent counterpart of issue of renormalizability in perturbative QG) perez, ‘07

- GFT perturbative renormalization

—-> renormalizability of GFT for given discrete gravity path integral/spin foam amplitudes

. GFT Symmetnes (at both classical and quantum Ievel) Ben Geloun, ’11; Girelli, Livine, ’11; Baratin, Girelli, Oriti, ‘11

—-> in particular, those with geometric interpretation (e.g. diffeomorphisms) Kegeles, DO, 15

- how to define the continuum limit (of the LQG/SF dynamics or, equivalently, of discrete gravity path integral)?

controlling quantum dynamics of more and more interacting degrees of freedom

new analytic tools from QFT embedding

- Non-perturbative GFT renormalization and phase diagram (see talk by Dario)
- Extraction of effective continuum dynamics in different phases
(as in QFT for condensed matter systems....)



Part 111

Group Field Theory
renormalization:
why? how??
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The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time

\ new direction to explore: number of fundamental degrees of freedom

(quantum) continuum, geometric space-time should be recovered in the regime of large number N of
non-spatio-temporal d.o.f.s

continuum approximation very different (conceptually, technically) few QG d.o.f.s

from classical approximation (e.g. sim;le LQG spinnets) °

full Quantum Gravity

N-direction
(collective behaviour of many interacting degrees of freedom):
continuum approximation

h-direction: classical approximation

N
[ @
“well-understood” in Spin foam models and few QQ d.o.f.sin c_IassicaI approx. Gener_al Relativity _
(e.g. discrete/lattice gravity) (continuum spacetime)

discrete gravity
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Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool

for taking into account the physics of more and more d.o.f.s

for our QG models, do not expect to have a unique continuum limit

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases,
separated by phase transitions

for a non-spatio-temporal QG system (e.g. LQG in GFT formulation),
which of the macroscopic phases is described by a smooth geometry with matter fields?

in specific GFT case:

treat GFT models as analogous to atomic QFTs in condensed matter systems

- fundamental formulation of QG = QFT, defined perturbatively around “no-space” (degenerate) vacuum

need to prove consistency of the theory: perturbative GFT renormalizability

need to understand effective dynamics at different “GFT scales”:
RG flow of effective actions & phase structure & phase transitions
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general strategy:

treat GFTs as ordinary QFTs defined on Lie group manifold

use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration
subtleties of quantum gravity context at the level of interpretation

scales:
defined by propagator: e.g. spectrum of Laplacian on G = indexed by group representations

key difficulties:
 need to have control over “theory space” (e.g. via symmetries)

- main difficulty (at perturbative level):
controlling the combinatorics of GFT Feynman diagrams to control the structure of divergences
(more involved when gauge invariance is present)
need to adapt/redefine many QFT notions: connectedness, subgraph contraction, Wick ordering, .....
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GFT renormalization:

GFT “UV” cut-off N ~ Jmax tN
RG flow: Jmax ——-—> small J
* (perturbative) GFT renormalizability: UV fixed point as Jmax ——-> 00

from LQG
from Regge calculus

\ arguments of GFT field: ~ b; € su(2) gravity case: d=4 -

| bl ~ J=irrep of SU(2) ~ “area of triangles”

“geometric” interpretation of the RG flow?

RG flow from large areas to small areas? not quite
theory defined in non-geometric phase of “large” disconnected tetrahedra
- flow of coupling u to region of many interacting (thus, connected) “small” tetrahedra

- CAUTION in interpreting things geometrically outside continuum geometric approx

expect “physical” continuum areas A~<Jd><n>
expect proper continuum geometric interpretation (and effective metric field)
for <Jd> small, <n> large, A finite (not too small)
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Group Field Theory
renormalization
(perturbative and non-perturbative):

a survey of results



Renormalization of GFTs: a brief review

preliminary understanding:
power counting and radiative corrections in simplicial GFT models
(hard cut-off on fields, or heat-kernel regularisation of propagator, in representation space)
. 3d (non-abelian) (colored) Boulatov model (BF theory):

. partial power counting and scaling theorems
L. Freidel, R. Gurau, DO, '09; J. Magnen, K. Noui, V. Rivasseau, M. Smerlak, '09; J. Ben Geloun, J. Magnen, V. Rovasseau, ‘10 ; S. Carrozza, DO, ’11,’12

. radiative corrections of 2-point function: need for Laplacian kinetic term
J. Ben Geloun, V. Bonzom, ‘11
. super-renormalizability in abelian case (with Laplacian)
J. Ben Geloun, ‘13
. 4d gravity models
. radiative correction of 2-point function in EPRL-FK model

J. Ben Geloun, R. Gurau, V. Rivasseau, ‘10; T. Krajewski, . Magnen, V. Rivasseau, A. Tanasa, P. Vitale, '10; A. Riello, ‘13
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general strategy:

treat GFTs as ordinary QFTs defined on Lie group manifold

use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration
subtleties of quantum gravity context at the level of interpretation

scales:
defined by propagator: e.g. spectrum of Laplacian on G = indexed by group representations

key difficulties:
- need to have control over “theory space” (e.g. via symmetries)

- main difficulty (at perturbative level):
controlling the combinatorics of GFT Feynman diagrams to control the structure of divergences
(more involved when gauge invariance is present)
need to adapt/redefine many QFT notions: connectedness, subgraph contraction, Wick ordering, .....

Tmost results for “Tensorial Group Field Theories” (TGFTs)
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locality principle and soft breaking of locality:

tensor invariant interactions S(p,p) = Z tolb(p, P) 4

kinetic term = e.g. Laplacian on G

propagator

“coloring” allows control over
topology of Feynman diagrams

-Ts (key insights from tensor models)

indexed by bipartite d-colored graphs (“bubbles”)
dual to d-cells with triangulated boundary
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Tensorial GFTs (key insights from tensor models)

locality principle and soft breaking of locality:

tensor invariant interactions S(p,p) = Z tols(p, P)

beB \ /
indexed by bipartite d-colored graphs (“bubbles”) ﬁ
dual to d-cells with triangulated boundary

kinetic term = e.g. Laplacian on G

—1
d _
2 A /[dgi]lzgp(gl,gé,g?” )Sp(glag27g37 )Sp(g87g77g67 )
m' =) A
r r _ .
p Opagato 90(g87g97g10, )@(g12,g9,g10, )90(g127g77g67 )

“coloring” allows control over
topology of Feynman diagrams

require generalization of notions of “connectedness”, “contraction of high subgraphs”, “locality”, Wick ordering,

taking into account internal structure of Feynman graphs, fuII combinatorics of dual cellular complex, results from
crystallization theory (dipole moves)



TGFT renormalization

example of Feynman diagram

* building blocks: coloured bubbles, dual to d-cells with triangulated boundary

* glued along their boundary (d-1)-simplices
- parallel transports (discrete connection) associated to dashed (color O, propagator) lines

- faces of color i = connected set of (alternating) lines of color 0 and |

| | |

“contraction of internal line” ~ dipole contraction § : i_ _é
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Carrozza, DO, Rivasseau, ‘13
3

kinetic term = Laplacian on SU(2)"3
d -1 tensor invariant interactions, e.g. >
(%) ol
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necessary condition: divergent subgraphs must be “quasi-local’, i.e. tensor invariants

% ey

o flatness condition: the parallel transports must peak around 1 (up to gauge)

it requires a special property: “traciality”
G P property- y @ combinatorial condition: connected boundary graph.

true for models dominated by “melonic diagrams”



GFT perturbative renormalization

- systematic renormalisability group analysis of Tensorial Group Field Theory (TGFT) models:



GFT perturbative renormalization

- systematic renormalisability group analysis of Tensorial Group Field Theory (TGFT) models:

many results: perturbative renormalizability and renormalisation group flow

J. Ben Geloun, D. Ousmane-Samary, V. Rivasseau, S. Carrozza, DO, E. Livine, F. Vignes-Tourneret, A. Tanasa, M. Raasakka, V. Lahoche, .....



GFT perturbative renormalization

- systematic renormalisability group analysis of Tensorial Group Field Theory (TGFT) models:
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J. Ben Geloun, D. Ousmane-Samary, V. Rivasseau, S. Carrozza, DO, E. Livine, F. Vignes-Tourneret, A. Tanasa, M. Raasakka, V. Lahoche, .....

- several renormalizable abelian TGFT models (different groups and dimension, with/without gauge invariance)

J. Ben Geloun, V. Rivasseau, ’11; J. Ben Geloun, D. Ousmane-Samary, ‘11 S. Carrozza, DO, V. Rivasseau, ‘12

first renormalizable non-abelian TGFT model in 3d with gauge invariance (3d BF + laplacian)
S. Carrozza, DO, V. Rivasseau, ‘13

o first renormalizable TGFT model on homogeneous space (SU(2)/U(1))*d v, Lahoche, DO, 15

proof of asymptotic freedom for abelian TGFT models without gauge invariance

J. Ben Geloun, D. Ousmane-Samary, '11; J. Ben Geloun, ‘12

study of asymptotic freedom/safety for non-abelian TGFT models with gauge invariance
S. Carrozza, ‘14

4th order interactions: generic asymptotic freedom (strong wave function renorm.); higher orders: more subtle
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one recent direction - Functional RG approach ala Wetterich-Morris:

ZylJ] = VNl = / A~ S191- ASN g+ Tra (J:6)

IR fixed point of RG flow of GFT model
M

IR cutoff N —->0

~definitio.n of fuII.G.FT path integral 'x]e] = sup (TIQ(J o) — WN(J)) YN
~ full continuum limit J

(all dofs of spin foam model/discrete gravity) 1 5 B

more or less standard set-up

main difficulty: combinatorial structure of interactions
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Functional RG approach to GFTs - recent results:

+ Polchinski formulation based on SD equations  Krajewski, Toriumi, ‘14

 general set-up for Wetterich formulation based on effective action Benedetti, Ben Geloun, DO, '14
- RG flow and phase diagram established for:

TGFT on compact U(1)"3 with 4th order interactions Benedetti, Ben Geloun, DO, 14

TGFT on non-compact RA3 with 4th order interactions Ben Geloun, Martini, DO, ‘15

TGFT on compact U(1)"6 with 4th order interactions and gauge invariance  Benedetti, Lahoche, ‘15

TGFT on non-compact RAd with 4th order interaction and gauge invariance  Ben Geloun, Martini, DO, to appear
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interesting for effective continuum physics:
cosmology from QG




(Quantum) Cosmology from GFT condensates
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following procedures of standard BEC

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs
IS
non-linear and non-local extension of quantum cosmology equation for collective wave function

S. Gielen, ’14; G. Calcagni, '14; L. Sindoni, ’14; S. Gielen, DO, ’14; S. Gielen, ’14; S. Gielen, ’15; DO, L. Sindoni, E. Wilson-Ewing, to appear
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Thank you for your attention



