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LECTURE 01

1 Introduction

1.1 What is quantum field theory?

Quantum field theory is the modern theoretical framework to describe almost all phenomena in
fundamental physics. This includes the standard model of elementary particle physics with the
electromagnetic, the weak and the strong force and most likely, in one way or another, also dark
matter and gravitation.

There are close connections to quantum mechanics and historically quantum field theory was
developed as quantum theory for infinetly many degrees of freedom when it became clear that a
relativistic version of quantum mechanics is not consistent. In the modern understanding quantum
field theory in actually underlying non-relativistic quantum mechanics and the latter follows from
the former in a limit. There is also a non-relativistic version of quantum field theory which can
describe few-body physics of non-relativistic particles, but can also be used favorably to describe
many-body physics and condensed matter.

Another very interesting connection is between quantum field theory and statistical field theory.
Many of the concepts needed for relativistic quantum field theory can only be properly understood
from the point of view of statistical physics and moreover, the same concepts can be used to describe
stochastic theories where fluctuations are not of a quantum origin but have different reasons. This
goes even beyond physics and the natural sciences.

Relativistic quantum field theories have also an interesting intersection with group theory, the
theory of symmetries. Specifically Lie groups of various kinds play an important role to understand
the phenomena of the standard model of elementary particle physics. Also consequences of space-
time symmetries like conservation laws or the basic notion of what a particle actually is can be
mentioned here.

There is also a very interesting relation to (quantum) information theory that is currently being
explored in more detail. It is well possible that further insights into quantum field dynamics arise
here in the coming years.

1.2 What concepts are needed to understand it?

• Quantum theory

• Symmetries and Lie group theory

• Concepts from statistical physics

2 Basics of Lie groups

2.1 Symmetries and groups

Symmetry transformations

Studying symmetries and their consequences is one of the most fruitful ideas in physics. This holds
especially in high energy and particle physics but by far not only there. To get started, we first
define the notion of a symmetry transformation and relate it to the mathematical concept of a
group.

It is natural to characterize a symmetry transformation by the following properties
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• One symmetry transformation followed by another should be a symmetry transformation
itself.

• There should be a unique (trivial) symmetry transformation doing nothing.

• For each symmetry transformation there needs to be a unique symmetry transformation re-
versing it.

With these properties, the set of all symmetry transformations G forms a group in the mathematical
sense.

Properties of groups

More formally, a group G has the following properties.

(i) Closure: For all elements f, g ∈ G the composition g · f is in G. (We use here transformations
acting to the right so that g · f should be read as a transformation where we apply first f and
then g.)

(ii) Associativity: h · (g · f) = (h · g) · f .

(iii) Identity element: There exists a unique unit element 1 in the group, 1 ∈ G, such that
1 · f = f · 1 = f for all f ∈ G.

(iv) Inverse element: For all elements f ∈ G there is a unique inverse f−1 ∈ G such that f ·f−1 =

f−1 · f = 1.

These basic properties define groups of many kinds, both finite and infinite, discrete and continuous.

Representations

One distinguishes between groups as abstract entities and concrete representations. The abstract
abstract group is defined through the set of its elements and composition law. A representation
is a concrete realization of the group elements and their composition law, for example as matrices
acting on a vector space or transformations of some type.

For example, a very simple group is Z2. It has two elements, the unit element 1 and an element
R with R2 = 1. A representation of R on the space of functions f(x) of a single variable x could
be given by the parity transform f(x) = f(−x). The unit element is represented by the identity
transform f(x) = f(x), and we thus have a representation of the group Z2.

Abelian and non-abelian groups

A group is called abelian if the group product is commutative, f ·g = g ·f for all f, g ∈ G. Otherwise
the group is called non-abelian.

2.2 Examples for Lie groups

Lie groups can be defined as differentiable manifolds with a group structure. They have an infinite
number of elements. Let us start with a few examples.

• G = R, the additive group of real numbers. The group “product” is here the addition, the
inverse of an element is its negative and the neutral or unit element is zero. This is clearly an
abelian group.

• G = R∗+, the multiplicative group of positive real numbers. Also an abelian group.
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• G = GL(n,R), the general linear group of real n × n matrices g with det(g) 6= 0 (such that
they are invertible). Similarly, G = GL(n,C), the general linear group of complex n × n

matrices. These groups are non-abelian for n > 1.

• G = SL(n,R) the special linear group is a subgroup of GL(n,R) with det(g) = 1. This is a
more general notion, the S for special usually means det(g) = 1.

• G = O(n), the orthogonal group of real n × n matrices R with RTR = 1. This immediately
implies det(R) = ±1. Again this is a subgroup of GL(n,R). As a manifold, O(n) is not
connected. One component is the subgroup SO(n) with det(R) = 1, the other is a separate
submanifold where det(R) = −1. One can understand O(n) as the group of rotations and
reflections in the n-dimensional Euclidean space. The simplest non-trivial case is for n = 2

where SO(2) consists of elements of the form

R(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.

This is clearly isomorphic to the group U(1) of complex phases eiθ. SO(n) is non-abelian for
n > 2.

• G = U(n), the unitary group of complex n×n matrices U with U†U = 1. Now we immediately
infer that det(U) is a complex number with absolute value 1. U(n) is non-abelian for n > 1.

• G = SU(n), the special unitary group with unit determinant. Plays an important role in
physics, most importantly SU(2) and SU(3).

• G = O(r, n − r) the indefinite orthogonal group of n × n matrices R that leaves the metric
η = diag(−1, . . . ,−1,+1, . . . ,+1) with r entries −1 and n−r entries +1 invariant, in the sense
that RT ηR = η. An example is O(1, 3), the group of Lorentz transformations in d = 1 + 3

dimensions.

• G = Sp(2n,R) is the symplectic group of 2n×2n matrices M that leaves a symplectic bilinear
form

Ω =

(
0 +1n
−1n 0

)
(2.1)

invariant in the sense that MTΩM = Ω. Here 1n is the n dimensional unit matrix and
similarly 0. This is obviously a subgroup of GL(2n,R). There is also a complex version
Sp(2n,C).

Lie groups have very nice features and a rich mathematical structure because they are both,
groups and manifolds. We will now first introduce Lie groups and Lie algebras from an algebraic
point of view, and subsequently also briefly introduce a differential-geometric characterization.

LECTURE 02

2.3 Algebraic approach to Lie groups and Lie algebras

Lie algebra and generators

Because a Lie group is also a manifold, group elements can be labeled by a (usually multi-
dimensional) parameter or coordinate ξ = (ξ1, . . . , ξm), i.e. we can write them as g(ξ). Without
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loss of generality we can assume that ξ = 0 corresponds to the unit element, g(0) = 1. Let us now
consider infinitesimal transformations. We can write them as

g(dξ) = 1+ idξjTj + . . . , (2.2)

where we use Einsteins summation convention implying a sum over the index j, and the ellipses
stand for terms of quadratic and higher order in the infinitesimal dξ. Note that we can write

iTj =
∂

∂ξj
g(ξ)

∣∣∣
ξ=0

. (2.3)

Formally, the objects iTj constitute a basis of the tangent space of the Lie group manifold at the
position of the unit element g(ξ) = 1, which is at ξ = 0. The factor i is conventional and used by
physicists, while mathematicians usually work in a convention without it. The Tj are also known
as the generators of the Lie algebra, to which we turn in a moment. The generators constitute a
basis such that any element of the Lie algebra can be written as a linear superposition vjTj .

Exponetial map

A very important idea is now that one can compose finite group elements, at least in some region
around the unit element, out of very many infinitesimal transformations. In other words one writes

g(ξ) = lim
N→∞

(
1+

iξjTj
N

)N
= exp

(
iξjTj

)
. (2.4)

One recognizes here that the limit in (2.4) would give the exponential if Tj were just numbers, and
one can essentially use this limit to define also the exponential of Lie algebra elements. Alternatively,
the exponential may also be evaluated as the usual power series

exp
(
iξjTj

)
= 1+ iξjTj +

1

2

(
iξjTj

)2
+

1

3!

(
iξjTj

)3
+ . . .

Note that for α, β ∈ R one can combine

exp
(
iαξjTj

)
exp

(
iβξjTj

)
= exp

(
i(α+ β)ξjTj

)
. (2.5)

Such transformations (for fixed ξ) form a one-parameter subgroup.

Combining transformations

It is more difficult to combine transformations exp
(
iξjTj

)
and exp

(
iζjTj

)
when ξ is not parallel to ζ.

The reason is that ξjTj and ζjTj can not be assumed to commute. To combine two transformations,
one needs to use the Baker-Campbell-Hausdorff formula

exp(X) exp(Y ) = exp(Z(X,Y )), (2.6)

with
Z(X,Y ) = X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + . . . (2.7)

This shows that it is crucial to know how to calculate commutators between the Lie algebra elements.

Commutator and structure constants

For transformations close to the identity element we can write using (2.6) and (2.7)

exp
(
iξjTj

)
exp

(
iζjTj

)
= exp

(
iωjTj

)
, (2.8)
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with
ωl = ξl + ζl − 1

2
ξjζkf l

jk + . . . ,

where the ellipses stand now for terms of quadratic and higher order in ξ and ζ. We are using here
the structure constants f l

jk of the Lie algebra defined through the commutator

[Tj , Tk] = i f l
jk Tl. (2.9)

The structure constants are obviously anti-symmetric,

f l
jk = −f l

kj .

Equation (2.9) tells that the commutator of two generators can itself be expressed as a linear
combination of generators. Together with eqs. (2.6) and (2.7) this makes sure that the group
elements (2.4) can be multiplied and indeed form a group. In other words, if eq. (2.9) holds, we
can multiply group elements as in eq. (2.8) to yield another term of the same structure such that
they form a group. On the other side, one could also start from the group multiplication law and
demand that the left hand side of (2.8) can be written as on the right hand side. At order ∼ ξζ

this implies then a relation of the form (2.9).

Generators and stucture constants for unitary groups

For unitary Lie groups where g† = (1 − idξjT †j ) = g−1 = (1 − idξjTj) the generators must be
hermitian,

Tj = T †j .

Also, in that case the structure constants are real,

f l
jk = f∗ ljk .

This follows from
−if∗ ljk Tl = [Tj , Tk]

† = [Tk, Tj ] = if l
kj Tl = −if

l
jk Tl.

Lie algebra

The definition (2.9) also makes sure that linear combinations of generators, which obviously form
a vector space, constitute a Lie algebra. To that end, the Lie bracket [·, ·] must have the properties

(i) Bilinearity: [λA+ µB,C] = λ[A,C] + µ[B,C],

(ii) Antisymmetry: [A,B] = −[B,A],

(iii) Jacobi identity: [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

From the Jacobi identity for the generators

[Tj , [Tk, Tl]] + [Tk, [Tl, Tj ]] + [Tl, [Tj , Tk]] = 0, (2.10)

one infers for the structure constants

f m
jn f n

kl + f m
kn f n

lj + f m
ln f n

jk = 0. (2.11)

Representations

The commutation relation (2.9), expressed also in terms of the structure constants, define a Lie
algebra, similar as the multiplication rules do for a group. One distinguishes between a particular
Lie algebra as an abstract entity and a concrete incarnation or representation of it.
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Fundamental representation
A first example is the fundamental representation

(T
(F )
j )mn = (tj)

m
n. (2.12)

For SU(N), the generators in the fundamental representation tj are hermitian and traceless N ×N
matrices. This is a real vector space of dimension N2 − 1.

For SU(2) we can write tj = σj/2 with the three Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

For SU(3) one takes tj = λj/2 with the eight Gell-Mann matrices

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 ,

λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 ,

λ6 =

0 0 0

0 0 1

0 1 0

 , λ7 =

0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 .

The restriction to the purely imaginary matrices λ2, λ5 and λ7 generates the Lie algebra of the
orthogonal group SO(3) in its fundamental representation.

Adjoint representation
From the Jacobi identity (2.11), one can see that the structure constants can actually be used to
construct another representation, the so-called adjoint representation. Here one sets the matrices
to

(T
(A)
j )ml = if m

jl . (2.13)
Indeed one has for the commutator of two generators

[T
(A)
j , T

(A)
k ]ml = −f

m
jn f n

kl + f m
kn f n

jl = −f n
jk f m

nl = if n
jk (T (A)

n )ml.

The dimension of the adjoint representation equals the number of generators of the Lie algebra.
For example, the Lie algebra of SU(3) has 8 generators and accordingly the adjoint representation
is given by 8× 8 matrices.

The fundamental and the adjoint representation are the most important representations. The
adjoint representation always exists and can be used to classify Lie algebras.

However, there are many more representations of Lie algebras and they all induce corresponding
representations of the Lie group through the exponential map (2.4).

2.4 Differential geometric approach to Lie groups and Lie algebras

Left translation
Now that we understand already some of the properties of Lie groups and Lie algebras, let us discuss
them also from a geometric point of view. It is interesting to consider the group multiplication as
a map on the group manifold,

Lh : G→ G, Lh(g) = hg. (2.14)

This is the so-called left translation.
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Tangent space at unit element

Recall that in (2.3) we have introduced the generators Tj as a basis for the tangent space of the
group manifold G at the identity g = 1 or ξ = 0. More formally, one can construct the tangent space
of a manifold as a basis for vectors, which are in turn defined through curves. For this construction
we first consider a curve in the group manifold parametrized by some parameter α ∈ R and we
assume that it goes through the unit element g(α0) = 1. We can write the curve as g(α), or in
terms of coordinates ξ on the group manifold as ξ(α) such that g(α) = g(ξ(α)) and ξ(α0) = 0. Now
consider the derivative

d

dα
g(α)

∣∣∣
α=α0

=
∂

∂ξj
g(ξ)

∣∣∣
ξ=0

dξj

dα
= iTj

dξj

dα
.

This is now an element of the tangent space T1(G) of the group manifold at the point where
g(ξ) = 1. Any element of this vector space can be written as a linear combination of the basis
elements

iTj =
∂

∂ξj
g(ξ)

∣∣∣
ξ=0

.

Induced basis for tangent spaces at other points

Interestingly, this basis for T1(G) can be extended to a basis for the tangent spaces at other positions
of the group manifold. To that end we can use the left translation (2.14). Specifically, from the
curve g(α) we can construct another curve through the left translation (2.14)

g̃(α) = Lh(g(α)) = hg(α).

The derivative at the point α0 is now

d

dα
g̃(α)

∣∣∣
α=α0

=
∂

∂ξj
hg(ξ)

∣∣∣
ξ=0

dξ

dα
.

One observes that a basis for the tangent space Th(G) is given by

iTj(h) =
∂

∂ξj
hg(ξ)

∣∣∣
ξ=0

= h
∂

∂ξj
g(ξ)

∣∣∣
ξ=0

= i hTj . (2.15)

In this way we can actually get a basis for the tangent spaces everywhere in the entire group
manifold. It is quite non-trivial that the tangent spaces can be parametrized by a single set of basis
functions iTj(h). One says that the manifold G is parallelizable.

Vector fields on group manifolds

Formally, the map (2.15) between the tangent spaces T1(G) and Th(G) is an example for a push-
forward, induced by the map (2.14) on the manifold itself. One also writes this as

Tj(h) = Lh∗Tj(1) = Lh∗Tj .

One may now construct vector fields on the entire manifold as linear combinations,

V (h) = vj(h)Tj(h). (2.16)

Left-invariant vector fields

Such a vector field is called left invariant if

Lg∗V (h) = V (gh).

Because the basis Tj(h) is left-invariant by construction, the vector field (2.16) is left-invariant when
the coefficients vj(h) are independent of the position on the manifold, i. e. independent of h.
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In summary, we may say that the generators of the Lie algebra Tj induce actually a left-invariant
basis for vector fields on the entire group manifolds. One may even understand the Lie algebra itself
as an algebra of left-invariant vector fields. The Lie bracket is then introduced as the Lie derivative
of vector fields.

2.5 Examples for matrix Lie algebras

Let us end this section with a few examples for Lie algebras corresponding to matrix Lie groups
introduced previously.

• su(n) is the Lie algebra corresponding to the group SU(n). We write the group elements
as U = exp(it). From U†U = 1 one infers t† = t. Writing this in components, the real
part is symmetric, Re(tnm) = Re(tmn), and the imaginary part is anti-symmetric, Im(tnm) =

−Im(tmn). Moreover, we have the condition det(U) = 1. The latter can be rewritten as

det(U) = exp(ln(det(U))) = exp(Tr{ln(U)}) = exp(iTr{t}) = 1, (2.17)

so that we need Tr{t} = 0. These arguments show that the Lie algebra su(n) as a real vector
space has n2 − 1 linearly independent generators Tj .

• so(n) is the Lie algebra corresponding to the group SO(n). Here we write the group elements
as R = exp(it) and they are real matrices such that RTR = 1. For the Lie algebra elements
we have again t = t†. In order for an infinitesimal transformation R = 1 + it to be real,
the components tmn must be imaginary, and therefore also anti-symmetric. The condition
Tr{t} = 0 is then automatically fulfilled. These arguments show that the Lie algebra so(n)

has n(n− 1)/2 linearly independent generators Tj .

• sp(2n) is the Lie algebra corresponding to the group Sp(2n). The group elements R = exp(it)

are real matrices that satisfy RTΩR = Ω with Ω = −ΩT given in (2.1). For an infinitesimal
transformation R = 1+ it one finds the condition

Ωt+ tTΩ = Ωt− tTΩT = Ωt− (Ωt)T = 0. (2.18)

In other words, Ωt must be symmetric. These arguments show that the Lie algebra sp(2n)

has n(2n+ 1) linearly independent generators Tj .

LECTURE 03

3 Classical field theory

3.1 Relativistic scalar field theory

Classical action

Let us consider the classical action for a real scalar field

S[φ] =

∫
dt

∫
d3xL (φ, ∂µφ) =

∫
dt

∫
d3x

{
1

2
φ̇2 − 1

2
(∇φ)2 − 1

2
m2φ2 − λ

4!
φ4
}

=

∫
dt

∫
d3x

{
−1

2
gµν∂µφ∂νφ−

1

2
m2φ2 − λ

4!
φ4
} (3.1)
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We have suppressed here the argument, but the field φ is to be understood as a (real) function of
time and space

φ = φ(x) = φ(t,x).

The integrand L is known as the Lagrange density. We represent time derivatives by dots, i. e.

φ̇ =
∂

∂t
φ(t,x),

and the spatial gradient by ∇φ(t,x). In the following we use the abbreviation∫
x

=

∫
d4x =

∫
dt

∫
d3x.

It is sometimes convenient to restrict the integrals to some intervals in time, for example ti ≤ t ≤ tf,
and the spatial integral could be restricted to some volume V . In that case one must specify what
boundary conditions the field φ(t,x) is supposed to satisfy on the boundary ∂V . Some common
choices are Dirichlet boundary conditions, where the field is fixed to some value on the boundary,
or Neumann boundary conditions, where the normal derivative of the field is fixed, or periodic
boundary conditions.

The square brackets in S[Φ] indicate that the action depends on the fields in a functional way,
which means it depends not on single numbers but on the entire set of functions of space φ(t,x),
with (t,x) ∈ Rd where we usually take d = 1 + 3. We also use the Minkowski metric with mainly
plus signature, gµν = diag(−1,+1,+1,+1).

Blackboard video

Fields as vectors

One can consider φ(t,x) as a vector in a (real) vector space of infinite dimension where compo-
nents are labeled by time t and the spatial position x. In particular, linear superpositions of field
configurations φ(t,x) = λ1φ1(t,x)+λ2φ2(t,x) are again field configurations. It is sometimes useful
to think about a field theory as limit of a discrete lattice model where the positions x and times t
are restricted to discrete points on some lattice. When space and time are furthermore constrained
to a finite region of spacetime, the number of spacetime positions (t,x) becomes finite. A field
configuration is then specified by a set of real numbers, one per spacetime lattice site. This would
be a finite set of numbers in the lattice scheme but it becomes infinitely large in the continuum and
infinite volume limits.

Functional spaces

How regular should one assume field configurations φ(t,x) to be? It is tempting to assume that
they should be continuous and at least differentiable once so that the action in eq. (3.1) is well
defined. Assumptions of this kind are sometimes justified in classical physics, but in the statistical
and quantum field theoretic formalism we discuss below one also needs to work with very irregular
field configurations that are not even continuous.

3.2 Variational principle and equations of motion

Variation of the action

One can obtain the classical equation of motion by the principle of stationary action

δS = 0.
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For the action in (3.1) this yields

δS =

∫
x

{
φ̇(x) δφ̇(x)−∇φ(x) δ∇φ(x)−m2φ(x) δφ(x)− λ

3!
φ(x)3 δφ(x)

}
=

∫
x

{
−gµν∂µφ(x) δ∂νφ(x)−m2φ(x) δφ(x)− λ

3!
φ(x)3 δφ(x)

}
.

Note that on the right hand side the variation of the field δφ(x) occurs, but also the variation of
the derivatives δ∂µφ(x).

Partial integration
To deal with the time derivative of the variation δφ̇(x) we integrate by parts,∫ tf

ti

dt

∫
V

d3x
{
φ̇(x) δφ̇(x)

}
=

∫
V

d3x
{
φ̇(tf,x) δφ(tf,x)− φ̇(ti,x) δφ(ti,x)

}
−
∫ tf

ti

dt

∫
V

d3x
{
φ̈(x) δφ(x)

}
The first term on the right hand side is a boundary term at the final time tf and initial time ti.
Similarly one can deal with the spatial gradient term,∫ tf

ti

dt

∫
V

d3x {−∇φ(x) δ∇φ(x)} =−
∫ tf

ti

dt

∫
∂V

d2xn {∇φ(x) δφ(x)}

+

∫ tf

ti

dt

∫
V

d3x {∇ ·∇φ(x) δφ(x)} .

The first term on the right hand side is a surface integral with outward-pointing normal vector n

on the boundary ∂V .

Fixed boundary conditions
We consider now fully fixed or constrained field configurations on the boundaries of the spacetime
volume at ti, tf and the spatial boundary ∂V . This means that the variation δφ(x) is supposed to
vanish there, δφ(x) = 0. For example we could demand at initial and final time

φ(ti,x) = φi(x), φ(tf,x) = φf(x), (3.2)

and take the spatial volume V to be all of R3 so that there is actually no spatial boundary.
Combining terms yields then

δS =

∫
x

{
−φ̈(x) +∇2φ(x)−m2φ(x)− λ

3!
φ(x)3

}
δφ(x).

For this to vanish for arbitrary variation δφ(x) inside the spacetime volume we need

−φ̈(x) +∇2φ(x)−m2φ(x)− λ

3!
φ(x)3 = 0, (3.3)

which is the classical equation of motion. Together with the boundary conditions (3.2) the classical
field φ(t,x) is actually fully fixed through this differential equation. Indeed, this equation of motion
is a quasi-linear hyperbolic partial differential equation of second order. A solution is determined
by initial data in the form of a configuration of the field φ(ti,x) = φi(x) and its first time derivative,
on some Cauchy hypersurface like t = ti, or alternatively by field configurations at initial and final
time as in eq. (3.2).

Blackboard video
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3.3 Maxwell theory

Gauge field and field strength tensor

Another example for a classical field theory is Maxwell theory. The field is here the four-vector
potential, or gauge fieldAµ(x) = (−Φ(x),A(x)). We work in unites where c = 1 and with Minkowski
space metric ηµν = diag(−1,+1,+1,+1). The electric and magnetic fields are given by

E(x) = − ∂

∂t
A(x)−∇Φ(x), B(x) = ∇×A(x),

and can be combined into the field strength tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x) =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (3.4)

Note that this immediately implies the homogeneous Maxwell equations,

εµνρσ∂νFρσ(x) = εµνρσ∂ν [∂ρAσ(x)− ∂σAρ(x)] = 0,

following from the fact that ∂ν∂ρAσ(x) = ∂ρ∂µAσ(x). Here we are using the completely antisym-
metric Levi-Civita symbol εµνρσ in d = 1 + 3 dimensions.

One can also write the homogeneous Maxwell equations in the familiar form ∇ · B = 0 and
∂tB+∇×E = 0.

Gauge invariance

We note immediately that the field strength tensor is antisymmetric, Fµν = −Fνµ. It is invariant
under gauge transformations

Aµ(x)→ Aµ(x) + ∂µα(x), (3.5)

where α(x) is an arbitrary scalar function with ∂µ∂να(x) = ∂ν∂µα(x). This also implies that
Aµ(x) is not fully fixed by the measurable electric and magnetic fields, but only up to gauge
transformations.

Action

The action for classical Maxwell theory in in the presence of some electromagnetic current Jµ(x) =
(ρ(x),J(x)) given by

S[Aµ] =

∫
ddx

{
−1

4
Fµν(x)Fµν(x)− Jµ(x)Aµ(x)

}
=

∫
ddx

{
−1

2
∂µAν(x)∂µAν(x) +

1

2
∂µAν(x)∂νAµ(x)− Jµ(x)Aµ(x)

}
.

Note that this is invariant under gauge transformations (3.5), up to a boundary term, when the
current is conserved, ∂µJµ(x) = 0. For the first term this is clear because the field strength tensor
is invariant, and for the second term it follows through partial integration.

One can expand the action (3.3) in the form

S =

∫
ddx

{
1

2
∂kA0∂kA0 − ∂0Ak∂kA0 +

1

2
∂0Ak∂0Ak −

1

2
∂jAk∂jAk +

1

2
∂jAk∂kAj − J0A0 − JkAk

}
,

where Latin indices j, k = 1, 2, 3 run over spatial components.
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Variation

To vary the action we need the variation of the field strength tensor, expressed in terms of the
variation of the gauge field,

δFµν(x) = ∂µδAν(x)− ∂νδAµ(x).

Performing then partial integrations and using the anti-symmetry property of Fµν yields

δS =

∫
ddx

{
−1

2
Fµν(x)δFµν(x)− Jµ(x)δAµ(x)

}
=

∫
ddx {[∂µFµν(x)− Jν(x)] δAν(x)} .

Accordingly, the principle of stationary action implies the inhomogeneous Maxwell equations

∂µF
µν(x) = Jν(x).

One can also write these in the familiar form ∇ ·E = ρ and −∂tE+∇×B = J.

3.4 Gross-Pitaevskii theory

Action

We also discuss an example for a non-relativistic classical field theory. It describes a Bose-Einstein
condensate of bosons with repulsive contact interaction. The action is

S[φ] =

∫
dt

∫
d3x

{
i~
2
[φ∗∂tφ− φ∂tφ∗]−

~2

2m
∇φ∗∇φ− V φ∗φ− λ

2
(φ∗φ)2

}
. (3.6)

The field φ(t,x) is here complex. We have included an external potential V (t,x) which could be an
optical trap, for example, and λ ≥ 0 is the interaction parameter. Note that despite the presence
of the imaginary unit i the action is real. This becomes more explicit when it is rewritten in terms
of real fields ϕ1 and ϕ2 defined through φ = [ϕ1 + iϕ2]/

√
2.

Variation and equation of motion

For a complex field one can either consider the real and imaginary part as independent fields,
and vary with respect to them, or one can vary with respect to φ and φ∗. In the latter case one
obtains two complex conjugate equations of motion, so it is enough to do one of these variations.
Specifically, variation with respect to φ∗ yields, up to boundary terms,

δS =

∫
dt

∫
d3x

{[
i~∂tφ+

~2

2m
∇2φ− V φ− λφ∗φφ

]
δφ∗
}
.

The corresponding equation of motion is a kind of non-linear Schrödinger equation, the Gross-
Pitaevskii equation

i~∂tφ(t,x) = −
~2

2m
∇2φ(t,x) + V (t,x)φ(t,x) + λφ∗(t,x)φ(t,x)φ(t,x). (3.7)

Because this is a differential equation of first order in time, initial conditions can be posed in the
form φ(ti,x) = φi(x). As a complex equation this fixes both the real and imaginary part ϕ1(ti,x)

and ϕ2(ti,x), so the number of initial conditions is the same as for the relativistic real scalar field.
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3.5 Hamiltonian formalism

Conjugate momentum field

As familiar from classical mechanics, one may also introduce a Hamiltonian description which is
connected to the Lagrangian description through a Legendre transform. As a first step in that
direction one defines a conjugate momentum field. One starts here from the Lagrange function at
some given time t,

L[Φ(t), Φ̇(t)] =

∫
d3xL (Φ(t,x), ∂µΦ(t,x)).

For a field theory, the Lagrange function is a functional of the field Φ(t,x) at fixed time t, with
spatial position x treated similar to an index in mechanics. In other words, we can see the field
theory as a mechanical system in the continuum limit with one degree of freedom per spatial position
x. The difference is that x is being integrated over instead of the sum over different mechanical
degrees of freedom familiar from mechanics.

The field Φ(t,x) has a canonical conjugate momentum field Π(t,x), which is defined through

Π(t,x) =
∂L (Φ(t,x), ∂µΦ(t,x))

∂Φ̇(t,x)
.

Examples

Let us consider the actions we have introduced already.

• For the real relativistic scalar field with action as in (3.1) one finds the momentum field
conjugate to the real scalar field φ(t,x) to be

π(t,x) = φ̇(t,x).

• For the Maxwell theory with action as in (3.3) one finds the momentum field conjugate to
Ak(t,x) to be minus the electric field,

πk(t,x) =
∂L

∂Ȧk(t,x)
= ∂0Ak(t,x)− ∂kA0(t,x) = F0k(t,x) = −Ek(t,x).

In contrast, the field A0(t,x) has a vanishing conjugate momentum field,

π0(t,x) =
∂L

∂Ȧ0(t,x)
= 0.

• Finally, for the Gross-Pitaevskii theory with action as in (3.6) one finds the momentum field
conjugate to the complex scalar field φ(t,x) to be

πφ(t,x) =
∂L

∂φ̇(t,x)
=
i~
2
φ∗(t,x),

while the conjugate momentum field to the complex conjugate field φ∗(t,x) is

πφ∗(t,x) =
∂L

∂φ̇∗(t,x)
=
−i~
2
φ(t,x).
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Hamiltonian as Legendre transform

The Hamiltonian (at some time t) is now given by the functional Legendre transform

H[Φ(t),Π(t)] =

∫
d3xH (Φ(t,x),∇Φ(t,x),Π(t,x))

=

∫
d3x sup

Φ̇(t,x)

{
Π(t,x)Φ̇(t,x)−L (Φ(t,x), ∂µΦ(t,x))

}
.

It is to be understood as a functional of Φ(t,x) and Π(t,x) at fixed time t but with x playing the
role of an index. Through the Legendre transform the time derivative of the field Φ̇(t,x) is replaced
by the conjugate momentum field Π(t,x).

Blackboard video

Examples

For the three theories introduced above we find

• For the real relativistic scalar field with action as in (3.1) the Hamiltonian is

H =

∫
d3x

{
1

2
π(t,x)2 +

1

2
(∇φ(t,x))2 + V (φ(t,x))

}
, (3.8)

where we have introduced the potential

V (φ) =
1

2
m2φ2 +

λ

4!
φ4.

Blackboard video

• For the Gross-Pitaevskii theory with action as in (3.6) one finds the Hamiltonian to be

H =

∫
d3x

{
~2

2m
∇φ∗(t,x) ·∇φ(t,x) + V (t,x)φ∗(t,x)φ(t,x) +

λ

2
φ∗(t,x)2φ(t,x)2

}
. (3.9)

Note that in both theories the Hamiltonian density H is bounded from below for λ > 0. For the
Maxwell theory the Hamiltonian description is more involved, essentially because A0 has vanishing
conjugate momentum field. We will not discuss this here.

Functional differentiation

In the following we need the notion of a functional derivative. For a functional I[φ] with variation

δI[φ] =

∫
ddx {f(x)δφ(x)} ,

one defines
δI[φ]

δφ(x)
= f(x).
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More generally, when the variation is of the form

δI[φ] =

∫
ddx

{
f(x)δφ(x) + gj(x)

∂

∂xj
δφ(x) + hjk(x)

∂2

∂xj∂xk
δφ(x) + . . .

}
one needs to first perform partial integrations. Usually the series on the right hand side terminates
after one, two or three terms.When δφ(x) is assumed to vanish on the boundaries one can drop the
boundary terms arising from the partial integration. This yields

δI[φ] =

∫
ddx

{[
f(x)− ∂

∂xj
gj(x) +

∂2

∂xj∂xk
hjk(x)− . . .

]
δφ(x)

}
,

and the functional derivative is thus

δI[φ]

δφ(x)
= f(x)− ∂

∂xj
gj(x) +

∂2

∂xj∂xk
hjk(x)− . . . .

As an example consider the functional I[φ] = φ(y). One can write this as

I[φ] =

∫
ddxδ(d)(x− y)φ(x),

and thus the functional derivative is here

δI[φ]

δφ(x)
=
δφ(y)

δφ(x)
= δ(d)(x− y).

The definition of the functional derivative depends slightly on the context, in particular it is some-
times used for integrals over space and sometimes for integrals over space and time. With a bit of
care it gets clear from the context what is the right definition in a given context.

Poisson brackets

In classical mechanics one introduces Poisson brackets to describe time evolution or symmetry
transformations in the Hamiltonian formalism. This can also be done in a classical field theory. The
Poisson bracket between two functionals A[Φ(t),Π(t)] and B[Φ(t),Π(t)] of the fields and conjugate
momenta at some given fixed time t is defined as

{A,B} =
∫
d3x

{
δA

δΦ(t,x)

δB

δΠ(t,x)
− δA

δΠ(t,x)

δB

δΦ(t,x)

}
.

The functional derivatives are here defined for three-dimensional integrals over space.
In particular, by taking the Poisson bracket with the Hamiltonian, one can obtain the time

derivative of a functional A[Φ(t),Π(t)] without explicit time dependence, along the solution to the
equation of motion,

d

dt
A[Φ(t),Π(t)] = {A,H}. (3.10)

For a functional A[Φ(t),Π(t)] with explicit time dependence one has to add the partial time deriva-
tive of A to the right hand side.

Relativistic scalar theory as example

For the real relativistic scalar field theory the Hamiltonian is given in eq. (3.8). To calculate the
Poisson brackets we need the functional derivatives

δH[π(t), φ(t)]

δπ(t,x)
= π(t,x),
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and
δH[π(t), φ(t)]

δφ(t,x)
= −∇2φ(t,x) +m2φ(t,x) +

λ

3!
φ(t,x)3.

As a first example let us take A[π(t), φ(t)] = φ(t,y). Here we find δA/δφ(t,x) = δ(3)(x − y)

and δA/δπ(t,x) = 0 such that eq. (3.10) gives

d

dt
A[φ(t), π(t)] = φ̇(t,y) = π(t,x). (3.11)

This is consistent with the definition of the conjugate momentum field for this theory.
Similarly, for the choice A[φ(t), π(t)] = π(t,y) we have δA/δφ(t,x) = 0 and δA/δπ(t,x) =

δ(3)(x− y) such that eq. (3.10) gives

d

dt
A[φ(t), π(t)] = π̇(t,y) = ∇2φ(t,y)−m2φ(t,y)− λ

3!
φ(t,y)3.

This is the equation of motion previously obtained from variation of the action.

Fundamental Poisson brackets
Based on the definitions one may easily check the fundamental Poisson brackets

{φ(t,x), φ(t,y)} = {π(t,x), π(t,y)} = 0, {φ(t,x), π(t,y)} = δ(3)(x− y).

These can be taken as a starting point for “canonical quantization”, which is a heuristic transition
from a classical field theory to a quantum field theory.

Blackboard video

LECTURE 04

3.6 Noether’s theorems

There is a fundamental relation between symmetries and conservation laws, first formulated by
Emmy Noether (1882 – 1935). We discuss this here in the context of classical field theory.

Global symmetries
Consider again the action for a classical field theory, which we write in the form

S[Φ] =

∫
Ω

d4xL (Φ(x), ∂µΦ(x)).

Here Ω denotes some region in spacetime, for example bounded by an initial time ti and final time
tf. We now study continuous transformations of the fields parametrized by some real number ξ
such that ξ = 0 is the identity transformation. It is enough to study infinitesimal transformations
out of which we can build also finite transformations. We write them as

Φ(x)→ Φ(x) + δξΦ(x).

We assume that the action is invariant up to a total derivative or boundary term,

S[Φ]→ S[Φ] + δS[Φ] = S[Φ] +

∫
Ω

d4x {∂µΛµ(x)} = S[Φ] +

∫
∂Ω

dΣµΛ
µ(x).

In such a situation we speak of a continuous global symmetry of the action.
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Local conservation law

Noether’s first theorem states that for every continuous global symmetry of the action there exists
a conserved current. So see this we consider the change in the action, written in the form

δS[Φ] =

∫
Ω

d4x

{
∂L

∂Φ(x)
δξΦ(x) +

∂L

∂(∂µΦ(x))
∂µδξΦ(x)

}
=

∫
Ω

d4x

{[
∂L

∂Φ(x)
− ∂µ

∂L

∂(∂µΦ(x))

]
δξΦ(x) + ∂µ

[
∂L

∂(∂µΦ(x))
δξΦ(x)

]}
=

∫
Ω

d4x∂µ {Λµ(x)} .

We now use the equations of motion,

δS

δΦ(x)
=

∂L

∂Φ(x)
− ∂µ

∂L

∂(∂µΦ(x))
= 0,

and obtain the local conservation law

∂µ

[
∂L

∂(∂µΦ(x))
δξΦ(x)− Λµ(x)

]
= 0.

Global U(1) symmetry

As a first example we consider a global U(1) transformation for the complex scalar field,

φ(x)→ eiαφ(x), φ∗(x)→ e−iαφ∗(x).

In infinitesimal form this reads

δαφ(x) = iαφ(x), δαφ
∗(x) = −iαφ∗(x). (3.12)

The Gross-Pitaevskii action (3.6) is invariant under this transformation with Λµ(x) = 0. We find
here

∂L

∂(∂0φ)
=
i~
2
φ∗,

∂L

∂(∂0φ∗)
= − i~

2
φ,

and
∂L

∂(∂jφ)
= −~2

m
∂jφ
∗,

∂L

∂(∂jφ∗)
= −~2

m
∂jφ.

Noethers theorem implies the conservation law

∂0 [−α~φ∗(x)φ(x)] + ∂j

[
iα

~2

m
φ∗∂jφ− iα

~2

m
φ∂jφ

∗
]
= 0,

or equivalently ∂µNµ(x) = 0 with the current composed out of the particle number density

N0(t,x) = φ∗(t,x)φ(t,x)

and the particle number current

N(t,x) = − i~
m

[φ∗(t,x)∇φ(t,x)− φ(t,x)∇φ∗(t,x)] .

These expressions agree formally with the probability density and probability current in single-
particle quantum mechanics, but have gained a different significance in the context of the classical
Gross-Pitaevskii field theory.
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Translations
Another interesting symmetry transformation is given by translations in spacetime, xµ → xµ + aµ.
This should actually be seen as a set of four linearly independent transformations for the choices
µ = 0, 1, 2, 3, which we discuss here together. Fields change according to

Φ(x)→ Φ(x− a),

such that for example a maximum at a position xµ0 before the transformation is moved to xµ0 + aµ

after the transformation. When the transformation is infinitesimal we can write

Φ(x)→ Φ(x) + δaΦ(x) = Φ(x)− aµ∂µΦ(x).

The Lagrangian density transforms itself like a scalar field, L (x)→ L (x)− aµ∂µL (x).

Energy-momentum conservation law
Accordingly we find a symmetry of the action with Λµ(x) = −aµL (x), and the local conservation
law is according to Noethers first theorem

∂µ

[
∂L

∂∂µΦ
aν∂νΦ− aµL

]
= 0.

Because aµ is arbitrary we obtain the conservation law for the canonical energy-momentum tensor,

∂µT
µν(x) = 0,

with
T µν(x) = − ∂L

∂∂µΦ(x)
gνρ∂ρΦ(x) + gµνL (x).

Energy-momentum tensor for real relativistic scalar field
As an example we consider the real relativistic scalar field theory with action in eq. (3.1). The
energy-momentum tensor is given by

T µν(x) = gµρgνσ∂ρφ(x)∂σφ(x) + gµν
[
−1

2
gρσ∂ρφ(x)∂σφ(x)− V (φ(x))

]
.

The zero-zero component is again the Hamiltonian density already derived by different means in
equation (3.8).

LECTURE 05

3.7 Scalar field theory in general coordinates

Action for complex scalar field in general coordinates and with external gauge field
There exists are more elegant formulation of symmetries and the associated conservation laws wich
is the subject of Noethers second theorem. The idea it to promote the global symmetry to a local
transformation, i. e. one that depends on spacetime coordinates. Consider the following action for
a complex relativistic scalar field

S[φ] =

∫
d4x
√
g(x) {−gµν(x) [∂µφ∗(x) + iAµ(x)φ

∗(x)] [∂νφ(x)− iAµ(x)φ(x)]− V (φ∗(x)φ(x))} ,

(3.13)
with

√
g(x) =

√
−det(gµν(x)). We have written the theory in general (not necessarily Cartesian)

coordinates which leads to the appearance of the spacetime-dependent metric gµν(x) with inverse
gµν(x). We have also introduced an external gauge field Aµ(x) and replaced partial derivatives
∂µφ(x) by covariant derivatives ∂µφ(x)− iAµ(x)φ(x).
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Local U(1) symmetry

Due to the presence of the gauge field Aµ(x) we can now consider local U(1) transformations of the
form

φ(x)→ eiα(x)φ(x), φ∗(x)→ e−iα(x)φ∗(x), Aµ(x)→ Aµ(x) + ∂µα(x). (3.14)

This leaves the action (3.13) invariant. This is immediately clear for the potential term V (φ∗φ)

when it is taken to depend only on the U(1) invariant combination φ∗φ. For the derivative terms
we have

∂µφ(x)→ ∂µ

[
eiα(x)φ(x)

]
= eiα(x)∂µφ(x) + eiα(x)φ(x)i∂µα(x).

However, the inhomogeneous term on the right-hand side gets canceled by the transformation of
the gauge field term in covariant derivatives.

Conservation law from gauge invariance

Noether’s second theorem is concerned with the conservation laws that arise from local symmetries.
Let us consider the local U(1) symmetry in eq. (3.14) in the infinitesimal form δαφ(x) = iα(x)φ(x),
δαφ

∗(x) = −iα(x)φ∗(x) and δAµ(x) = ∂µα(x). The change in the action can be written in the form

δS =

∫
d4x

{
iα

δS

δφ(x)
φ(x)− iα δS

δφ∗(x)
φ∗(x) +

δS

δAµ(x)
∂µα(x)

}
= 0.

By the principle of stationary action the functional derivatives with respect to the fields φ(x) and
φ∗(x) vanish. For the third term we define the current Jµ(x) through

δS

δAµ(x)
=
√
g(x)Jµ(x). (3.15)

Using partial integration we obtain from local U(1) gauge invariance the conservation law

1√
g(x)

∂µ

[√
g(x)Jµ(x)

]
= 0. (3.16)

This can be seen as electromagnetic current conservation. To make things concrete we give the
corresponding expression for the action in eq. (3.13), as obtained by variation of Aµ(x),

Jµ(x) = −igµν(x) [φ∗(x)∂νφ(x)− φ(x)∂νφ∗(x)] .

General coordinate invariance

The action in eq. (3.13) is also invariant under invertible general coordinate transformations, xµ →
x′µ(x). The scalar fields transform like

φ(x)→ φ′(x′) = φ(x(x′)),

which implies for its derivatives

∂

∂xµ
φ(x)→ ∂

∂x′µ
φ′(x′) =

∂xν

∂x′µ
∂

∂xν
φ(x(x′)).

A similar transformation behavior is needed for the external gauge field,

Aµ(x)→ A′µ(x
′) =

∂xν

∂x′µ
Aν(x(x

′)),

and for the metric,
gµν(x)→ g′µν(x

′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x(x

′)).
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Using the Jacobi determinant one finds that d4x√g is a covariant spacetime volume element. Also,
for the inverse metric this implies

gµν(x)→ g′µν(x′) =
∂x′µ

∂xρ
∂x′ν

∂xσ
gρσ(x(x′)).

Combining terms we find that the action (3.13) is indeed invariant under general coordinate trans-
formations.

Infinitesimal general coordinate transformations
In an action as in eq. (3.13) the coordinates xµ are just integration variables. One may therefore
label them from x′µ back to xµ after the coordinate transformation. For the metric this leads to
the transformation rule

gµν(x)→ g′µν(x) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x)−

[
g′µν(x

′)− g′µν(x)
]
.

We now also specialize to infinitesimal coordinate transformations, x′µ = xµ − εµ(x). This implies
for the metric

gµν(x)→ gµν(x) + Lεgµν(x),

where the Lie derivative of the metric is defined as

Lεgµν(x) = ερ(x)∂ρgµν(x) + gρν(x)∂µε
ρ(x) + gµρ(x)∂νε

ρ(x).

Similarly, the external gauge field transforms Aµ(x) → Aµ(x) + LεAµ(x) where the Lie derivative
of a one-form field is given by

LεAµ(x) = εν(x)∂νAµ(x) +Aν(x)∂µε
ν(x).

Finally, the scalar field transforms as φ(x)→ φ(x)+Lεφ(x) with the Lie derivative of a scalar field
defined as

Lεφ(x) = εµ(x)∂µφ(x).

Formulated in this way, general coordinate transformations resemble closely other local symmetry
transformations like the local U(1) gauge transformations discussed above.

Energy-momentum conservation from general coordinate invariance
We also know that the action must be invariant under general coordinate transformations. For an
infinitesimal transformation we can write

δS =

∫
d4x

{
δS

δφ(x)
εµ(x)φ(x) +

δS

δφ∗(x)
εµ(x)φ∗(x) +

δS

δAµ(x)
[εν(x)∂νAµ(x) +Aν(x)∂µε

ν(x)]

+
δS

δgµν(x)
[ερ(x)∂ρgµν(x) + gρν(x)∂µε

ρ(x) + gµρ(x)∂νε
ρ(x)]

}
= 0.

Again the first two terms on the right hand side vanish when the equation of motion for φ(x) is
fulfilled. We use now the definition (3.15) and also define the energy-momentum tensor Tµν(x)
through

δS

δgµν(x)
=

1

2

√
g(x)Tµν(x).

It is symmetric by definition, Tµν(x) = T νµ(x). The change in action can now be written as

δS =

∫
d4x
√
g(x)

{
Jµ(x) [εν(x)∂νAµ(x) +Aν(x)∂µε

ν(x)]

+
1

2
Tµν(x) [ερ(x)∂ρgµν(x) + gρν(x)∂µε

ρ(x) + gµρ(x)∂νε
ρ(x)]

}
= 0.
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For the last term in the first line we perform a partial integration and use the current conservation
law (3.16). This leads to a term involving the field strength tensor Fµν = ∂µAν − ∂νAµ. For the
second and third term in the last line we also perform partial integrations and use the symmetry
of the energy-momentum tensor. This yields, up to boundary terms,

δS =

∫
d4x
√
g(x) ερ(x)

{
Fρµ(x)J

µ(x)− 1√
g(x)

∂µ

[√
g(x)Tµρ(x)

]
+

1

2
Tµν(x)∂ρgµν(x)

}
= 0.

Because ερ(x) is arbitrary the term in curly brackets must vanish. For vanishing field strength of
the external gauge field, Fµν(x) = 0, and constant Minkowski space metric, gµν(x) = gµν , this
reduces to the standard energy-momentum conservation law in Cartesian coordinates, ∂µTµν(x) =
0. In summary, energy-momentum conservation can be seen as a consequence of general coordinate
invariance of the action in terms of Noether’s second theorem.

Energy-momentum tensor for complex scalar field in general coordinates

Let us finally calculate the energy-momentum tensor for the action in eq. (3.13) by variation of the
metric. Varying only the metric but keeping the scalar field φ(x) fixed, and setting the gauge field
Aµ(x) to zero for simplicity, we find

δS =

∫
d4x [δ

√
g] {−gµν∂µφ∗∂νφ− V (φ∗φ)}+

∫
d4x
√
g {− [δgµν ] ∂µφ

∗∂νφ}

We need the formulas

δ
√
g =

1

2

√
ggµνδgµν , δgµν = −gµρgνσδgρσ.

Writing then

δS =

∫
d4x
√
g

{
1

2
Tµνδgµν

}
,

and comparing terms, leads to the energy-momentum tensor of a complex scalar field

Tµν = 2gµρgνσ∂ρφ
∗∂σφ− gµν [gρσ∂ρφ∗∂σφ+ V (φ∗φ)] . (3.17)

Specializing to the zero-zero component we find the energy density

T 00 = H = φ̇∗φ̇+∇φ∗∇φ+ V (φ∗φ).

LECTURE 06

4 Classical statistical field theory

Classical field theories are deterministic in the sense that one may fix initial data in the form of the
field φ(t,x) and its first time derivative or conjugate momentum π(t,x) = φ̇(t,x) on some Cauchy
surface, and the equation of motion (3.3) then fixes it everywhere. However, there are situations
where the field configuration is not known precisely, but only stochastic information is available.
We will now discuss such situations in some detail. This is interesting by itself but also serves as
an excellent technical training for quantum field theory.
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4.1 Static probabilistic description

Boltzmann probability weights

Recall from statistical mechanics that for a classical system in the canonical ensemble the probability
density for a microstate to be in a phase space region dNqdNp with coordinates q and conjugate
momenta p is given by

Q(q,p) =
1

Z
exp (−βH(q,p)) ,

where H(q,p) is the Hamiltonian, β = 1/(kBT ) is the inverse of temperature times the Boltzmann
constant kB, and Z is the partition function. The latter has to be fixed such that the probability
distribution is properly normalized,

Z =

∫
dNqdNp exp (−βH(q,p)) .

In thermal equilibrium one can determine many different observables by taking averages with respect
to the probability distribution Q(q,p). For example, the expectation value of energy would be given
by

E = 〈H〉 =
∫
dNqdNpQ(q,p)H(q,p).

We are here interested in generalizing this probabilistic description to field theories.

Infinite number of degrees of freedom

When considered from a mechanics point of view, a field theory has one degree of freedom per space
point, so formally infinetly many. The infinity arises here in fact for two reasons:

• Points are dense in space / space is a contiuum.

• The space R3 we consider has infinite volume.

As we will see in due course, these two kinds of infinities lead to all kind of interesting consequences
and differences to quantum mechanics for a finite number of degrees of freedom. In order to make
progress it is oftentimes needed to regularize the theory. We introduce now a first regularization
scheme, although there are many more.

Lattice regularization

A lattice regularization, which is also often used for numerical calculations, consists of two steps:

• Space is being discretized by considering points on a lattice.

• The volume is made finite by restricting it to a box, typically with periodic boundary condi-
tions.

To recover the original theory from this regularized theory we need to study two limits:

• The contiuum limit where the lattice spacing goes to zero.

• The infinite volume limit where the box size becomes large.

For the technical steps we restric ourselves for simplicity to a single space dimension, the general-
ization to three spatial dimensions is straightforward.

Consider the chain of points

xj ∈ {0, ε, 2ε, . . . , (N − 1)ε},
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with the periodicity condition that xN = Nε is again the point x0 = 0. One may visualize this as a
ring with circumference L = Nε. The length ε corresponding to the distance between neighboring
points is known as the lattice spacing. The contiuum limit corresponds to ε→ 0, while the infinite
volume limit corresponds to L→∞.

Let us now consider the real scalar field on this discretized space. The “mechanical” degrees of
freedom are essentially the N field values

φ(t, xj) = φ(t, jε).

We also need spatial derivatives, which get discretized according to
∂

∂x
φ(t, x)→ φ(t, xj+1)− φ(t, xj)

ε
.

Blackboard video

Discretized Hamiltonian
We leave the details as an excercise and give here just the regularized form of the Hamiltonian for
the real scalar field in one spatial dimension,

H =

N∑
j=1

ε

{
1

2
π(t, xj)

2 +
1

2

(
φ(t, xj+1)− φ(t, xj)

ε

)2

+ V (φ(t, xj))

}
.

Blackboard video

Probability distribiution and partition function
For the discretized theory we can immediately write down the thermodynamic equilibrium prob-
ability distribution for a field configuration specified by the 2N numbers φ(t, xj), π(t, xj) with
j = 1, . . . , N at some given time t. In other words, this is a probabilty density for a given field
configuration to be in the 2N dimensional infinitesimal phase-space volume element

N∏
j=1

{dφ(xj)dπ(xj)} ,

and it is given by
p[φ, π] =

1

Z
e−βH . (4.1)

The normalization factor is here the partition function, given as a 2N dimensional integral,

Z =

N∏
j=1

{∫ ∞
−∞

dφ(xj)

∫ ∞
−∞

dπ(xj)

}
e−βH .

We introduced here the Boltzmann weight e−βH with (discretized) Hamiltonian H and inverse
temperature β = 1/T (in units where kB = 1). The partition function is a “sum”, or actually an
integral, over the possible field configurations at the given time t weighted with the Boltzmann
factor.

Blackboard video
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4.2 Functional integrals

Functional integral
The functional integral over fields is formally defined from the continuum and infinite volume limit
of the phase-space integral ∫

Dφ = lim
ε→0,L→∞

N∏
j=1

∫ ∞
−∞

dφ(xj),

and similar for the conjugate momenta. With this we can write the partition function as

Z =

∫
DφDπ e−βH[φ,π].

At this point we can at least formally again work with the contiuum version of the field theoretic
Hamiltonian H in (3.8).

A remark is in order at this point: for situations where the Hamiltonian contains terms of higher
order than quadratic in the fields (which is the case for the Hamiltonian in (3.8) when λ > 0) the
continuum limit needed to define the functional integral is more involved than we have described
here. The short distance regularization can only be removed (by letting ε go to zero) if the theory
is at the same time renormalized. We will discuss renormalization later on. For the time being take
the above to be a formal definition of the functional integral.

Blackboard video

Expectation values
Of particular interest are observables A[φ] that depend on the field φ but not the conjugate momenta
π, for example products of field values at different positions. Such expectation values can then be
calculated as

〈A[φ]〉 = 1

Z

∫
DφDπA[φ] e−βH[φ,π].

A first example would be the field expectation value 〈φ(t,x)〉, another the correlation function of
fields at different spatial positions 〈φ(t,x)φ(t,y)〉.

Blackboard video

Scaling the partition function
Consider an additative change in the Hamiltonian of the form

βH[φ, π]→ βH[φ, π] + C,

where C is independent of the fields. This changes the partition function by a factor,

Z → e−CZ,

but does not change expectation values like 〈A[φ]〉 because the factor cancels in the ratio! It can
even happen that terms like C diverge such that formally Z → ∞ or Z → 0, but this is not
a problem because the absolute value of Z is irrelvant. The probability density in (4.1) is not
modified by this transformation.

Blackboard video
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Integrating out the conjugate momenta

Note that the partition function separates into two factors, one involving the conjugate momenta,
and one the actual fields. In the discrete version, the functional integral over the conjugate momenta
is simply an N -dimensiona product of Gaussian integrals,

N∏
j=1

{∫ ∞
−∞

dπ(xj)e
−β ε

2π(xj)
2

}
.

These integrals are easily performed and we obtain just a factor(
2π

βε

)N/2
.

This is in particular independent of the field φ and can therefore be dropped according to the
argument above. It remains to work with the functioal integral over the actual fields φ and a
reduced Boltzmann weight where the Hamiltonian involves just the potential energy Hpot[φ].

Blackboard video

Euclidean action

The exponent of the Boltzmann weight factor is, mainly for historic reasons, also often called
Euclidean action and denoted by S[ϕ]. For example we have for the real scalar field

S[ϕ] = βHpot =

∫
d3x

{
1

2
∂jϕ∂jϕ+ V (ϕ)

}
.

We have rescaled the fields by a factor, ϕ =
√
βφ, and adapted the definition of the potential V (ϕ)

accordingy, such that the coefficient of the spatial derivative term becomes 1/2. This is a common
convention. We are also using Einsteins summation convention where j is summed from 1 to 3.

As all fields are evaluted at a single instance in time t we can drop this time argument as long
as we are interested in classical thermal equilibrium situations, and work with fields ϕ(x). In the
following we will introduce a somewhat larger class of field theoretic models.

Blackboard video

4.3 O(N) models

Universality classes and models

In condensed matter physics, microscopic Hamiltonians are often not very well known and if they
are, they are not easy to solve. However, in particular in the vicinity of second order phase transi-
tions, there are some universal phenomena that are independent of the precise microscopic physics.
This will be discussed in more detail later on, in the context of the renormalization group. Es-
sentially, this arises as a consequence of thermal fluctuations and the fact that at a second order
phase transition fluctuations are important on all scales. Roughly speaking, a theory changes in
form when fluctuations are taken into account and can approach a largely universal scaling form
for many different microscopic theories that happen to be in the same universality class.
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In the following we will discuss a class of model systems. These are particularly simple field
theories for which one can sometimes answer certain questions analytically, but one can also see
them as representatives for their respective universality classes. In the context of quantum field
theory, we will see that these field theory models gain a substantially deeper significance.

Blackboard video

Scalar O(N) models in d dimensions

Let us consider models of the form

S[φ] =

∫
ddx

{
1

2
∂jφn∂jφn +

1

2
m2φnφn +

1

8
λ (φnφn)

2

}
. (4.2)

Here, φn = φn(x) with n = 1, . . . , N are the fields. We use Einsteins summation convention which
implies that indices that appear twice are summed over. We have formulated the theory in d spatial
dimensions (where in practice d = 3, 2, 1 or even 0 for condensed matter systems and d = 4 will
correspond to a quantum field theory after Wick rotation to Euclidean space). The index j is
accordingly summed in the range j = 1, . . . , d.

Blackboard video

Applications

Models of the type (4.2) have many applications. For N = 1 they correspond to the continuum
limit of the Ising model. For N = 2 the model can equivalently be described by complex scalar
fields. It has then applications to Bose-Einstein condensates, for example. For N = 3 and d = 3 one
can have situations where the rotation group and the internal symmetry group are coupled. This
describes then vector fields, for example magnetization. Finally, for N = 4 and d = 4, the model
essentially describes the Higgs field after a Wick rotation to Euclidean space. Scalar fields are also
used in cosmology, for example for the inflaton, or in nuclear physics, for example to describe pions.

Blackboard video

Engineering dimensions

In equation (4.2) we have rescaled the fields such that the coefficient of the derivative term is 1/2.
This is always possible. It is useful to investigate the so-called engineering scaling dimension of
the different terms appearing in (4.2). The combination βH or the action S must be dimension-
less. Derivatives have dimension of inverse length [∂] = L−1 and the fields must accordingly have
dimension [φ] = L−

d
2+1. One also finds [m] = L−1 and [λ] = Ld−4. Note in particular that λ is

dimensionless in d = 4 dimensions.

Blackboard video
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Symmetries
It is useful to discuss the symmetries of the model (4.2). Symmetries are (almost) always very helpful
in theoretical physics. In the context of statistical field theory, they are useful as a guiding principle
in particular because they still survive (in a sense to be defined) when the effect of fluctuations is
taken into account.

For the model (4.2) we have a space symmetry group consisting of rotations and translations,
as well as a continuous, so-called internal symmetry group of global O(N) transformations. We
now discuss them step-by-step.

Rotations
Rotations in space are transformations of the form

xj → x′j = Rjkxk.

The matrices R fulfill the condition RTR = 1 and we demand that they connect continuously to
the unit matrix R = 1. This fixes det(R) = 1. Matrices of this type in d spatial dimensions form
a group, the special orthogonal group SO(d). Mathematically, this is a Lie group which implies
that all group elements can be composed of many infinitesimal transformations. An infinitesimal
transformation can be written as

Rjk = δjk +
i

2
δωmn J

jk
(mn),

where Jjk(mn) = −i(δmjδnk−δmkδnj) are the generators of the Lie algebra and δωmn are infinitesimal,
anti-symmetric matrices. One may easily count that there are d(d− 1)/2 independent components
of an anti-symmetric matrix in d dimensions and as many generators. Finite group elements can
be obtained as

R = lim
N→∞

(
1+

i

2

ωmn
N

J(mn)

)N
= exp

(
i

2
ωmnJ(mn)

)
.

Let us now work out how fields transform under rotations. We will implement them such that
a field configuration with a maximum at some position x before the transformation will have a
maximum at Rx afterwards. The field must transform as

φn(x)→ φ′n(x) = φn(R
−1x).

Note that derivatives transform as

∂jφn(x)→ (R−1)kj(∂kφn)(R
−1x) = Rjk(∂kφn)(R

−1x).

The brackets should denote that the derivatives are with respect to the full argument of φn and we
have used the chain rule. The action in (4.2) is invariant under rotations acting on the fields, as
one can confirm easily. Colloquially speaking, no direction in space is singled out.

Blackboard video

Translations
Another useful symmetry transformations are translations x → x + a. The fields get transformed
as

φn(x)→ φ′n(x) = φn(x− a).

One easily confirms that the action (4.2) is also invariant under translations. Colloquially speaking,
this implies that no point in space is singled out.
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Global internal O(N) transformations

There is another useful symmetry of the action (4.2) given by rotations (and mirror reflections) in
the “internal” space of fields,

φn(x)→ Onmφm(x).

The matrices Onm are here independent of the spatial position x (therefore this is a global and not
a local transformation) and they satisfy OTO = 1. Because we do not demand them to be smoothly
connected to the unit matrix, they can have determinant det(O) = ±1. These matrices are part of
the orthogonal group O(N) in N dimensions. It is an easy exercise to show that the action (4.2) is
indeed invariant under these transformations.
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Partition function and functional derivatives

The partition function for the model (4.2) reads

Z[J ] =

∫
Dφ e−S[φ]+

∫
ddx{Jn(x)φn(x)} (4.3)

We have introduced here an external source term
∫
ddx{Jn(x)φn(x)} which can be used to probe

the theory in various ways. For example, one can take functional derivatives to calculate expectation
values,

〈φn(x)〉 =
1

Z[J ]

δ

δJn(x)
Z[J ]

∣∣∣
J=0

,

and correlation functions, e. g.

〈φn(x)φm(y)〉 = 1

Z[J ]

δ2

δJn(x)δJm(y)
Z[J ]

∣∣∣
J=0

=

∫
Dφ φn(x)φm(y) e−S[φ]∫

Dφ e−S[φ]
.
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Classical field equation

In the the functional integral the contribution of field configurations φ(x) is suppressed if the
corresponding action S[φ] is large. In the partition function (4.3), large contributions come mainly
from the region around the minima of S[φ]−

∫
x
Jnφn, which are determined by the equation

δ

δφ(x)

(
S[φ]−

∫
ddx{Jn(x)φn(x)}

)
=

δS[φ]

δφn(x)
− Jn(x) = 0.
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This equation is the field equation or equation of motion of a classical field theory. For the model
(4.2) one has concretely

δS[φ]

δφn(x)
= −∂j∂jφn(x) +m2φn(x) +

1

2
λφn(x)φk(x)φk(x) = Jn(x).

Note that this field equation is from a mathematical point of view a second order, semi-linear,
partial differential equation. It contains non-linear terms in the fields φn, but the term involving
derivatives is linear; therefore semi-linear. The equation involves the Euclidean Laplace operator
∆ = ∂j∂j and is therefore of elliptic type (as opposed to hyperbolic or parabolic). This field
equation is the correspondence of Maxwells equations in electrodynamics for our scalar theory. The
source J corresponds to the electromagnetic current in Maxwell’s equations.
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The O(N) symmetric potential

The model in (4.2) can be generalized somewhat to the action

S[φ] =

∫
ddx

{
1

2
∂jφn∂jφn + V (ρ)

}
, (4.4)

where ρ = 1
2φnφn is an O(N) symmetric combination of fields and V (ρ) is the microscopic O(N)

symmetric potential. The previous case (4.2) can be recovered for V (ρ) = m2ρ+ 1
2λρ

2.
More general, V (ρ) might be some function with a minimum at ρ0 and a Taylor expansion

around it,
V (ρ) = m2(ρ− ρ0) +

1

2
λ(ρ− ρ0)2 +

1

3!
γ(ρ− ρ0)3 + . . .

If the minimum is positive, ρ0 > 0, the linear term vanishes of course, and one takes m2 = 0. In
contrast, if the minimum is at ρ0 = 0 one has in general m2 > 0. In practice, one uses either ρ0 or
m2 for a parametrization of V (ρ). It costs a certain amount of energy for the field to move away
from the minimum. In particular, for large λ such configurations are suppressed.
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Homogeneous solutions

It is instructive to discuss homogeneous solutions of the field equation, i.e. solutions that are
independent of the space variable x. For vanishing source Jn(x) = 0, and the model (4.4) we need
to solve

∂

∂φn
V (ρ) = φn

∂

∂ρ
V (ρ) = 0.

This has always a solution φn = 0 and for ρ0 = 0 and positive m2 this is indeed a minimum of
the action S[φ]. For positive ρ0 the situation is more interesting, however. In that case, φn = 0 is
actually typically a maximum while the minimum is at φkφk = 2ρ0, i. e. at a non-zero field value.
One possibility is φ1 =

√
2ρ0 with φ2 = . . . = φn = 0, but there are of course many more. But such

a solution breaks the O(N) symmetry! One says that the O(N) symmetry is here spontaneously
broken on the microscopic level which technically means that the action S[φ] is invariant, but the
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solution to the field equation (i. e. the minimum of S[φ]) breaks the symmetry. It is an interesting
and non-trivial question whether the symmetry breaking survives the effect of fluctuations. One
has proper macroscopic spontaneous symmetry breaking if the field expectation value 〈φn〉 is non-
vanishing and singles out a direction in field space. An example for spontaneous symmetry breaking
is the magnetization field in a ferromagnet.
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Constrained fields

It is also interesting to consider models where ρ = ρ0 is fixed. In fact, they arise naturally in the
low energy limit of the models described above when the fields do not have enough energy to climb
up the effective potential. Technically, this corresponds here to the limit λ→∞ with fixed ρ0 and
can be implemented as a constraint

φn(x)φn(x) = 2ρ0. (4.5)

Note that with this constraint, the field is now living on a manifold corresponding to the surface
of an N -dimensional sphere, denoted by SN−1. One can parametrize the field as (the naming
conventions are historic, one should not confuse the fields πj with conjugate momentum fields)

φ1 = σ, φ2 = π1, . . . φN = πN−1,

where only the fields πn are independent while σ is related to them via the non-linear constraint

σ =
√
2ρ0 − ~π2.
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Linearly and non-linearly realized symmetries

The symmetry group O(N) falls now into two parts. The first consists of transformations O(N −1)

which only act on the fields πn but do not change the field σ. Such transformations are realized in
the standard, linear way

πn → O(N−1)
nm πm, σ → σ.

In addition to this, there are transformations in the complement part of the group (rotations that
also involve the first component σ). They act infinitesimally on the independent fields like

δπn = δαnσ = δαn
√
2ρ0 − ~π2, δσ = −δαnπn,

where δαn are infinitesimal parameters (independent of the fields). Note that this is now a non-
linearly realized symmetry in the internal space of fields. This explains also the name non-linear
sigma model.

Blackboard video
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Action

Let us now write an action for the non-linear sigma model. Because of the constraint (4.5), the
effective potential term in (4.4) becomes irrelevant and only the kinetic term remains,

S[π] =

∫
ddx

{
1

2
∂jφn∂jφn

}
=

∫
ddx

{
1

2
Gmn(~π)∂jπm∂jπn

}
.

In the last equation we rewrote the action in terms of the independent fields πn and introduced the
metric in the field manifold

Gmn(~π) = δmn +
πmπn

2ρ0 − ~π2
.

The second term originates from

∂jσ = ∂j
√
2ρ0 − ~π2 =

1√
2ρ0 − ~π2

πm∂jπm.

Blackboard video

Functional integral

Note that also the functional integral is now more complicated. It must involve the determinant of
the metric Gmn to be O(N) invariant. For a single space point x one has∫ ∏

n

dφn →
∫ ∏

n

dφn δ(φnφn − 2ρ0) = const×
∫ √

det(G(~π))
∏
n

dπn.

Only in the presence of the determinant det(G(~π)) the functional measure preserves the O(N)

symmetry. Accordingly, the functional integral for the non-linear sigma model must be adapted to
contain the factor det(G(~π)).

Ising model

Everything becomes rather simple again for N = 1. The constraint φ(x)2 = 2ρ0 allows only the
field values φ(x) = ±

√
2ρ0. By a multiplicative rescaling of φ(x) one can obtain 2ρ0 = 1. On a

discrete set of space points (a lattice), this leads us to the Ising model.

4.4 Gaussian functional integrals and perturbation theory

Gaussian integrals

We now want to develop methods to actually eveluate functional integrals and to calculate correla-
tion functions. We digress for a moment and consider Gaussian integrals of the type∫

RN

dNϕ

{
exp

(
−1

2
ϕjKjkϕk + Jkϕk

)}
,

where indices j and k are summed in the range 1, . . . , N . The integral is here an infinite volume
integral in N real dimensions weighted by a Gaussian function. We need to assume that the real
part of the (symmetric) matrix K is positive definite, in the sense that the eigenvalues of Re(Kjk)

are positive. With some eigenvector vk this implies

v∗jRe(Kjk)vk = Re(v∗jKjkvk) = Re(λ)v∗kvk > 0.
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The source Jk is not restricted and can be complex. We want to show∫
RN

dNϕ

{
exp

(
−1

2
ϕjKjkϕk + Jkϕk

)}
=

(2π)N/2√
detK

exp

(
1

2
Jj(K

−1)jkJk

)
. (4.6)

Blackboard video

Proof

The proof is done in three steps:

1. Assume first that K is real and J = 0. Then one can find an orthogonal Matrix O with unit
determinant such that

K = OTΛO,

with Λ = diag(λ1, λ2, . . . , λN ) a diagomal matrix with real positive entries. One can substitute
integration variables dNϕ→ dNy, where yj = Ojkϕk because the Jacobi determinant is unity
here. That implies∫
dNϕ exp

(
−1

2
xjKjkϕk

)
=

∫
dNy exp

(
−1

2

∑
k

λky
2
k

)
=

N∏
k=1

{
λ
−1/2
k

∫
dx exp

(
−1

2
x2
)}

,

where we did another variable substitution x =
√
λkyk in the last step. Now one uses∫ ∞

−∞
dx exp

(
−1

2
x2
)

=
√
2π,

and

det(K) = det(Λ) =

N∏
k=1

λk,

which proves our formula in this special case.

2. Now consider real K and real J . Completing the square gives

exp

(
−1

2
ϕTKϕ+ JTϕ

)
= exp

(
1

2
JTK−1J

)
exp

(
−1

2
(ϕ−K−1J)TK(ϕ−K−1J)

)
,

and the integral over the second term gets reduced to what we have done before with a shift
of integration variables.

3. Finally, the result can be extended to complex K and complex J (with the restriction that
Re(K) has positive eigenvalues) by observing that the left and right hand sides of eq. (4.6)
are holomorphic functions of K and J .

Gaussian integration can actually be extended to field theories and will be very useful for the
following.

Blackboard video
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Wick theorem

Now that we understand how to do Gaussian integrals we can also consider correlation functions of
the type

Gij···k =
1

Z

∫
RN

dNϕ

{
ϕiϕj · · ·ϕk exp

(
−1

2
ϕjKjkϕk

)}
,

First we note that the number of ϕj insertions under the integral must be even, otherwise the
integral must yield zero, as a result of the odd transformation behavior of the integrand with
respect to reflections, ϕ→ −ϕ. To evaluate such integrals we can use the trick

Gij···k =

(
1

Z[J ]

∂

∂Ji

∂

∂Jj
· · · ∂

∂Jk
Z[J ]

)
J=0

,

where

Z[J ] =

∫
RN

dNϕ

{
exp

(
−1

2
ϕjKjkϕk + Jkϕk

)}
=

(2π)N/2√
detK

exp

(
1

2
Jj(K

−1)jkJk

)

is an extended version of the partition function. The prefactor

(2π)N/2√
detK

cancels out, so all we have to consider is the exponential

exp

(
1

2
Jj(K

−1)jkJk

)
.

Acting now with partial derivative operators brings down terms like (K−1)ij . Recall that we need
to set J = 0 at the end.

For example, the two point correlation function gives simply

Gij = 〈ϕiϕj〉 = (K−1)ij ,

and similarly, the four-point correlation function gives

Gijkl = 〈ϕiϕjϕkϕl〉 =(K−1)ij(K
−1)kl + (K−1)ik(K

−1)jl + (K−1)il(K
−1)jk

=〈ϕiϕj〉〈ϕkϕl〉+ 〈ϕiϕk〉〈ϕjϕl〉+ 〈ϕiϕl〉〈ϕjϕk〉.

These are examples of a general relation: For a Gaussian (probability) weight one can calculate
correlation functions by adding up all possible contractions which each contribute an term of the
form of the two-point function or covariance matrix. This is known as Wick’s theorem.

Blackboard video
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Gaussian field theory

We now consider the O(N) model in the quadratic regime, i. e. for λ = 0. We can write the partition
function as

Z2[J ] =

∫
Dφ exp

(
−1

2

∫
x

{
φn(x)(−∂j∂j +m2)φn(x)

}
+

∫
x

Jn(x)φn(x)

)
=

∫
Dφ exp

(
−1

2

∫
x,y

{φn(x)Dnm(x,y)φm(y)}+
∫
x

Jn(x)φn(x)

)
=exp

(
1

2

∫
x,y

Jn(x)Gnm(x,y)Jm(y)

)
.

In the last step we have dropped a constant, i.e. J-independent, multiplicative factor which is
irrelevant for the determination of expectation values and correlation functions. So far this is a
formal result, in analogy to Gaussian integration in finite dimensional spaces. We will determine
Gnm(x,y) further below.

Field expectation values follow as

〈φm(x)〉 = 1

Z2

δ

δJn(x)
Z2[J ] =

∫
y

Gnm(x,y)Jm(y).

This is the general result in the presence of a non-vanishing source J . When the latter vanishes
this is accordingly also the case for the expectation value.

Blackboard video

Two-point functions

Also two-point correlation functions of fields can be calculated within this Gaussian approximation
easily,

〈φn(x)φm(y)〉 = 1

Z2

δ2

δJn(x)δJm(y)
Z2[J ] = Gnm(x− y) + 〈φn(x)〉〈φm(y)〉.

The two-point function decomposes into a product of expectation values and a connected correlation
function, sometimes also called propagator,

Gmn(x− y) = 〈φn(x)φm(y)〉c = 〈φn(x)φm(y)〉 − 〈φn(x)〉〈φm(y)〉.

Usually the connected correlation function goes to zero in the limit of large separation |x−y| → 0.

Blackboard video

Greens function

The analog of the matrix Kij in this field theoretic context is the kernel (read as an infinite-
dimensional matrix)

Dnm(x,y) = δnm

(
− ∂

∂xj
∂

∂xj
+m2

)
δ(d)(x− y).
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This is also known as inverse propagator. We need to find its inverse, i. e. another integral operator
Gnm(x,y) such that ∫

y

Dmn(x,y)Gnk(y, z) = δmkδ
(d)(x− z).

As a consequence of translational symmetry, Gjk is actually only a function of the difference of
coordinates x− y. After partial integration we find the relation(

− ∂

∂xl
∂

∂xl
+m2

)
Gjk(x− y) = δjkδ

(3)(x− y).

This shows that the so-called propagator Gjk(x− y) is actually a Greens function to the operator
(−∂2l + m2). As usual, a Greens function can also depend on the boundary conditions which
parametrize here the state of the theory in more detail.

Blackboard video

Solution in terms of Fourier transforms
For the ground state one can find the correct Greens function through Fourier transform. We write

Gjk(x− y) =

∫
ddp

(2π)d
eip(x−y)Gjk(p),

and similarly

Dmn(x− y) =

∫
ddp

(2π)d
eip(x−y)Dmn(p).

With Dmn(p) = p2 +m2 we obtain the simple relation for the Greens function in Fourier space,

Gjk(p) =
δjk

p2 +m2
.

Blackboard video

Correlation function in position space
For d = 3 spatial dimensions, let us calculate the correlation function in position space. The integral
can be written as

Gjk(x− y) =
1

(2π)3

∫
dΩ

∫ ∞
0

p2dp eip|x−y| cos(ϑ)
δjk

p2 +m2

=
4π

2(2π)3

∫ 1

−1
d cos(ϑ)

∫ ∞
0

p2dp eip|x−y| cos(ϑ)
δjk

p2 +m2

=
1

4iπ2|x− y|

∫ ∞
0

dp p
(
eip|x−y| − e−ip|x−y|

) δjk
p2 +m2

.

The momentum integral can first be rewritten as an integral along the entire real line and one can
then close the integration contour in the upper half of the complex plane,

Gjk(x− y) =
1

4iπ2|x− y|

∫ ∞
−∞

dp p eip|x−y|
δjk

p2 +m2

=
1

4iπ2|x− y|

∮
dp p eip|x−y|

δjk
(p+ im)(p− im)

.
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Here one can use the residue theorem which tells that the integral is 2πi times the residue at p = im.
The final result is

Gjk(x− y) =
δjk

4π|x− y|
e−m|x−y|.

We see that m has the effect of supressing correlations at large distances exponentially, in addition
to an algebraic decay which is also there for m = 0. In fact,

ξ =
1

m
,

is also known as the correlation length in the context of statistical field theory. We also note that
Gjk(x−y) is divergent in the coincidence limit |x−y| → 0, which corresponds to the region of large
wavenumbers in Fourier space. This is known as an ultraviolet divergence. In concrete applications
to condensed matter problems there is typically no such divergence but the model theory we have
started with looses its physical significance for very high momenta or very short distances.

Blackboard video

Exercise

Determine the correlation function Gjk(x−y) in d = 1 spatial dimensions. Determine also the four-
point correlation function 〈φ(x)φ(y)φ(z)φ(w)〉 for a single real scalar field N = 1 in the absense of
a source term, i. e. for J = 0.

LECTURE 09

Perturbation theory

Let us now consider for simplicity the simple scalar theory (N = 1) with an interaction term
(λ/4!)φ4 and write the partition function formally in the form

Z[J ] =

∫
Dφ exp

(
− λ
4!

∫
z

φ(z)φ(z)φ(z)φ(z)

)
exp

(
−S2[φ] +

∫
x

J(x)φ(x)

)
=exp

(
− λ
4!

∫
z

δ

δJ(z)

δ

δJ(z)

δ

δJ(z)

δ

δJ(z)

)∫
Dφ exp

(
−S2[φ] +

∫
x

J(x)φ(x)

)
=const× exp

(
− λ
4!

∫
z

δ

δJ(z)

δ

δJ(z)

δ

δJ(z)

δ

δJ(z)

)
exp

(
1

2

∫
x,y

J(x)G(x,y)J(y)

)
.

The two exponentials can be expanded into their Taylor series. Specifically the expansion of the
first exponential leads to a perturbative series in the coupling constant λ. The constant term in
the last line contains is independent of the source J but depends on temperature T so that we will
have to partly take it into account for discussing thermodynamics.

Blackboard video
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Feynman diagrams for the partition function

Terms in the perturbative series for the partition function Z[J ] and for correlation functions that are
obtained as functional derivatives of Z[J ] have a nice graphical representation in terms of Feynman
diagrams. This arises here in a purely classical statistical setup, but works very similar for quantum
fields as we will see later on.

Expanding the two exponential functions in the partition function, one finds

Z[J ] = const×
∞∑
V=0

1

V !

(
− λ
4!

∫
z

δ4

δJ(z)4

)V ∞∑
P=0

1

P !

(
1

2

∫
x,y

J(x)G(x,y) J(y)

)P
, (4.7)

where the index V can be understood as couting the number of four-vertices and P as counting the
number of propagator lines. Once the functional derivatives associated with every vertex have been
done, we have 2P − 4V powers of the source J(x) left. When we later want to calculate correlation
functions by taking functional derivatives of the partition functions, the functional derivatives act
on these source terms.

Graphical representation

It is convenient to introduce a graphical representation for objects that appear in a systematic
manner in the terms of the perturbative series (4.7). The three building blocks are composed of the
propagator G(x,y), the sources J(x) and the four-vertex associated to the coupling constant λ. We
introduce a graphical representation where propagators correspond to lines, sources to endpoints,
and interaction terms to vertices where four lines meet,

= G(x,y), =

∫
x

J(x), = −λ
∫
x

.

The corresponding Feynman rules are rather simple for this model: each propagator gets attached
with its two ends to a source or a vertex.

Blackboard video

Terms without vertices

As an exercise let us consider a few diagrams out of the infinite series generated by the expansion
(4.7). Consider e.g. the term corresponding to V = 0 and P = 1,

1

2

∫
x,y

J(x)G(x,y) J(y) =
1

2
(4.8)

This has no vertices can can be seen as a contribution at lowest order λ0 in the perturbative
expansion. For V = 0 and larger values of P , we get products of these terms which give a factorized
form of the partition function. For example, for V = 0 and P = 3 we get

1

3!23

[∫
x,y

J(x)G(x,y)J(y)

]3
=

1

48
(4.9)

Like this on can go on and finds 2P sources in each term. The correlation functions following
from these terms by taking functional derivatives with respect to the sources J are obeying Wicks
theorem. This means that two
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Diagram with one vertex but no sources left
For positives values of V one obtains from the expansion of the first exponential in eq. (4.7) for each
power of λ four functional derivatives with respect to the sources J(z). This reduces the number
of sources to 2P − 4V .

For example, for V = 1 and P = 2 one obtains the expression

−λ
8

∫
z

G(z, z)2 =
1

8
(4.10)

This is a diagram with two loops, but no source terms left, so it will not contribute to any correlation
function. This is called a vacuum diagram.

Diagrams contributing to two-point function
For V = 1 and P = 3 there are two type of diagrams appearing,

−λ
4

∫
z

G(z, z)

[∫
y

G(z,y) J(y)

]2
− λ

16

∫
z

G(z, z)2
∫
x,y

J(x)G(x,y) J(y)

=
1

4
+

1

16

(4.11)

Here the first diagram gives a non-trivial and connected contribution to the two-point correlation
function with one loop. In contrast, the second diagram falls into a product of two disconnected
pieces with the first being a vacuum diagram and the second a contribution to the two-point
function.

Tree diagram with one vertex
For V = 1 and P = 4 there are a couple of diagrams, but one of them has the form

− λ

4!

∫
z,x1,x2,x3,x4

G(z,x1)J(x1)G(z,x2)J(x2)G(z,x3)J(x3)G(z,x4)J(x4)

=
1

4!

(4.12)

Taking here four functional derivatives with respect to the sources leads to a contribution to the
four-point correlation function that does not factorize into two-point functions. It describes a proper
correlation between all four points.

Different kinds of diagrams
In these three examples we already encountered two important classes of diagrams. There exist
diagrams which do not include closed cycles or loops and are usually called tree diagrams whereas
diagrams including closed cycles are call loop diagrams. Furthermore, there are diagrams as in (4.8),
(4.10) and the first diagram in (4.11) which are connected whereas the second diagram in (4.11)
is disconnected. A further distinction arises between vacuum diagrams and diagrams that actually
contribute to correlation functions.

Blackboard video
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Divergences

At first sight, it might seem diagrams such as (4.10) contain divergencies associated to the coinci-
dence limit of the propagator as well as an integral over the whole space. As we will realise later,
these kind of diagrams (in QFT called ‘vacuum bubbles’) do not contribute to correlation functions.
In contrast, loop diagrams such as the first diagram in (4.11) do contribute to correlation functions
and the associated ultraviolet divergence from G(z, z) =∞ is handled later on by renormalisation.

Blackboard video

4.5 Generating functionals

Schwinger functional and connected diagrams

It is often useful to consider instead of the partition function Z[J ] the Schwinger functional W [J ]

defined through
Z[J ] = eW [J].

The expectation value is simply obtained through

〈φ(x)〉 = δ

δJ(x)
W [J ] =

1

Z[J ]

δ

δJ(x)
Z[J ].

The second functional derivative yields the connected two-point correlation function

G(x,y) = δ2

δJ(x)δJ(y)
W [J ] =

1

Z[J ]

δ2

δJ(x)δJ(y)
Z[J ]− 1

Z[J ]2
δ

δJ(x)
Z[J ]

δ

δJ(y)
Z[J ]

= 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉.

This connected correlation function the usually vanishes at large separation. Note that the full
correlation function G and its counterpart G for the free theory agree at the leading order λ0 in a
perturbative expansion but differ beyond that.

Blackboard video

Connected three-point correlation function

In a similar way one can now determine third functional derivatives,

〈φ(x)φ(y)φ(z)〉c =
δ3

δJ(x)δJ(y)δJ(z)
W [J ] = 〈φ(x)φ(y)φ(z)〉

− 〈φ(x)φ(y)〉〈φ(z)〉 − 〈φ(y)φ(z)〉〈φ(x)〉 − 〈φ(z)φ(x)〉〈φ(y)〉+ 2〈φ(x)〉〈φ(y)〉〈φ(z)〉,

which is known as the connected three-point correlation function. Note that for vanishing expec-
tation value, the connecetd three-point correlation function equals the full three-point correlation
function.

Blackboard video
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Connected four-point correlation function
The four point function can be worked out in a similar way. One finds

〈φ(x)φ(y)φ(z)φ(w)〉c =
δ4W

δJ(x)δJ(y)δJ(z)δJ(w)
= 〈φ(x)φ(y)φ(z)φ(w)〉

− 〈φ(x)φ(y)〉〈φ(z)φ(w)〉 − 〈φ(x)φ(z)〉〈φ(y)φ(w)〉
− 〈φ(x)φ(w)〉〈φ(y)φ(z)〉+ terms involving 〈φ〉.

(4.13)

For vanishing expectation value, the connected four-point function subtracts from the four point
function the “unconnected parts”. In this way one can go on and decompose all correlation functions
in connected and disconnected parts. It turns out that in many physics applications one actually
is interested in connected terms only.

In the context of finite dimensional random variables, correlation functions are known as mo-
ments and connected correlation functions are known as cumulants.
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Thermodynamic significance
Recall that in our present context the partition function is for J = 0 and with β = 1/T

Z[0] = eW [0] = e−βF (T ) = Tr
{
e−βH

}
.

Up to an additive constant the Schwinger functional at vanishing source is the free energy devided
by the temperature,

W [0] = −F (T )/T = −(E − TS)/T.

From the free energy one can obtain for example the entropy according to S = −∂F/∂T or the
expectation value of energy as E = F +TS. Of course, to calculate this we need to follow carefully
the dependence on temperature T . This can be generalized to situations with more conserved
quantum numbers, such as some particle number N coupled to a chemical potential µ. We will
later also study the generalization to quantum statistics.

Blackboard video

Partition function and Schwinger functional at vanishing source
We concentrate now first on the leading contribution at order λ0 to the partition function and
Schwinger functional at vanishing source. From the evaluation of the Gaussian integral we find
(still neglecting the contribution of conjugate momenta here)

Z[0] = eW [0] = lim
N→∞

(2π)N/2det(D)−1/2,

where D is the matrix inverse to the propagator function G(x,y). The factors of 2π can be dropped,
they only lead to a numerical offset in W [0] that is independent of temperature. To evaluate the
determinant we use the identity

ln(det(D)) = tr{ln(D)}.

The latter can be easily proven in case that D is diagonal and extended beyond that by the definition
of the logarithm.
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Loop expansion for Schwinger functional
This leads to

W [0] = const− 1

2
tr ln(D).

The second term can be graphically represented by a single closed loop. In a perturbative expansion
we find that this gets supplemented by a two-loop term at order λ1, two possible tree-loop terms
at order λ2 and so on,

W [0] = const− 1

2
tr {ln(D)}+O(λ) +O(λ2) + . . . .

While it is straight forward to write down the connected vacuum diagrams and also to write down
corresponding integral expressions, it will be more work to properly evaluate them.

In the partition function Z[0] = exp(W [0]) we also get products of the connected diagrams
through the expansion of the exponential and it is therefore given by a sum of all possible vacuum
diagrams.

Blackboard video

Perturbative expansion for two- and four-point functions
We can now go ahead and consider terms in the Schwinger functional W [J ] that depend on the
source. Because our theory is invariant under the Z2 symmetry φ → −φ, J → −J , there are only
even orders in J . We can write

W [J ] =W [0]+
1

2

∫
x,y

J(x)G (x,y)J(y)+
1

4!

∫
x1,x2,x3,x4

J(x1)J(x2)J(x3)J(x4)V (x1,x2,x3,x4)+. . . ,

where G (x,y) is a connected two-point correlation function including perturbative corrections,
V (x1,x2,x3,x4) is a connected four-point correlation function including perturbative corrections
and so on.

For the two-point function we find at order λ0

G (x,y) = G(x− y),

and this gets corrected by a one-loop term at order λ1, three different two-loop terms at order λ2
and so on.

Similarly, the four-point function has the leading contribution (a tree diagram)

V (x1,x2,x3,x4) = −λ
∫
ddxG(x1 − x)G(x2 − x)G(x3 − x)G(x4 − x),

and this gets supplemented by different one-loop terms at order λ, two-loop terms at order λ2 and
so on.
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5 Quantum states

Let us now address quantum states in a quantum field theory. We start by recalling some notions and
concepts from quantum mechanics of non-relativistic particles and will then transfer the different
concepts to field theory.

5.1 Canonical quantization

A set of harmonic oscillators

We start with a set of mechanical harmonic oscillators. We write their amplitudes as φj(t) where
j = 1, . . . , N is a set of indices. The classical action is (for units where m = 1)

S =

∫
dtL(φj(t), φ̇j(t)) =

∫
dt

N∑
j=1

{
1

2
φ̇j(t)

2 − 1

2
ω2
jφj(t)

2

}
.

With the canonical conjugate momenta, πj(t) = ∂L/∂φ̇j(t) = φ̇j(t), we can write the Hamiltonian
as

H =

N∑
j=1

{
1

2
π2
j (t) +

1

2
ω2
jφ

2
j (t)

}
.

The classical Poisson brackets are here defined for two functions A(φj(t), πj(t)) and B(φj(t), πj(t))

in phase space,

{A,B} =
N∑
j=1

{
∂A

∂φj

∂B

∂πj
− ∂A

∂πj

∂B

∂φj

}
.

In particular one has {φm(t), πn(t)} = δmn and {φm(t), φn(t)} = {πm(t), πn(t)} = 0.

Canonical quantization for harmonic oscillators

Canonical quantization works by promoting the oscillator amplitudes φj(t) and πj(t) to hermitian
operators φ̂j(t) and π̂j(t), and the classical Poisson brackets to commutation relations at equal
times,

[φ̂m(t), π̂n(t)] = i~δmn, [φ̂m(t), φ̂n(t)] = [π̂m(t), π̂n(t)] = 0. (5.1)

Note that we are working here in the Heisenberg representation of quantum mechanics where the
operators are time-dependent.

It is beneficial to introduce the linear combination of operators

aj(t) =
eiωjt√
2~ωj

[
ωj φ̂j(t) + iπ̂j(t)

]
,

a†j(t) =
e−iωjt√
2~ωj

[
ωj φ̂j(t)− iπ̂j(t)

]
,

so that one has

φ̂j(t) =

√
~

2ωj

[
e−iωjtaj(t) + eiωjta†j(t)

]
,

π̂j(t) =

√
~ωj
2

[
−ie−iωjtaj(t) + ieiωjta†j(t)

]
.

(5.2)

The equal time commutation relations (5.1) are then equivalent to

[am(t), a†n(t)] = δmn, [am(t), an(t)] = [a†m(t), a†n(t)] = 0.
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Time evolution

For free oscillators one can write the time evolution equations as dφ̂j(t)/dt = π̂j(t) and dπ̂j(t)/dt =
d2φ̂j(t)/dt

2 = ω2
j φ̂j(t). These equations are solved by the ansatz in eq. (5.2) when aj(t) = aj and

a†j(t) = a†j are independent of time t. We restrict to this case in the following.

Hamiltonian, ground state and excitated state

We can write the Hamiltonian as

H =

N∑
j=1

1

2
~ωj

[
a†jaj + aja

†
j

]
=

N∑
j=1

~ωj
[
a†jaj +

1

2

]
.

In the last line we used the commutation relation.
One postulates now that there is a state |0〉 with the property aj |0〉 = 0 for all indices j. This

state is called the ground state or vacuum state. The energy is given there by zero-point fluctuation
~wj/2 for each mode.

One can also create excited states where the oscillator with index j has occupation number
nj ∈ N0. Up to a normalization factor it is given by

|n1, . . . , nN 〉 = (a†1)
n
1 · · · (a

†
N )nN |0〉.

The non-relativistic complex scalar field

We now discuss canonical quantization for a field theory, specifically the free, non-relativistic scalar
field with action

S[φ] =

∫
dt

∫
d3x

{
i~φ∗(t,x)∂tφ(t,x)−

~2

2m
∇φ∗(t,x)∇φ(t,x)− V (t,x)φ∗(t,x)φ(t,x)

}
.

Here the momentum field conjugate to φ(t,x) is π(t,x) = i~φ∗(t,x). The non-vanishing elementary
classical Poisson bracket with the field theoretic definition in eq. (3.11) evaluates here to

{φ(t,x), π(t,y)} = i~ {φ(t,x), φ∗(t,y)} = δ(3)(x− y).

Field quantization or second quantization

Field quantization now promotes φ(t,x) to an operator φ̂(t,x) and φ∗(t,x) to φ̂†(t,x) with the
commutation relation given by i~ times their classical Poisson bracket,

[φ̂(t,x), φ̂†(t,y)] = δ(3)(x− y).

This can be solved by writing the free Heisenberg field operator as

φ̂(t,x) =

∫
d3p

(2π)3
e−iωpt+ipxap, φ̂†(t,x) =

∫
d3p

(2π)3
eiωpt−ipxa†p,

with wp = p2/(2m) and time-independent ap for the solution to the free evolution equations, and
the commutation relations

[ap, a
†
q] = (2π)3δ(3)(p− q), [ap, aq] = [a†p, a

†
q] = 0.

Particles as quantum excitations

The operators ap and a†p have the same properties as the annihilation and creation operators
for the energy levels of the harmonic oscillator. But what they annihilate and create are actually
particles! This provides a new possibility to understand many-particle states in quantum mechanics
as corresponding excitations of a vacuum state.
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Vacuum states

In the present formalism (for non-interacting fields) one can take the vaccum state |0〉 in the field
theory to be such that

ap|0〉 = 0,

for all momenta p.

Single particle states

One can also construct now states for single particles in a momentum eigenstate by using the
creation operator,

|p〉 ∼ a†p|0〉.

We discuss the normalization and related issues later on. In a similar way one can construct
two-particle states,

|p,q〉 ∼ a†pa†q|0〉,

and as a consequence of the commutation relations it is autmotically symmetric,

|p,q〉 = |q,p〉.

Blackboard video

5.2 Schrödinger functional representation of quantum states

The algebraic method we used for canonical quantization of harmonic oscillators and the free non-
relativistic field works in a similar way for many free or non-interacting quantum field theories. It
shows that in a quantum field theory particles can be seen as excitations.

To address more general situations it is often useful to have a concrete representation of the
quantum states and operators. We develop this now by appealing to concepts used in quantum
mechanics.

We are interested in describing quantum states at a fixed time t = 0. In that case the Heisenberg
and Schrödinger picture coincide. We use the field theoretic analoge of the position space represen-
tation of quantum mechanics to describe quantum states. For a field theory, the Schrödinger wave
function will become a Schrödinger functional Ψ[φ].

The density matrix

Recall that in the position space representation of quantum mechanics for N degrees of freedom,
such as particle positions, one can represent an arbitrary pure state |Ψ〉 at some time t in terms of
a Schrödinger wave function

Ψt(x1, · · · , xN ).

A general mixed state needs to be described by a density matrix or a density operator. For a mixture
of states |Ψj〉 with probability pj such that

∑
j pj = 1, the density operator is formally given by

ρt =
∑
j

pj |Ψj〉〈Ψj |.

The concept of a mixed state is needed if one does not know the state with certainty but has only a
probailistic description available. Mixed states are also needed if one would like to describe degrees
of freedom that are not fully isolated but entangled with other degrees of freedom. This is actually
the general situation for the local description of a quantum field theory in some subvolume of space.
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Expectation values

From the density operator, one can calculate expectation values at time t as

〈A(t)〉 = Tr {ρtA} =
∑
j

pjTr {|Ψj〉〈Ψj |A} =
∑
j

pj〈Ψj |A|Ψj〉.

Concretely, for the position space representation one would have

ρt(x1, . . . , xN ; y1, . . . , yN ) =
∑
j

pjΨj(x1, . . . , xN )Ψ∗j (y1, . . . , yN ).

An arbitrary operator can be written as

A(x1, . . . , xN ; y1, . . . , yN ),

and the expectation value would be

〈A(t)〉 = Tr {ρtA} =
∫
x1,...,xN

∫
y1,...,yN

ρt(x1, . . . , xN ; y1, . . . , yN )A(y1, . . . , yN ;x1, . . . , xN ).

Blackboard video

Momentum operator

As an example let us consider just a single particle. We want to calculate the expectation value
of the momentum component Pk. It corresponds to a derivative operator in the position space
representation we use. In our notation it can be written as a distribution,

Pk(x,y) = −i
∂

∂xk
δ(3)(x− y).

With this one finds with a few steps involving partial integration

〈Pk(t)〉 =
∫
x,y

ρt(x,y)

[
−i ∂
∂yk

δ(3)(y − x)

]
=
∑
j

pjψ
∗
j (x)

[
−i ∂

∂xk
ψj(x)

]
,

which is the expression familiar from quantum mechanics.

Blackboard video
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Transition to field theory

Let us now go to quantum field theory. Instead of the positions x1, . . . , xN , the degrees of freedom
are now the field variables φ(x) at some fixed time t, for all possible spatial positons x. The spatial
position x now plays the role of the index n = 1, · · · , N and labels the different degrees of freedom
(quantum fields).

Blackboard video

Pure and mixed states

A pure state at some time t is now specified by a so-called Schrödinger functional ψt[φ], and a
mixed state in a similar way by a density matrix functional ρt[φ+, φ−]. The most general observable
is also specified by a similar functional A[φ1, φ2], and an expectation value is given by

〈A〉 =
∫
Dφ+Dφ− ρt[φ+, φ−]A[φ−, φ+].

The functional integrals
∫
Dφ+ and

∫
Dφ− are here over fields at constant time t but for all spatial

positions x. The definition is as we have studied it for statistical field theory.

Blackboard video

Conjugate momentum field

In this “position space” representation of a field theoretic state, the conjugate momentum field
corresponds to an operator,

π(t,x)[φ1, φ2] =

[
−i δ

δφ1(x)

]
δ[φ1 − φ2],

with the “functional Dirac delta” δ[φ1 − φ2] defined such that for some functional f [φ]∫
Dφ1f [φ1]δ[φ1 − φ2] = f [φ2].

With this one obtains the expection value

〈π(t,x)〉 =
∫
Dφ

[
−i δ

δφ+(x)
ρt[φ+, φ−]

]
φ+=φ−=φ

.

In this way one can now calculate all kind of observables at some given time t.

Blackboard video
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5.3 Ground state and excited states

Field theory of a single mode

To get an intuition, let us consider the simple case of a field theory in d = 1 + 0 dimensions. This
describes a single field mode and has applications for example to cavity-quantum electrodynamics.
The Lagrangian for a real variable φ is

L =
1

2
(∂tφ)

2 − 1

2
m2φ2,

and it is equivalent to the harmonic oscillator. This means that we can easily take over some results
known from quantum mechanics.

Blackboard video

Ground state

By recalling results from quantum mechanics for the harmonic oscillator, the Schrödinger functional
for the ground state can be immediately specified as a Gaussian,

Ψ0[φ] = c exp
(
−m

2
φ2
)

with a complex constant c. Accordingly, the density functional in that state

ρ0[φ+, φ−] =
1

Z
exp

(
−m

2
(φ2+ + φ2−)

)
.

One can directly see that this is a pure state because it factorizes into a ket and a bra contribution.

Blackboard video

Excited states

Excited states with n particles or quanta are of the form

ρn[φ+, φ−] =
1

Zn
Hn(
√
mφ+)Hn(

√
mφ−) exp

(
−m

2
(φ2+ + φ2−)

)
where Hn(x) are the Hermite polynomials

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, · · ·

These are still pure states. The corresponding Schrödinger functional would be

Ψn[φ] =
1√
2nn!

Hn(
√
mφ)c exp

(
−m

2
φ2
)
.

Under time evolution, the Schrödinger functionals above would pick up a factor e−im(n+1/2)t which
cancels, however, in the density functional.

Blackboard video
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Coherent states

Another interesting class of states are coherent states. In quantum mechanics they are described
by

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 = e−|α|

2/2eαa
†
|0〉,

with complex parameter α. Here they lead to the density matrix functional

ρα[φ+, φ−] =
1

Z
exp

−1

2
m

(φ+ −√ 2

m
Re(α)

)2

+

(
φ− −

√
2

m
Re(α)

)2
 .

Again these are pure states. Under time eolution, one must replace α → α(t0)e
−im(t−t0) and one

finds that Re(α(t)) describes the oscillatory behaviour of classical solutions to the equations of
motion. The density matrix ρα(t) describes Gaussian fluctuations around this mean value.

Blackboard video

Themal states for a single mode

Finally, let us consider a thermal state. In the quantum mechanical formalism, it is described as

ρ = (1− b)
∞∑
n=0

bn|n〉〈n|,

where b = e−m/T is the Boltzmann weight. Here this leads to the density matrix functional

ρT [φ+, φ−] =
1

Z
(1− b)

∞∑
n=0

1

n!

(
b

2

)n
Hn(
√
mφ+)Hn(

√
mφ−)e

−m(φ2
++φ2

−)/2.

Here, one can use a property of the Hermite polynomials (Mehler’s formula)

∞∑
n=0

1

n!
Hn(x)Hn(y)

(
b

2

)n
=

1√
1− b2

exp

[
2b

1 + b
xy − b2

1− b2
(x− y)2

]
.

We thus find

ρT [φ+, φ−] =
1

Z
exp

[
−1

2
m(φ2+ + φ2−)−

b2

1− b2
m(φ+ − φ−)2 +

2b

1 + b
mφ+φ−

]
=

1

Z
exp

[
−1

2
m

(
1 +

2b2

1− b2

)
(φ2+ + φ2−) +

2b

1− b2
mφ+φ−

]
.

(5.3)

This does not factor into a ket and a bra part for b > 0. It is therefore not a pure state as expected.
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Gaussian versus non-Gaussian states

Let us summarize this discussion by remarking that the vacuum or ground state, the coherent
states, as well as the thermal states all have density matrices ρ[φ+, φ−] of Gaussian form. This is
not the case for single or multiple particle excited states, though. For free quantum field theories,
one can also expect Gaussian states in many circumstances. However, already with non-vanishing
interaction this ceases to be the case.

Blackboard video

Higher dimensional Gaussian states

Let us now generalize the situation somewhat and consider a set of fields φn. The index n is here
taken to be discrete and can run over a finite set of modes for example. However, it could be running
over an infinite set. One may even consider n to be an abstract index that combines several indices
such as momentum, flavor or spin.

We assume the Schrödinger functional to be of the form

Ψ[φ] = c exp

[
−1

2
(φ− φ̄)mhmn(φ− φ̄)n + ijnφn

]
,

with a symmetric and real matrix hmn = hnm. The density functional for this pure state is
accordingly

ρ[φ+, φ−] =
1

Z
exp

[
− 1

2
(φ+ − φ̄)mhmn(φ+ − φ̄)n

− 1

2
(φ− − φ̄)mhmn(φ− − φ̄)n + ijn(φ+ − φ−)n

]
.

Blackboard video
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Characterization through one- and two-point functions

Let us characterize this state by its expectation values and correlation functions. Besides the field
φn, another observable is its conjugate momentum field πn. In the position space representation,
we are working in here, it is represented by a derivative

πn = −i δ

δφn
.

This operator acts on the Schrödinger functional or density operator. The canonical commutation
relations

[φm, πn] = iδmn, [φm, φn] = [πm, πn] = 0,

are automatically fulfilled.
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The field expectation value is given by

〈φm〉 =
1

Z

∫
Dφ φmρ[φ, φ] = φ̄m.

In a similar way, the expectation value for the conjugate momentum can be obtained,

〈πm〉 =
1

Z

∫
Dφ

(
−i δ

δφ+m
ρ[φ+, φ−]

)
φ+=φ−=φ

= jm.

An exercise in Gaussian integration yields the connected correlation functions

〈φmφn〉c = 〈φmφn〉 − 〈φm〉〈φn〉 =
1

2
(h−1)mn, 〈πm, πn〉c =

1

2
hmn,

〈φmπn + πnφm〉c = 0, 〈φmπn − πnφm〉c = [φm, πn] = iδmn.

If the matrix hmn is diagonal hmn = h̃mδmn (no sum convention), the different field modes are
independent, otherwise they are correlated.

Blackboard video

Uncertainty relation
Imagine now that hmn is diagonal. One then has

〈φ2m〉〈π2
m〉 =

1

4
.

This is in fact the statement that Heisenberg’s uncertainty bound is satisfied and saturated. Note
that for a single mode in the ground state, we have

〈φ2〉 = 1

2m
, 〈π2〉 = m

2
.

The energy E = m here sets the quantum uncertainty. In quantum optics, it is possible, however,
to prepare so-called squeezed states with

〈φ2〉 = 1

2h
, 〈π2〉 = h

2
,

where h > m or h < m. These are still pure states and they are still Gaussian states. They also
still satisfy the Heisenberg bound but, for n > m, have a reduced uncertainty of the field at the
cost of an increased uncertainty of the conjugate momentum. For n < m, the uncertainty of π is
reduced while the one of φ is increased.

For diagonal hmn, the different modes φm are fully independent and the density matrix ρ[φ+, φ−]
decomposes into a product of independent factors. This indicates that these degrees of freedom are
not entangled. The situation is different in the presence of off-diagonal terms in hmn. In that case,
there are non-vanishing correlations between fields and between conjugate momenta - but there is
also quantum entanglement.

When quantum field theory is developed from a version of the theory with lattice regularization
one finds that the field degrees of freedom in position space are strongly entangled by the spatial
derivative term. For a quantum field theory entanglement is in this sense ubiquitous.

Blackboard video
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5.4 Entanglement

Two-mode squeezed state
As the simplest example for an entangled Gaussian state consider the two-mode squeezed state with
Schrödinger functional

Ψr[φ1, φ2] = c exp

[
−e

2r

4
m(φ1 − φ2)2 −

e−2r

4
m(φ1 + φ2)

2

]
.

For r = 0, this simply becomes the product state

Ψ0[φ1, φ2] = c exp

[
−1

2
m(φ21 + φ22)

]
= c exp

[
−1

2
mφ21

]
exp

[
−1

2
mφ22

]
.

For r > 0, such a product decomposition is not possible, however. Generalizations of such two-mode
squeezed states describe entangled states from inflation in the early universe or the entanglement
of Hawking radiation emerging from a black hole with radiation falling into the horizon (for free
bosonic theories). The density matrix for the two-mode system in the squeezed state is

ρ12[φ1+, φ2+;φ1−, φ2−] =
1

Z
exp

[
− e2r

4
m(φ1+ − φ2+)2 −

e−2r

4
m(φ1+ + φ2+)

2

− e2r

4
m(φ1− − φ2−)2 −

e−2r

4
m(φ1− + φ2−)

2

]
.
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Reduced density matrix
It is instructive to calculate the reduced density matrix for the mode φ1 by taking the partial trace
of the density matrix. Quite generally, the reduced density matrix for a subsystem A of a larger
system consisting of the parts A and B is given as the partial trace

ρA = TrB {ρAB} .

If A and B are entangled and ρAB describes a pure state, the reduced density matrix is of a mixed
state form.In contrast, for a pure product state ρAB = ρA ⊗ ρB , the reduced density matrix ρA is
also pure. In the present case, taking the partial trace for the second mode corresponds to

ρ1[φ1+, φ1−] =

∫
Dφ ρ12[φ1+, φ;φ1−, φ]

=
1

Z

∫
Dφ exp

[
− e2r + e−2r

4
m(φ21+ + φ21−)

+ 2mφ

(
e2r − e−2r

4
m(φ1+ + φ1−)

)
−mφ2 e

2r + e−2r

2

]
=

1

Z
exp

[
− 1

2
m cosh(2r)(φ21+ + φ21−) +

1

4
m cosh(2r) tanh2(2r)(φ1+ + φ1−)

2

]
×
∫
Dφ exp

[
−m cosh(2r)

(
φ− 1

2
tanh(2r)(φ1+ + φ1−)

)2 ]
=

1

Z
exp

[
− 1

2
m cosh(2r)

(
1− 1

2
tanh2(2r)

)
(φ21+ + φ21−)

+
1

2
m cosh(2r) tanh2(2r)φ1+φ1−

]
.

(5.4)
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In the last step, we have performed the Gaussian integral over φ and dropped an irrelevant factor.
As expected, for r > 0, the density matrix ρ1 now is not of pure state form anymore. It does

not factor into a ket and a bra because of the term ∝ φ1+φ1− in the exponent.
Note the resemblance of (5.4) and (5.3). This is an indication that entanglement can sometimes
lead to a locally thermal looking state, albeit it is globally pure.

Blackboard video

LECTURE 12

6 Dynamics

So far we have been concerned with the description of states in the field theory, which can be
specified for example at a globally fixed constant time t = t0. Our next goal is to understand
dynamics in time. Before going there it is worth to clarify an issue related to relativistic causality.

States on Cauchy surfaces

It seems a bit strange that time is singled out for the description of states, because, according to
special relativity, observers that move with a velocity relative to each other have different notions
of what equal time actually means. Indeed, states can be specified somewhat more generally on any
Cauchy surface Σ. This is a (d−1) dimensional submanifold of d-dimensional spacetime, a so-called
hypersurface, with a normal vector that points in a time-like direction everywhere. A hypersurface
t = t0 with normal vector nµ = (1, 0, 0, 0) is then just a special case.

In the more general case, the density matrix on the hypersurface Σ is specified as a double
functional of fields φ+(x) and φ−(x) where the coordinates are now on the hypersurface, that is
x ∈ Σ, ρ = ρΣ[φ+, φ−]. In this formulation, a generalization of time evolution would correspond
to an evolution between neighbouring Cauchy surfaces, e. g. Σ1 → Σ2 → · · · → ΣN . Keeping
this generalization in mind, we can still take evolution according to some globally defined time
coordinate as a convenient special case in the following.

Blackboard video

Unitary time evolution

Similar as in quantum mechanics, the evolution in time, or between Cauchy surfaces, is realized
by unitary evolution operators. For N -body quantum mechanics, this would be an operator of the
type

Ut2←t1(x1, · · · ,xN ;y1, · · · ,yN ), (6.1)

such that

ψt2(x1, · · · ,xN ) =

∫
y1,...,yN

Ut2←t1(x1, · · · ,xN ;y1, · · · ,yN )ψt1(y1, · · · ,yN ). (6.2)
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The density matrix also needs the hermitian conjugate operator

U†t1→t2(x1, · · · ,xN ;y1, · · · ,yN ) (6.3)

so that the density matrix evolves as

ρt2(x1, · · · ,xN ;y1, · · · ,yN ) =

∫
u1,··· ,uN

∫
v1,··· ,vN

Ut2←t1(x1, · · · ,xN ;u1, · · · ,uN )·

· ρt1(u1, · · · ,uN ;v1, · · · ,vN )U†t1→t2(v1, · · · ,vN ;y1, · · · ,yN )

(6.4)

In a quantum field theory, one can specify in a similar way the unitary operator for evolution from
one hypersurface to the next, e.g. Σ1 → Σ2, or t1 → t2

Ut2←t1 [φ2, φ1], (6.5)

such that the density matrix functional evolves as

ρt2 [φ2+, φ2−] =

∫
Dφ1+

∫
Dφ1−Ut2←t1 [φ2+, φ1+]ρt1 [φ1+, φ1−]U

†
t1→t2 [φ1−, φ2−]. (6.6)

This evolution equation of the density matrix functional is a special case of the general evolution
equation for the density matrix in quantum mechanics

ρt2 = e−iH(t2−t1)ρt1e
iH(t2−t1).

The left operator evolves the “ket” forward in time, while the right operator evolves the “bra”
forward.

Blackboard video

Schwinger-Keldysh double time path

The evolution operator for the “bra” eiH(t2−t1) or

U†t1→t2 [φ1−, φ2−]

can also be understood as an operator that evolves backward in time. This is the idea beyond the
Schwinger-Keldysh double time path that can be used to describe the time evolution for quantum
field theories in general out-of-equilibrium situations. This is needed for example in cosmology or
to describe non-equilibrium situations in condensed matter contexts. Note in particular that ρt1
can in principle be any density matrix. Because both the “ket” and the “bra” part of the density
matrix are specified initially or as incoming one speaks of an in-in formalism. The outgoing state
is not specified and must be calculated.

Blackboard video
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Functional integral for time evolution

Let us now consider the time evolution operator

Utf←t0 [φf, φ0].

We are free to insert here intermediate steps here and to write

Utf←t0 [φf, φ0] =

∫
DφN · · ·

∫
Dφ2

∫
Dφ1 Utf←tN [φf, φN ] · · ·Ut2←t1 [φ2, φ1]Ut1←t0 [φ1, φ0].

By inserting many of these intermediate steps we can reduce everything to evolution operators over
infinitesimal time steps tj+1 = tj + ε. For these one can write

Uε = e−iεH ≈ 1− iεH,

with terms of quadratic order and higher vanishing in the limit ε→ 0. The part 1 corresponds here
to a functional Dirac delta, which we can write as

δ[φj+1 − φj ] =
∫
Dπj exp

[
i

∫
d3xπj(x) [φj+1(x)− φj(x)]

]
. (6.7)

This is just the generalization of the familiar expression

δ(x− y) =
∫

dp

2π
eip(x−y),

to the functional formalism. The Hamiltonian is itself an operator that involves the fields φ and its
spatial derivatives, and the conjugate momentum operators

−i δ

δφ(x)
.

When acting on an expression as in (6.7) this functional derivative operator gives just πj(x) under
the integral.

Collecting terms we find

Utf←t0 [φf, φ0] =

∫
DπN

∫
DφN · · ·

∫
Dπ1

∫
Dφ1

∫
Dπ0

exp

i N∑
j=0

ε

{∫
d3x

{
πj(x)

φj+1(x)− φj(x)
ε

}
−H[φj , πj ]

} .
We have re-exponentiated here the term invoving the Hamiltonian and were a bit sloppy with the
question how to order terms in the Hamiltonian. This is justified by the limit ε → 0 we want to
take next. We can replace with t = t0 + jε the fields, φj(x)→ φ(t,x), conjugate momentum fields,
πj(x)→ π(t,x) and

φj+1(x)− φj(x)
ε

→ ∂

∂t
φ(t,x) = φ̇(t,x).

Moreover, the sum over j in the exponent becomes an integral along time.

Blackboard video
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Phase space functional integral

We find thus the functional integral expression

Utf←t0 [φf, φ0] =

∫
Dπ

∫
Dφ exp

[
i

∫ tf

t0

dt

∫
d3x

{
π(x)φ̇(x)−H

}]
,

where H is the Hamiltonian density. The functional integral includes now one integral over the
field at each point in time and space between the initial and final time or Cauchy hypersurface. At
the boundaries of the time interval (or on the bounding Cauchy surfaces) one must keep

φ(t0,x) = φ0(x), φ(tf,x) = φf(x), (6.8)

fixed. The integrals over the conjugate momentum fields are not constrained.

Blackboard video

Langrangian functional integral

Finally, for theories where the Hamiltonian is quadratic in the conjugate momentum fields π(t,x)
one can easily perform the functional integral over π(t,x). Besides an irrelevant overall constant,
this implies to extremize with respect to π(x), which is effectively the Legendre transform to an
integral over the Lagrangian in the exponential,

Utf←t0 [φf, φ0] =

∫
Dφ exp

[
i

∫ tf

t0

dt

∫
d3xL (φ, ∂µφ)

]
, (6.9)

where L (φ, ∂µφ) is the Lagrangian density. Specifically, for the scalar field theory one has

L =
1

2
φ̇2 − 1

2
∇φ2 − V (φ) = −1

2
gµν∂µφ∂νφ− V (φ).

We use here the Minkowski metric with mainly plus convention, gµν = diag(−,+,+,+), and the
microscopic potential

V (φ) =
1

2
m2φ2 +

λ

4!
φ4.

At the boundaries in time we still need to keep the fields fixed according to (6.8).

Blackboard video

LECTURE 13

Thermal density operators

Now that we know how to write evolution operators as functional integrals we can do many things
with them. Let us discuss the density matrix of quantum fields in a thermal state. This is not to
be confused with the classical fields in a thermal state we discussed previously. Thermal states are
interesting by themself and the standard vacuum state is included in the limit T → 0.

– 56 –

https://www.tpi.uni-jena.de/~floerchinger/assets/videos/yXa1FA1apP.mp4
https://www.tpi.uni-jena.de/~floerchinger/assets/videos/ZAc3Mt8AvE.mp4


At fixed time t, the thermal density matrix is formally given by

ρ =
1

Z(β)
e−βH , Z(β) = Tr

{
e−βH

}
, (6.10)

where β = 1/T . By comparing this to the evolutionoperator e−itH we see that the operator e−βH
is in fact just an evolution operator into an imaginary time direction, for example from t = t0 to
t = t0 − iβ. Moreover, in the thermal partition function Z(β) one needs to take the trace which
means to identify the fields at t = t0 and t = t0− iβ. This leads to a torus geometry with peridicity
in imaginary time direction where the fields satify the condition

φ(t0,x) = φ(t0 − iβ,x).

This is called the Matsubara torus.

Blackboard video

Analytic continuation or Wick rotation

Let us analyse what happens to the action when we evaluate it along the imaginary time contour.
We introduce the imaginary time coordinate τ through

t = t0 − iτ,

and integrate τ from 0 to β = 1/T . Note that

∂

∂t
= i

∂

∂τ
,

and dt = −idτ The real-time action times the imaginary unit,

iS = i

∫
dt

∫
d3x

{
1

2

(
∂

∂t
φ

)2

− 1

2
(∇φ)

2 − V (φ)

}
,

which is what enters the exponential in the transition operator U , becomes then, when evaluated
along the Matsubara contour,

−SE = −
∫ β

0

dτ

∫
d3x

{
1

2

(
∂

∂τ
φ

)2

+
1

2
(∇φ)

2
+ V (φ)

}
.

This is now an action in Euclidean space, where the metric is

ds2 = dτ2 + dx2,

and the difference in sign between time and space coordinates has disapeared! The Euclidean action
is of the same kind as the “actions” we have studied previously in the context of classical statistical
field theories (which also explains why we called them “actions” even though formally these where
parts of Hamiltonians divided by temperature). The difference is, however, that we now have one
Euclidean dimension more! This additional dimension is periodic at non-zero temperature.

Blackboard video
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Zero temperature or ground state
At this point it is interesting to consider the limit T → 0 or β → ∞. The circumference of the
Matsubara torus becomes then infinite and τ is integrated from 0 to ∞, or, equivalently after a
change of variables, from −∞ to ∞. In that limit the theory is equivalent to what we discussed
previously in the context of classical fields at finite temperature, but with one dimension more. The
groud state of a quantum field theory in d = 1 + 3 dimensions can be represented by a statistical
field theory with d = 4 dimensions.

Blackboard video

Matsubara frequencies
Taking the periodicity condition at non-zero temperature into account we can write

φ(τ,x) = T

∞∑
n=−∞

∫
d3p

(2π)3
eiωnτ+ipxφ(−iωn,p),

where
ωn = 2πTn

is known as the Matsubara frequeny. While τ can be seen as an imaginary periodic time, ωn can be
seen as an imaginary discrete frequency. In the high temperature limit only the lowest Matsubara
modes with ωn = 0 contribute effectively to thermodynamic observables, all others are strongly
surpressed in the correlation function 1/[(2πTn)2 + p2]. Restricting to n = 0 leads to the classical
limit of the theory we have discussed previously. In the opposite limit T → 0 we obtain an integral,

T
∑
n

→
∫
dω

2π
,

over continuous Matsubara frequencies.

Blackboard video

Density matrix functional
The density matrix functional is given by

ρ[φ+, φ−] =
1

Z(β)

∫
φ+,φ−

Dφ e−SE[φ], (6.11)

where the boundary conditions for the functional integral are

φ(τ = 0,x) = φ+(x), φ(τ = β,x) = φ−(x).

One easily confirms that the density matrix is normalized correctly,

Tr{ρ} =
∫
Dφ+ ρ[φ+, φ+] =

1

Z(β)

∫
Dφ+

∫
φ+,φ+

Dφ e−S[φ] =
1

Z(β)

∫
Dφ e−S[φ] = 1, (6.12)

where Z(β) is the thermodynamic partition function. The density matrix (6.11) can be combined
with evolution operators as in eq. (6.9) and a similar representation for U† to determine the density
matrix at a later time. When the trace of such a density matrix is taken one obtains a closed time
path, as a special case of the Schwinger-Keldysh double time path.
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Blackboard video

In-out formalism

For many problems in quantum field theory one does not need the Schwinger-Keldysh or in-in
formalism. Instead one can work in a situation where the ingoing as well as the out-going state are
actually vacuum or ground states. This describes in particular situations with just a few particles in
the initial and final state for which one can specify convenient creation and annihilation operators
acting on the vaccum state. Much of the scattering physics needed to describe collider experiments
can be described this way.

Blackboard video

Vacuum-to-vacuum transition amplitude

A contour where the incoming state and the outgoing state are the vacuum, but that nevertheless
goes along real times can be achieved by rotating the real time slightly into the complex plane.
By integratig fom t0 → −∞(1 − iε) to the final time tf → ∞(1 − iε) we have at both ends of the
integration contour terms e−i∞(1−iε)H ∼ e−ε∞H , which effectively project to the ground state. For
states above the minimal energy, the exponential supression is so strong that only the ground state
remains.

The integration contour will play a role in deciding which Greens functions of a differential
operator to take. Recall that Greens functions are non unique but depend on the boundary con-
ditions. A simple prescription, equivalent to the above rotation in time integration contour, is to
multipy the Hamiltonian with (1 − iε), or, even simpler and equivalently in practice, to replace
m2 with m2 − iε. We will take this iε prescription into account later on when calculating Greens
functions.

Blackboard video

Feynman propagator

Let us consider now a two-point correlation function of the type

1

i
G(x− y) = 1

Z

∫
Dφφ(x)φ(y)eiS2[φ],

where time t is integrated along the vaccuum-to-vacuum or in-out contour and we work with the
quadratic action

S2[φ] =

∫
d4x

{
−1

2
gµν∂µφ(x)∂νφ(x)−

1

2
m2φ(x)2

}
= −1

2

∫
d4p

(2π)4
{
φ∗(p)

[
p2 +m2

]
φ(p)

}
.

We are using now a four-dimensional notation with x = (t,x), p = (ω,p) and p2 = −ω2 + p2. In
the second equation we have introduced the fields in Fourier space through

φ(x) =

∫
d4p

(2π)4
eipxφ(p),
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where px = −ωt+ px. For real fields one has φ∗(p) = φ(−p). The two-point function follows now
from the standard receipe of Gaussian integration and we obtain

G(x− y) =
∫

d4p

(2π)4
eip(x−y)

1

p2 +m2 − iε

=

∫
d4p

(2π)4
e−ip

0(x0−y0)+ip(x−y) −1
(p0 −

√
p2 +m2 + iε)(p0 +

√
p2 +m2 − iε)

.

(6.13)

Here we have inserted the iε which will help us to pick the right integration contour. Note that
G(x− y) is a Greens function to the inverse propagator in the sense[

−gµν∂µ∂ν +m2
]
G(x− y) = δ(4)(x− y).

One may perform the integration over the frequency p0 in eq. (6.13). Note first that there are poles
at

p0 =
√
p2 +m2 − iε, p0 = −

√
p2 +m2 + iε.

For x0 − y0 > 0 we can close the p0 integration contour in the lower half of the complex plane and
get a contribution from the residue at p0 =

√
p2 +m2 = Ep. In contrast, for x0 − y0 < 0 the

contour must be closed in the upper half of the complex plane, and we pick up a contribbution from
the residue at p0 = −

√
p2 +m2 = −Ep. Taken together this yields

G(x− y) =θ(x0 − y0)
∫

d3p

(2π)3
i

2Ep
e−iEp(x

0−y0)+ip(x−y)

+ θ(y0 − x0)
∫

d3p

(2π)3
i

2Ep
e+iEp(x

0−y0)+ip(x−y)
(6.14)

Depending on the time ordering we find either a term with positive frequency or one with negative
frequency. The Feynman propagator G(x− y) is also called time-ordered propagator.

Blackboard video

Exercise

By choosing different contours of the frequency integration, derive expressions for a retared propag-
tor that vanishes when x0 − y0 < 0 and an advanced propagator that vanishes when x0 − y0 > 0.

LECTURE 14

7 Non-relativistic bosonic fields

From relativistic to non-relativistic scalar fields

In this section we go from a relativistic quantum field theory back to non-relativistic physics but in
a quantum field theoretic formalism. This non-relativistic QFT is in the few-body limit equivalent
to quantum mechanics for a few particles but also has interesting applications to condensed matter
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physics (many body quantum theory) and it is interesting conceptually. We start from the action
of a complex, relativistic scalar field in Minkowski space

S =

∫
dtd3x

{
−∂µφ∗∂µφ−m2φ∗φ− λ

2
(φ∗φ)2

}
.

The quadratic part can be written in Fourier space with (px = −p0x0 + px),

φ(x) =

∫
d4p

(2π)4
eipxφ(p), φ∗(x) =

∫
d4p

(2π)4
e−ipxφ∗(p),

as

S2 =−
∫

d4p

(2π)4
{
φ∗(p)

[
−(p0)2 + p2 +m2

]
φ(p)

}
=−

∫
d4p

(2π)4

{
φ∗(p)

[
−
(
p0 −

√
p2 +m2

)(
p0 +

√
p2 +m2

)]
φ(p)

}
.

Blackboard video

Two zero crossings

One observes that the so-called inverse propagator has two zero-crossings, one at p0 =
√
p2 +m2

and one at p0 = −
√

p2 +m2. At these points the quadratic part of the action become stationary
in the sense

δ

δφ∗(p)
S2 = 0.

The zero-crossings also correspond to poles of the propagator. These so-called on-shell relations
give the relation between frequency and momentum for propagating, particle-type excitations of
the theory. In fact, p0 =

√
p2 +m2 gives the one for particles, p0 = −

√
p2 +m2 the one of

anti-particles. In the non-relativistic theory, anti-particle excitations are absent. Intuitively, one
assumes that the fields are close to fulfilling the dispersion relation for particles, p0 =

√
p2 +m2

which is for large m2 rather far from the frequency of anti-particles. One can therefore replace in
a first step

p0 +
√
p2 +m2 → 2

√
p2 +m2 ≈ 2m.

Moreover, one can expand the dispersion relation for particles for m2 � p2,

p0 =
√

p2 +m2 = m+
p2

2m
+ . . .

This leads us to a quadratic action of the form

S2 = −
∫

d4p

(2π)4

{
φ∗(p)

(
−p0 +m+

p2

2m

)
2mφ(p)

}
,

or for the full action in position space

S =

∫
dtd3x

{
φ∗
(
i∂t −m+

∇2

2m

)
2m φ− λ

2
(φ∗φ)2

}
.

Blackboard video
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Rescaled fields and dispersion relation

It is now convenient to introduce rescaled fields by setting

φ(t,x) =
1√
2m

e−i(m−V0)tϕ(t,x).

The action becomes then

S =

∫
dtd3x

{
ϕ∗
(
i∂t − V0 +

∇2

2m

)
ϕ− λ

8m2
(ϕ∗ϕ)2

}
. (7.1)

The dispersion relation is now with

ϕ(t,x) =

∫
dω

2π

d3p

(2π)3
e−iωt+ipxϕ(ω,p),

given by

ω = V0 +
p2

2m
.

This corresponds to the energy of a non-relativistic particle where V0 is an arbitrary normalization
constant corresponding to the offset of an external potential. The action in equation (7.1) describes
a non-relativistic field theory for a complex scalar field. As we will see, one can obtain quantum
mechanics from there but it is also the starting point for a description of superfluidity.

Blackboard video

Symmetries of non-relativistic theory

The non-relativistic action in equation (7.1) has a number of symmetries that are interesting to
discuss. First we have translations in space and time as well as rotations in space as in the relativistic
case. There is also a global U(1) internal symmetry,

ϕ(x)→ eiαϕ(x), ϕ∗(x)→ e−iαϕ∗(x).

By Noether’s theorem this symmetry is related to particle number conservation (exercise).

Blackboard video

Time-dependent U(1) symmetry

There is also an interesting extension of the global U(1) symmetry. One can in fact make it time-
dependent according to

ϕ(x)→ ei(α+βt)ϕ(x), ϕ∗(x)→ e−i(α+βt)ϕ∗(x).

All terms in the action are invariant except for

ϕ∗i∂tϕ→ ϕ∗e−i(α+βt) i∂t e
i(α+βt)ϕ(x) = ϕ∗(i∂t − β)ϕ.

However, if we also change V0 → V0 − β we have for the combination

ϕ∗(i∂t − V0)ϕ→ ϕ∗(i∂t − β − V0 + β)ϕ = ϕ∗(i∂t − V0)ϕ.
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This shows that

ϕ(x)→ ei(α+βt)ϕ, ϕ∗ → e−i(α+βt)ϕ∗, V0 → V0 − β,

is in fact another symmetry of the action in equation (7.1). One can say here that (i∂t − V0) acts
like a covariant derivative. This says that (i∂t − V0)ϕ transforms in the same (covariant) way as ϕ
itself. The physical meaning of this transformation is a change in the absolute energy scale, which
is possible in non-relativistic physics.

Blackboard video

Galilei transformation

Note that the action in equation (7.1) is not invariant under Lorentz transformations any more. This
is directly clear because derivatives with respect to time and space do not enter in an equal way.
However, non-relativistic physics is invariant under another kind of space-time transformations,
namely Galilei boosts,

t→ t,

x→ x+ vt.

One can go to another reference frame that moves relative to the original one with a constant
velocity. How is this transformation realized in the non-relativistic field theory described by equation
(7.1)? This is a little bit complicated and we directly give the transformation law,

ϕ(t,x)→ ϕ′(t,x) = ei
(
mv·x− 1

2mv2t
)
ϕ(t,x− vt).

Indeed one can confirm that(
i∂t +

∇2

2m

)
ϕ(t,x)→ ei

(
mv·x− 1

2mv2t
) [(

i∂t +
∇2

2m

)
ϕ
]
(t,x− vt),

so that the action (7.1) is invariant under Galilei transformations.

Blackboard video

Effective potential

One can write the action in (7.1) also as

S =

∫
dtd3x

{
ϕ∗
(
i∂t +

∇2

2m

)
ϕ− V (ϕ∗ϕ)

}
, (7.2)

with microscopic potential as a function of ρ = ϕ∗ϕ,

V (ρ) = V0ρ+
λ

2
ρ2 = −µρ+ λ

2
ρ2.

At non-vanishing density one has V0 = −µ, where µ is the chemical potential. For, µ > 0 the
minimum of the effective potential is at ρ0 > 0. In a classical approximation where the effect of
fluctuation is neglected, one has the equation of motion following from δS = 0.
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Bose-Einstein condensate
If the solution ϕ(x) = φ0 is homogeneous (constant in space and time), it must correspond to a
minimum of the effective potential. Without loss of generality we can assume φ0 ∈ R and

V ′(ρ0) = −µ+ λρ0 = 0,

leads to
φ0 =

√
ρ0 =

√
µ

λ
.

Assuming that it survives the effect of quantum fluctuations, such a field expectation value breaks
the global U(1) symmetry spontaneously, similar to magnetization. This phenomenon is known as
Bose-Einstein condensation. One can see this as a macroscopic manifestation of quantum physics.
The mode with vanishing momentum p = 0 has a macroscopically large occupation number, which
is possible for bosonic particles. On the other side, it arises here in a classical approximation to the
quantum field theory described by the action in eq. (7.1). In this sense, a Bose-Einstein condensate
can also be seen as a classical field, similar to the electro-magnetic field, for example.

Bogoliulov excitations
It is also interesting to study small perturbations around the homogeneous field value φ0. Let us
write

ϕ(x) = φ0 +
1√
2
[φ1(x) + i φ2(x)] ,

with real fields φ1(x) and φ2(x). The action in eq. (7.2) becomes (up to total derivatives)

S =

∫
dt d3x

φ2∂tφ1 + 1

2

2∑
j=1

φj
∇2

2m
φj − V

(
φ20 +

√
2φ0φ1 +

1
2φ

2
1 +

1
2φ

2
2

) .

It is instructive to expand to quadratic order in the deviations from a homogeneous field φ1 and
φ2. The quadratic part of the action reads

S2 =

∫
dt d3x

{
−1

2
(φ1, φ2)

(
−∇2

2m + 2λφ20 ∂t

−∂t −∇2

2m

)(
φ1
φ2

)}
.

In momentum space, the matrix between the fields becomes

G−1(ω,p) =

(
p2

2m + 2λφ20 −iω
iω p2

2m

)
.

In cases where the inverse propagator is a matrix, this holds also for the propagator. When the
determinant of the inverse propagator has a zero-crossing, the propagator has a pole. This defines
the dispersion relation for quasi-particle excitations,

detG−1(ω,p) = 0.

Here this leads to
−ω2 +

(
p2

2m
+ 2λφ20

)
p2

2m
= 0,

or

ω =

√(
p2

2m
+ 2λφ20

)
p2

2m
. (7.3)

This is known as Bogoliubov dispersion relation.
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Linear and quadratic regimes

For small momenta, such that
p2

2m
� 2λφ20,

one finds

ω ≈
√
λφ20
m
|p|. (7.4)

In contrast, for
p2

2m
� 2λφ20,

one recovers the usual dispersion relation for non-relativistic particles

ω ≈ p2

2m
. (7.5)

The low-momentum region describes phonons (quasi-particles of sound excitations), while the large-
momentum region describes normal particles.
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Superfluidity

The fact that the dispersion relation is linear for small momenta is also responsible for another
interesting phenomenon, namely superfluidity, a fluid motion without friction. To understand this
consider an interacting Bose-Einstein condensate flowing past some body of through a capillary. If
the energy and momentum of the fluid are E = E0 and p = 0 in the fluid rest frame, they are

E′ = E + pv +
1

2
Mv2 = E0 +

1

2
Mv2, p′ = p+Mv =Mv,

in the rest frame of the body or capillary. We used here first the general transformation of energy
E and momentum p under Galilei boost transformations and then the particular values for the
homogeneous fluid state.

Imagine now that we can create an excitation or quasi-particle in the fluid with energy ε(p)

and momentum p. In the fluid rest frame we have now E = E0 + ε(p) and p = p. The energy and
momentum in the rest frame of the capillary are then

E′ = E0 + ε(p) + p · v +
1

2
Mv2, p′ = p+Mv.

Comparison to the corresponding relation for the homogeneous state shows that the energy and
momentum associated to the excitation are in the rest frame of the capiliary ε(p) + p · v and p,
respectively.
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Landau’s criterion for superfluidity

Now the point is that at small temperature, excitations will only be created in the fluid in appreciable
numbers when it is energetically favorable, i.e. for

ε(p) + p · v < 0,

such that the energy of the fluid is lowered. If this relation is not fulfilled for any momentum p,
no excitations that could transport momentum out of a local fluid cell will be created. This means
that there is no viscosity and the flow is superfluid. It follows that for friction to become possible,
the fluid needs to have a fluid velocity larger than

vc = min
p

ε(p)

|p|
,

known as critical velocity. For the Bogoliubov dispersion relation (7.3) the critical velocity equals
the velocity of sound.
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LECTURE 15

8 Scattering

In this section we will discuss a rather useful concept in quantum field theory – the S-matrix. It
describes situations where the incoming state is a perturbation of a symmetric (homogeneous and
isotropic) vacuum state in terms of particle excitations and the outgoing state similarly. We are
interested in calculating the transition amplitude, and subsequently transition probability, between
such few-particle states. An important example is the scattering of two particles with a certain
center-of-mass energy. This is an experimental situation in many high energy laboratories, for
example at CERN. The final states consists again of a few particles (although “few” might be rather
many if the collision energy is high). Another interesting example is a single incoming particle, or
resonance, that can be unstable and decay into other particles. For example π+ → µ+ + νµ. As we
will discuss later on in more detail, particles as excitations of quantum fields are actually closely
connected with symmetries of space-time, in particular translations in space and time as well as
Lorentz transformations including rotations. (In the non-relativistic limit, Lorentz transformations
are replaced by Galilei transformations). The standard application of the S-matrix concept assumes
therefore that the vacuum state has these symmetries. The S-matrix is closely connected to the
functional integral. Technically, this connection is somewhat simpler to establish for non-relativistic
quantum field theories. This will be discussed in the following.
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Mode function expansion

Let us write the non-relativistic bosonic fields as

ϕ(t,x) =

∫
p

vp(t,x) ap(t), ϕ∗(t,x) =

∫
p

v∗p(t,x) a
†
p(t),

with
∫
p
=
∫

d3p
(2π)3 and the mode functions

vp(t,x) = e−iωpt+ipx.

While we plan to work in the in-out functional integral formalism, let us note that in an operator
picture ap(t) and a†p(t) would be annihilation and creation operators for particles with momentum
p and frequency

ωp =
p2

2m
+ V0.

Note that in contrast to the relativistic case, the expansion of the non-relativistic field ϕ(t,x)

contains no creation operator and the one of ϕ∗(t,x) no annihilation operator. This is a consequence
of the absence of anti-particles in the non-relativistic theory.
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Scalar product

For the following discussion, it is useful to introduce a scalar product between two functions of
space and time f(t,x) and g(t,x),

(f, g)t =

∫
d3x {f∗(t,x)g(t,x)} .

The integer goes over the spatial coordinates at fixed time t. Note that if f and g were solutions
of the non-relativistic, single-particle Schrödinger equation, the above scalar product were actually
independent of time t as a consequence of unitarity in non-relativistic quantum mechanics.
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Normalization of mode functions

The mode functions are normalized with respect to this scalar product as

(vp, vq)t = (2π)3δ(3)(p− q).

One can write

ap(t) =(vp, ϕ)t =

∫
d3xeiωpt−ipxϕ(t,x),

a†p(t) =(v∗p, ϕ
∗)t =

∫
d3xe−iωpt+ipxϕ∗(t,x).

Blackboard video
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Time dependence of creation annihilation and creation operators

The right hand side depends on time t and it is instructive to take the time derivative,

∂tap(t) =

∫
d3x eiωpt−ipx[∂t + iωp]ϕ(t,x)

=

∫
d3x eiωpt−ipx

[
∂t + i

(
p2

2m
+ V0

)]
ϕ(t,x)

=

∫
d3x eiωpt−ipx

[
∂t + i

(
−∇2

2m
+ V0

)]
ϕ(t,x).

We used here first the dispersion relation and expressed then p2 as a derivative acting on the
mode function (it acts here to the left). In a final step one can use partial integration to make the
derivative operator act to the right,

∂tap(t) = i

∫
d3x eiωpt−ipx

[
−i∂t −

∇2

2m
+ V0

]
ϕ(t,x).

This expression confirms that ap(t) were time-independent if ϕ(t,x) were a solution of the one-
particle Schrödinger equation. More general, it is a time-dependent, however. In a similar way one
finds (exercise)

∂ta
†
p(t) = −i

∫
d3x e−iωpt+ipx

[
i∂t −

∇2

2m
+ V0

]
ϕ∗(t,x).
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Incoming states

To construct the S-matrix, we first need incoming and out-going states. Incoming states can be
constructed by the creation operator

a†p(−∞) = lim
t→−∞

a†p(t).

For example, an incoming two-particle state would be

|p1,p2; in〉 = a†p1
(−∞)a†p2

(−∞)|0〉.
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Bosonic exchange symmetry

We note as an aside point that these state automatically obey bosonic exchange symmetry

|p1,p2; in〉 = |p2,p1; in〉,

as a consequence of
a†p1

(−∞)a†p2
(−∞) = a†p2

(−∞)a†p1
(−∞).
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Fock space

We note also general states of few particles can be constructed as

|ψ; in〉 = C0|0〉+
∫
p

C1(p) |p; in〉+
∫
p1,p2

C2(p1,p2)|p1,p2; in〉+ . . .

This is a superposition of vacuum (0 particles), 1-particle states, 2-particle states and so on. The
space of such states is known as Fock space. In the following we will sometimes use an abstract
index α to label all the states in Fock space, i. e. |α; in〉 is a general incoming state. These states
are complete in the sense such that ∑

α

|α; in〉〈α; in| = 1,

and normalized such that 〈α; in|β; in〉 = δαβ .
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Outgoing states

In a similar way to incoming states one can construct outgoing states with the operators

a†p(∞) = lim
t→∞

a†p(t).

For example
|p1,p2; out〉 = a†p1

(∞)a†p2
(∞)|0〉.

We consider usually transition amplitudes where outgoing states appear as a “bra”, i. e. in the form

〈p1,p2; out| = 〈0|ap1
(∞)ap2

(∞).

One can read this in the sense that existing particles get annihlilated at asymptotically large times
before the state becomes the vacuum again.
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8.1 The S-matrix

S-matrix

The S-matrix denotes now simply the transition amplitude between incoming and out-going general
states |α; in〉 and |β; out〉,

Sβα = 〈β; out|α; in〉.

Because α labels all states in Fock space, the S-matrix is a rather general and powerful object. It
contains the vacuum-to-vacuum transition amplitude as well as transition amplitudes between all
particle-like excited states.
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Unitarity of the S-matrix
Let us first prove that the scattering matrix is unitary,

(S†S)αβ =
∑
γ

(S†)αγSγβ

=
∑
j

〈γ; out|α; in〉∗ 〈γ; out|β; in〉

=
∑
j

〈α; in|γ; out〉〈γ; out|β; in〉

= 〈α; in|β; in〉
= δαβ .

We have used here the completeness of the out states∑
j

|γ; out〉〈γ; out| = 1.
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Decmposition of S-matrix
It is useful to decompose the S-matrix as

Sαβ = δαβ + contributions from interactions.

The first part δβα is just the transition amplitude for the case that no scatering has occurred, i. e.
the outgoing state is the same as the incoming state. For example, the S-matrix element for 2→ 2

scattering 〈q1,q2; out|p1,p2; in〉 has a contribution

(2π)6
[
δ(3)(p1 − q1) δ

(3)(p2 − q2) + δ(3)(p1 − q2) δ
(3)(p2 − q1)

]
.

This is amplitude that momenta did not change, symmetrized in a way that respects bosonic
exchange symmetry. The contribution from interactions (actual scattering) is more interesting and
we concentrate on it in the following.
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Conservation laws, elaastic and inelastic collisions
The S-matrix respects a number of conservation laws such as for energy and momentum. There
can also be conservation laws for particle numbers, in particular also in the non-relativistic domain.
One distinguishes between elastic collisions where particle numbers do not change, e.g. 2→ 2, and
inelastic collisions, such as 2 → 4. In a non-relativistic theory, such inelastic processes can occur
for bound states, for example two H2 - molecules can scatter into their constituents

H2 +H2 → 4H.
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Connection between outgoing and incoming states

What is the connection between incoming and outgoing states? Let us write

ap(∞)− ap(−∞) =

∫ ∞
−∞

∂tap(t)

= i

∫ ∞
−∞

dt

∫
d3x eiωpt−ipx

[
−i∂t − ∇2

2m + V0

]
ϕ(t,x).

Annihilation operators at asymptotically large incoming and outgoing times differ by an integral
over space-time of the Schrödinger operator acting on the field. In momentum space with (px =

−p0x0 + px = −p0t+ px),

ϕ(t,x) =

∫
dp0

2ω

d3p

(2π)3
eipxϕ(p),

this would read
ap(∞)− ap(−∞) = i

[
−p0 + p2

2m
+ V0

]
ϕ(p).

In a similar way one finds

a†p(∞)− a†p(−∞) = −i
∫ ∞
−∞

dt

∫
d3x e−iωpt+ipx

[
−i∂t − ∇2

2m + V0

]
ϕ∗(t,x)

= −i
[
−p0 + p2

2m
+ V0

]
ϕ∗(p).
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Relation between S-matrix elements and correlation functions

To create particles in the initial state we can use a†p(−∞). In contrast, ap(−∞) gives a vanishing
contribution when it acts on the incoming vacuum |0〉. For the final state we can similarly use
ap(∞) to annihilate particles, while a†p(∞) gives a vanishing contribution when it acts on 〈0| from
the right.

Blackboard video

So, effectively, one can replace

ap(∞)→ i

[
−p0 + p2

2m
+ V0

]
ϕ(p)

and similarly

a†p(−∞)→ i

[
−p0 + p2

2m
+ V0

]
ϕ∗(p).

This allows to reduce S-matrix elements to correlation functions in the in-out functional integral
formalism.
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Lehmann-Symanzik-Zimmermann (LSZ) reduction formula
As a concrete example, we obtain for the S-matrix element of 2→ 2 scattering

〈q1,q2; out|p1,p2; in〉

= i4
[
−q01 +

q2
1

2m
+ V0

] [
−q02 +

q2
2

2m
+ V0

] [
−p01 +

p2
1

2m
+ V0

] [
−p02 +

p2
2

2m
+ V0

]
× 〈0|ϕ(q1)ϕ(q2)ϕ∗(p1)ϕ∗(p2)|0〉.

This shows how S-matrix elements are connected to correlation functions. This relation is known
as the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula, here applied to non-relativistic
quantum field theory.
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Relativistic scalar theories
Let us mention here that for a relativistic theory the LSZ formula is quite similar but one needs to
replace [

−q0 + q2

2m
+ V0

]
→
[
−(q0)2 + q2 +m2

]
,

and for particles ϕ(q) → φ(q), ϕ∗(q) → φ∗(q), while for anti-particles ϕ(q) → φ∗(−q), ϕ∗(q) →
φ(−q).
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Correlation functions from functional integrals
The (formally time-ordered) correlation functions can be written as functional integrals in the in-out
formalism,

〈0|ϕ(q1)ϕ(q2)ϕ∗(p1)ϕ∗(p2)|0〉 =
1

Z

∫
Dϕ ϕ(q1)ϕ(q2)ϕ

∗(p1)ϕ
∗(p2) e

iS[ϕ].

We can now calculate S-matrix elements from functional integrals!
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Partition function
Let us now consider a non-relativistic theory with the action

S[ϕ] =

∫
dtd3x

{
ϕ∗
(
i∂t +

∇2

2m
− V0 + iε

)
ϕ− λ

2
(ϕ∗ϕ)2

}
.

Compared to equation (7.1) we have rescaled the interaction parameter, λ
4m2 → λ and included the

iε term needed for the in-out formalism. We introduce now the partition function in the presence
of source terms J as

Z[J ] =

∫
Dϕ exp

[
iS[ϕ] + i

∫
x

{J∗(x)ϕ(x) + J(x)ϕ∗(x)}
]
,

with x = (t,x) and
∫
x
=
∫
dt
∫
d3x.
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Perturbation theory for partition function

Let us write the partition function formally as

Z[J ] =

∫
Dϕ exp

[
−iλ

2

∫
x

(
−i δ

δJ(x)

)2(
−i δ

δJ∗(x)

)2
]

exp

[
iS2[ϕ] + i

∫
{J∗ϕ+ ϕ∗J}

]
,

where the quadratic action is

S2[ϕ] =

∫
x

ϕ∗
(
i∂t +

∇2

2m
− V0 + iε

)
ϕ.

Note that when acting on the source term in the exponent, every functional derivative −i δ
δJ(x)

results in a field ϕ∗(x) and so on. In this way, the quartic interaction term has been separated
and written in terms of derivatives with respect to the source field. We can now pull it out of the
functional integral and write

Z[J ] = exp

[
−iλ

2

∫
x

(
−i δ

δJ(x)

)2(
−i δ

δJ∗(x)

)2
]
Z2[J ],

with the partition function for the quadratic theory

Z2[J ] =

∫
Dϕ eiS2[ϕ]+i

∫
{J∗ϕ+ϕ∗J}.

The latter is rather easy to evaluate this in momentum space, as we have seen previously. Gaussian
integration yields

Z2[J ] = exp

[
i

∫
p

J∗(p)
(
−p0 + p2

2m + V0 + iε
)−1

J(p)

]
.
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Relating functional derivatives in position and momentum space

In the following it will be useful to write also the interaction term in momentum space. One may
use

δ

δJ(x)
=

∫
d4p

δJ(p)

δJ(x)

δ

δJ(p)
=

∫
d4p

(2π)4
e−ipx(2π)4

δ

δJ(p)

=

∫
d4p

(2π)4
e−ipxδJ(p) =

∫
p

e−ipxδJ(p).

Here we defined the abbreviation
δJ(p) = (2π)4

δ

δJ(p)
.

In a similar way
δ

δJ∗(x)
=

∫
p

eipxδJ∗(p).

– 73 –

https://www.tpi.uni-jena.de/~floerchinger/assets/videos/mDsirJGBNB.mp4
https://www.tpi.uni-jena.de/~floerchinger/assets/videos/FkVeKTEfgH.mp4


We used also ∫
x

eipx = (2π)4δ(4)(p).
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Perturbation series

One finds for the partition function

Z[J ] = exp

[
−iλ

2

∫
x

(
δ

δJ(x)

)2 (
δ

δJ∗(x)

)2]
Z2[J ]

= exp

[
−iλ

2

∫
k1...k4

{
(2π)4δ4(k1 + k2 − k3 − k4)δJ(k1)δJ(k2)δJ∗(k3)δJ∗(k4)

}]
× exp

[
i

∫
p

J∗(p)
(
−p0 + p2

2m + V0 − iε
)−1

J(p)

]
.

(8.1)

One can now expand the exponential to obtain a formal perturbation series in λ, similar to what
we have seen previously for statistical field theories.
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S-matrix element

Let us now come back to the S-matrix element for 2→ 2 scattering

〈q1,q2; out|p1,p2; in〉

= i4
[
−q01 +

q2
1

2m + V0

] [
−q02 +

q2
2

2m + V0

] [
−p01 +

p2
1

2m + V0

] [
−p02 +

p2
2

2m + V0

]
×
(

1

Z[J ]
δJ∗(q1)δJ∗(q2)δJ(p1)δJ(p2)Z[J ]

)
J=0

.

If we now insert the perturbation expansion for Z[J], we can concentrate on the contribution at
order λ1 = λ, because at order λ0 = 1 we have only the trivial S-matrix element for no scattering
that we already discussed.

Order λ

At order λ we have different derivatives acting on Z2[J ],

• δJ(p1) for incoming particles with momentum p1

• δJ∗(q1) for outgoing particle with momentum q1

• δJ(k) and δJ∗(k) for the interaction term.
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Propagator
At the end, all these derivatives are evaluated at J = J∗ = 0. Therefore, there must always be
derivatives δJ and δ∗J acting together on one integral appearing in Z2[J ]. Note that

δJ(p1)δJ∗(q1)

[
i

∫
p

J∗(p)
(
−p0 + p2

2m + V0 − iε
)−1

J(p)

]
= iG(p)(2π)4δ(4)(p1 − q1).

with the non-relativistic propagator in momentum space

G(p) =
1

−p01 +
p2

1

2m + V0 − iε
.

Blackboard video

Momentum conservation
If two derivatives representing external particles would hit the same integral in Z2[J ], one would
have no scattering because p1 = q1 and as a result of momentum conservation then also p2 = q2.
This is no real scattering. Only if a derivative representing an incoming or outgoing particle is
combined with a derivative from the interaction term, this is avoided.

Resulting contribution to S-matrix
By doing the algebra one finds at order λ the term for scattering

〈q1,q2; out|p1,p2; in〉 = −i
λ

2
4 (2π)4δ(4)(q1 + q2 − p1 − p2).

The factor 4 = 2× 2 comes from different ways to combine functional derivatives with sources.

Blackboard video

Momentum conservation
The overall Dirac function makes sure that the incoming four-momentum equals the out-going
four-momentum,

pin = p1 + p2 = q1 + q2 = pout.

Transition amplitude
Quite generally, one can define for the non-trivial part of an S-matrix

〈β; out|α; in〉 = (2π)4δ(4)(pout − pin) i Tβα.

Together with the trivial part from “no scattering”, one can write

Sβα = δβα + (2π)4δ(4)(pout − pin) i Tβα.

By comparison of expressions we find for the 2 → 2 scattering of non-relativistic bosons at lowest
order in λ simply

T = −2λ,
independant of momenta. More generally, the transition amplitude T is expected to depend on the
momenta of incoming and outgoing particles.
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Diagrammatic representation

To keep the overview over a calculation it is sometimes useful to introduce a graphical represen-
tation. For the perturbation series discussed above we may represent incoming particles by and
similarly outgoing particles by These functional derivatives are acting on the partition function Z[J ].
The partition function in (8.1) can be written in a perturbative series with the interaction term
represented by One can the let the functional derivatives act on the sources and at the end evaluate
everything at J = 0. While the diagrammatic representation is useful, it is only an auxiliary tool
to organize the algebra. With a bit of experience one can work well with it.

Blackboard video

Transition propability

Let us start from an S-matrix element in the form

〈β; out|α; in〉 = (2π)4δ(4)(pout − pin) i T

with transition amplitude T which may depend on the momenta itself. (For 2 → 2 scattering of
non-relativistic bosons, and at lowest order in λ, we found simply T = −2λ.) Let us now discuss
how one can relate S-matrix elements to actual scattering cross-sections that can be measured in
an experiment. We start by writing the transition probability from a state α to a state β as

P =
|〈β; out|α; in〉|2

〈β; out|β; out〉〈α; in|α; in〉
.

Blackboard video

Transition rate

The numerator contains a factor[
(2π)4δ(4)(pout − pin)

]2
= (2π)4δ(4)(pout − pin)(2π)4δ(4)(0).

This looks ill defined but becomes meaningful in a finite volume V and for finite time interval ∆T .
In fact

(2π)4δ4(0) =

∫
d4x ei0x = V∆T.

For the transition rate Ṗ = P
∆T we can therefore write

Ṗ =
V (2π)4δ(4)(pout − pin)|T |2

〈β; out|β; out〉〈α; in|α; in〉
.

Blackboard video

– 76 –

https://www.tpi.uni-jena.de/~floerchinger/assets/videos/5u8VH09v6J.mp4
https://www.tpi.uni-jena.de/~floerchinger/assets/videos/Xwq1wBtMT1.mp4
https://www.tpi.uni-jena.de/~floerchinger/assets/videos/4Pl0U8DBVg.mp4


Normalization of incoming and outgoing states
Moreover, for incoming and outgoing two-particle states, their normalization is obtained from

〈p1,p2; in|p1,p2; in〉 = lim
qj→pj

〈p1,p2; in|q1,q2; in〉

= lim
qj→pj

[
(2π)6

(
δ(3)(p1 − q1)δ

(3)(p2 − q2) + δ(3)(p1 − q2)δ
(3)(p2 − q1)

)]
=
[
(2π)3δ(3)(0)

]2
= V 2.
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Counting of momentum states
In a finite volume V = L3, and with periodic boundary conditions, the final momenta are of the
form

p =
2π

L
(m,n, l),

with some integer numbers m,n, l. We can count final states according to∑
m,n,l

=
∑
m,n,l

∆m∆n∆l = L3
∑
m,n,l

∆p1∆p2∆p3
(2π)3

.

In the continuum limit this becomes
V

∫
d3p

(2π)3
.

The differential transition rate has one factor V d3p/(2π)3 for each final state particle.
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Differential transition rate
For 2→ 2 scattering,

dṖ = (2π)4δ(4)(pout − pin)|T |2 1

V

d3q1
(2π)3

d3q2
(2π)3

.

This can be integrated to give the transition rate into a certain region of momentum states.
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Flux of incoming particles
We can go from the transition probability to a cross-section by dividing through the flux of incoming
particles

F =
1

V
v =

2|p1|
mV

.

Here we have a density of one particle per volume V and the relative velocity of the two particles is
v = 2|p1|/m, in the center-of-mass frame where |p1| = |p2|, for identical particles with equal mass
m.
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Differential cross-section

This cancels the last factor V and we find for the differential cross-section

dσ =
|T |2m
2|p1|

(2π)4δ(4)(pout − pin)
d3q1
(2π)3

d3q2
(2π)3

.
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Phase space integrals

In the center-of-mass frame one has also pin = p1 + p2 = 0 and accordingly

δ(4)(pout − pin) = δ(Eout − Ein) δ(3)(q1 + q2).

The three-dimensional part can be used to perform the integral over q2. In doing these integrals over
final state momenta, a bit of care is needed because the two final state particles are indistinguishable.
An outgoing state |q1,q2; out〉 equals the state |q2,q1; out〉. Therefore, in order to count only
really different final states, one must divide by a factor 2 if one simply integrates d3q1 and d3q2
independently. Keeping this in mind, we find for the differential cross-section after doing the integral
over q2,

dσ =
|T |2m

2|p1|(2π)2
δ(Eout − Ein)d3q1.

Magnitude and solid angle

We can now use
d3q1 = |q1|2d|q1| dΩq1

where dΩq1 is the differential solid angle element. Moreover

Eout =
q2
1

2m
+

q2
2

2m
+ 2V0 =

q2
1

m
+ 2V0,

and
dEout

d|q1|
= 2
|q1|
m

.

With this, and using the familiar relation δ(f(x)) = δ(x−x0)/|f ′(x0)|, one can perform the integral
over the magnitude |q1| using the Dirac function δ(Eout − Ein). This yields |q1| = |p1| and

dσ =
|T |2m2

16π2
dΩq1 .
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Total cross-section

For the simple case where T is independent of the solid angle ωq1 , we can calculate the total cross-
section. Here we must now take into account that only half of the solid angle 4π corresponds to
physically independent configurations. The total cross-sections is therefore

σ =
|T |2m2

8π
.

In a final step we use T = −2λ to lowest order in λ (equivalent to the Born approximation in
quantum mechanics) and find here the cross-section

σ =
λ2m2

2π
.
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Dimensions

Let us check the dimensions. The action

S =

∫
dt d3x

{
ϕ∗
(
i∂t +

∇2

2m − V0
)
ϕ− λ

2 (ϕ
∗ϕ)2

}
must be dimensionless. The field ϕ must have dimension

[ϕ] = length−
3
2 .

The interaction strength λ must accordingly have dimension

[λ] =
length3

time
.

Because [
∇2

2m

]
=

1

time
,

one has [m] = time
length2 and therefore [λm] = length. It follows that indeed

[σ] = length2

as appropriate for a cross-section.
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9 Non-relativistic fermions

So far we have discussed bosonic fields and bosonic particles as their excitations. Let us now
turn to fermions. Fermions as quantum particles differ in two central aspects from bosons. First,
they satisfy fermionic statistics. Wave functions for several particles are anti-symmetric under the
exchange of particles and occupation numbers of modes can only be 0 or 1. Second, fermionic
particles have half integer spin, i. e. 1/2, 3/2, and so on, in contrast to bosonic particles which
have integer spin 0, 1, 2 and so on. Both these aspects lead to interesting new developments.
Half-integer spin in the context of relativistic theories leads to a new and deeper understanding
of space-time symmetries and fermionic statistics leads to a new kind of functional integral based
on anti-commuting numbers. The latter appears already for functional integral representations of
non-relativistic quantum fields. We will start with this second-aspect and then turn to aspects of
space-time symmetry for relativistic theories later on.

9.1 Pauli spinors

Pauli spinor fields
In non-relativistic quantum mechanics, particles with spin 1/2 are described by a variant of Schrödinger’s
equation with two-component fields. The fields are so-called Pauli spinors with components describ-
ing spin-up and spin-down parts with respect to some axis. One can write this as

Ψ(t,x) =

(
ψ↑(t,x)

ψ↓(t,x)

)
We also use the notation ψa(t,x) where a = 1, 2 and

ψ1(t,x) = ψ↑(t,x), ψ2(t,x) = ψ↓(t,x).

Pauli equation
The Pauli equation is a generalisation of Schrödinger’s equation (neglecting spin-orbit coupling),[(

−i∂t − ∇2

2m + V0

)
1+ µB σ ·B

]
Ψ(t,x) = 0,

or equivalently [(
−i∂t −

~∇2

2m + V0

)
δab + µB σab ·B

]
ψb(t,x) = 0.

Here we use the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,

and B = (B1, B2, B3) is the magnetic field, while µB is the magneton that quantifies the magnetic
moment.

Attempt for an action
Based on this, one would expect that the quadratic part of an action for a non-relativistic field
describing spin-1/2 particles is of the form

S2
?
=

∫
dtd3x

{
−Ψ†

[(
−i∂t −

∇2

2m
+ V0

)
1+ µB σ ·B

]
Ψ

}
However, we also need to take care of fermionic (anti-symmetric) exchange symmetry, such that for
fermionic states

|p1,p2; in〉 = −|p2,p1; in〉.

To this aspect we turn next.
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9.2 Grassmann numbers and fields

Grassmann variables

So-called Grassmann variables are generators θi of an algebra, and they are anti-commuting such
that

θiθj + θjθi = 0.

An immediate consequence is that θj2 = 0.

Basis

If there is a finite set of generators θ1, θ2, . . . , θn, one can write general elements of the Grassmann
algebra as a linear superposition (with coefficients that are ordinary complex (or real) numbers) of
the following basis elements

1,

θ1, θ2, . . . , θn,

θ1θ2, θ1θ3, . . . , θ2θ3, θ2θ4, . . . , θn−1θn,

. . .

θ1θ2θ3 · · · θn.

There are 2n such basis elements, because each Grassmann variable θj can be either present or
absent.

Blackboard video

Grade of monomial

To a monomial θj1 · · · θjq one can associate a grade q which counts the number of generators in the
monomial. For Ap and Aq being two such monomials one has

ApAq = (−1)p·qAqAp.

In particular, the monomials of even grade

1,

θ1θ2, θ1θ3, . . . , θ2θ3, . . . , θn−1θn,

. . .

commute with other monomials, be the latter of even or odd grade.

Blackboard video
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Grassmann parity
One can define a Grassmann parity transformation P that acts on all generators according to

P (θj) = −θj , P 2 = 1.

Even monomials are even, odd monomials are odd under this transformation. The parity even part
of the algebra, spanned by the monomials of even grade, constitutes a sub-algebra. Because its
elements commute with other elements of the algebra they behave “bosonic”, while elements of the
Grassmann algebra that are odd with respect to P behave “fermionic”.
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Functions of Grassmann variables
Because of θ2 = 0, functions of a Grassmann variable θ are always linear,

f(θ) = f0 + θf1.

Note that f0 and f1 could depend on other Grassmann variables but not θ.

Blackboard video

Differentiation for Grassmann variables
To define differentiation of f(θ) with respect to θ we first bring it to the form

f(θ) = f0 + θf1

and set then
∂

∂θ
f(θ) = f1.

Note that similar to θ2 = 0 one has also
(
∂
∂θ

)2
= 0. One may verify that the chain rule applies.

Take σ(θ) to be an odd element and x(θ) an even element of the Grassmann algebra. One has then
∂

∂θ
f(σ(θ), x(θ)) =

∂σ

∂θ

∂f

∂σ
+
∂x

∂θ

∂f

∂x
.

The derivative we use here is a left derivative.
Consider for example

f = f0 + θ1θ2.

One has then
∂

∂θ1
f = θ2,

∂

∂θ2
f = −θ1,

∂

∂θ2

∂

∂θ1
f = 1,

∂

∂θ1

∂

∂θ2
f = −1.

One could also define a right derivative such that

f

←−
∂

∂θ1
= −θ2, f

←−
∂

∂θ2
= θ1.
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Integration for Grassmann variables

To define integration for Grassmann variables one takes orientation from two properties of integrals
from −∞ to ∞ for ordinary numbers. One such property is linearity,∫ ∞

−∞
dx c f(x) = c

∫ ∞
−∞

dx f(x).

The other is invariance under shifts of the integration variable,∫ ∞
−∞

dx f(x+ a) =

∫ ∞
−∞

dx f(x).

For a function of a Grassmann variable

f(θ) = f0 + θf1

One sets therefore ∫
dθ f(θ) = f1.

In other words, we have defined ∫
dθ = 0,

∫
dθ θ = 1.

This is indeed linear and makes sure that∫
dθ f(θ + σ) =

∫
dθ {(f0 + σf1) + θf1 } =

∫
dθ f(θ) = f1.

Note that one has formally ∫
dθ f(θ) =

∂

∂θ
f(θ).
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Several variables

For functions of several variables one has∫
dθ1

∫
dθ2f(θ1, θ2) =

∂

∂θ1

∂

∂θ2
f(θ1, θ2).

It is easy to see that derivatives with respect to Grassmann variables anti-commute

∂

∂θj

∂

∂θk
= − ∂

∂θk

∂

∂θj
,

and accordingly also the differentials anti-commute

dθjdθk = −dθkdθj .
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Functions of several Grassmann variables

A function that depends on a set of Grassmann variables θ1, . . . , θn can be written as

f(θ) = f0 + θjf
j
1 +

1

2
θj1θj2f

j1 j2
2 + . . .+

1

n!
θj1 · · · θjnf j1···jnn .

We use here Einsteins summation convention with indices jk being summed over. The coefficients
f j1···jkk are completely anti-symmetric with respect to the interchange of any part of indices. In
particular, the last coefficient can only be of the form

f j1···jnn = f̃nεj1···jn ,

where εj1···jn is the completely anti-symmetric Levi-Civita symbol in n dimensions with ε12...n = 1.
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Differentiation and integration

Let us now discuss what happens if we differentiate or integrate f(θ). One has

∂

∂θk
f(θ) = fk1 + θj2f

kj2
2 + . . .+

1

(n− 1)!
θj2 · · · θjnfkj2···jnn ,

and similar for higher order derivatives. In particular

∂

∂θn
· · · ∂

∂θ1
f(θ) = f12...nn = f̃n.

This defines also the integral with respect to all n variables,∫
dθn · · · dθ1f(θ) = f12...n = f̃n

=

∫
dnθf(θ) =

∫
Dθf(θ).

Blackboard video

Linear change of Grassmann variables

Let us consider a linear change of the Grassmann variables in the form (summation over k is implied)

θj = Jjkθ
′
k,

where Jjk is a matrix of commuting variables. We can write

f(θ) = f0 + . . .+
1

n!

(
Ji1j1θ

′
j1

)
· · ·
(
Jinjnθ

′
jn

)
εi1···in f̃n.

Now one can use the identity

εi1...inJi1j1 · · · Jinjn = det(J) εj1...jn .
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This can actually be seen as the definition of the determinant. One can therefore write

f(θ) = f0 + . . .+
1

n!
θ′j1 · · · θ

′
jnεj1...jn det(J)f̃n.

The integral with respect to θ′ is ∫
dnθ′f(θ) = det(J)f̃n.

In summary, one has ∫
dnθf(θ) =

1

det(J)

∫
dnθ′f(θ).

Linear change of ordinary variables

One should compare this to the corresponding relation for conventional integrals with xj = Jjkx
′
k.

In that case one has ∫
dnxf(x) = det(J)

∫
dnx′f(x′).

Note that the determinant appears in the denominator for Grassmann variables while it appears in
the numerator for conventional integrals.
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Gaussian integrals of Grassmann variables

Consider a Gaussian integral of two Grassmann variables∫
dθdξ e−θξb =

∫
dθdξ (1− θξb) =

∫
dθdξ (1 + ξθb) = b.

For a Gaussian integral over conventional complex variables one has instead∫
d(Rex) d(Imx) e−x

∗xb =
π

b
.

Again, integrals over Grassmann and ordinary variables behave in some sense “inverse”.
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Higher dimensional Gaussian integrals

For higher dimensional Gaussian integrals over Grassmann numbers we write∫
dnθdnξe−θjajkξk =

∫
dθndξn · · · dθ1dξ1e−θjajkξk .

One can now employ two unitary matrices with unit determinat to perform a change of variables

θj = θ′lUlj , ξk = Vkmξ
′
m,

such that
UljajkVkm = ãlδlm,
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is diagonal. This is always possible. The Gaussian integral becomes

dnθdnξ e−θjajkξk = det(U)−1 det(V )−1
∫
dnθ

′
dnξ

′
e−θ

′
lξ

′
l ãl =

n∏
l=1

ãl = det(ajk).

Again this is in contrast to a similar integral over commuting variables where the determinant would
appear in the denominator.
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Gaussian integrals with sources

Finally let us consider a Gaussian integral with source forms,∫
dnψ̄dnψ exp

[
−ψ̄Mψ + η̄ψ + ψ̄η

]
= Z(η̄, η).

We integrate here over independent Grassmann variables ψ = (ψ1, . . . , ψn) and ψ̄ = (ψ̄1, . . . , ψ̄n)

and we use the abbreviation
ψ̄Mψ = ψ̄jMjkψk.

The source forms are also Grassmann variables η = (η1, . . . , ηn) and η̄ = (η̄1, . . . , η̄n) with

η̄ψ = η̄jψj , ψ̄η = ψ̄jηj .

As usual, we can write

Z(η̄, η) =

∫
dnψ̄dnψ exp

[
−(ψ̄ − ηM−1)M(ψ −M−1η) + η̄M−1η

]
.

A shift of integration variables does not change the result and thus we find

Z(η̄, η) = det(M) exp
[
η̄M−1η

]
.

In this sense, Gaussian integrals over Grassmann variables can be manipulated similarly as Gaussian
integrals over commuting variables. Note again that det(M) appears in the numerator while it would
appear in the denominator of bosonic variables.
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Functional integral over Grassmann fields

We can now take the limit n→∞ and write∫
dnψ̄dnψ →

∫
Dψ̄Dψ, Z(η̄, η)→ Z[η̄, η],

with
Z[η̄, η] =

∫
Dψ̄Dψ exp[−ψ̄Mψ + η̄ψ + ψ̄η] = det(M) exp

[
η̄M−1η

]
.

In this way we obtain a formalism that can be used for fermionic or Grassmann fields.
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Action for free non-relativistic scalars

We can now write down an action for non-relativistic fermions with spin 1/2. It looks similar to
what we have conjectured before,

S2 =

∫
dtd3x

{
−ψ̄

[(
−i∂t − ∇2

2m + V0

)
1+ µBσ ·B

]
ψ
}
,

but the two-component fields ψ = (ψ1, ψ2) and ψ̄ = (ψ̄1, ψ̄2) are in fact Grassmann fields. Such
fields anti-commute, for example ψ1(x)ψ2(y) = −ψ2(y)ψ1(x). One should see the field at different
space-time positions x to be independent Grassmann numbers. Also, ψ1 and ψ̄1 are independent
as Grassmann fields. In particular ψ1(x)

2 = 0 but ψ̄1(x)ψ1(x) 6= 0.
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9.3 Yukawa theory

Yukawa theory

Let us now investigate a theory for a non-relativistic fermion with spin 1/2 and a real, relativistic
scalar boson

S =

∫
dtd3x

{
−ψ̄

(
−i∂t −

∇2

2m
+ V0 − iε

)
ψ − 1

2φ
(
∂2t −∇2 +M2 − iε

)
φ− gφψ̄ψ

}
.

Blackboard video

Partition function for Yukawa theory

We will discuss this theory in terms of the partition function

Z[η̄, η, J ] =

∫
Dψ̄DψDφ eiS[ψ̄,ψ,φ]+i

∫
x
{η̄ψ+ψ̄η+Jφ}.

As usual, by taking functional derivatives with respect to the source fields, one can obtain various
correlation functions. Our strategy will be to perform a perturbation expansion in the cubic term
∼ g.

Quadratic action

Let us first concentrate on the quadratic theory and the corresponding partition function derived
from the action

S2 =

∫
dtd3x

{
−ψ̄

(
−i∂t −

∇2

2m
+ V0 − iε

)
ψ − 1

2
φ(∂2t −∇2 +M2 − iε)φ

}
.
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By doing the Gaussian integration one finds

Z2[η̄, η, J ] =

∫
Dψ̄DψDφ exp

[
iS2 + i

∫
x

{
η̄ψ + ψ̄η + Jφ

}]
= exp

[
i

∫
d4xd4y

{
η̄(x)Υ(x− y)η(y) + 1

2
J(x)∆(x− y)J(y)

}]
where Υ(x − y) is the Greens function for fermions in eq. (??). For the scalar bosons, the Green
function is

∆(x− y) =
∫

d4p

(2π)4
1

−(p0)2 + p2 +M2 − iε
eip(x−y),

as discussed previously.

Blackboard video

Propagator for non-relativistic fermions
For the non-relativistic fermion, the propagator integral over p0 has just a single pole at p0 =
p2

2m + V0 − iε,

Υ(x− y) = 1
∫
dp0

2π

d3p

(2π)3
1

−p0 + p2

2m + V0 − iε
e−ip

0(x0−y0)+ip(x−~y)

When x0 − y0 > 0 the contour can be closed below the real p0-axis, leading to

Υ(x− y) = i 1

∫
d3p

(2π)3
e−i
(

p2

2m+V0

)
(x0−y0)+ip(x−~y) (x0 − y0 > 0).

In contrast, for x0− y0 < 0, the contour can be closed above and there is no contribution at all. In
summary

Υ(x− y) = i θ(x0 − y0) 1
∫

d3p

(2π)3
e−i
(

p2

2m+V0

)
(x0−y0)+ip(x−~y).

As a consequence of the absence of anti-particle-type excitations, the time-ordered and retarded
propagators agree here.

Blackboard video

Propagator and correlation functions
Let us also note the relation between propagators and correlation functions. For the free (quadratic)
theory one has in the fermionic sector〈

ψa(x)ψ̄b(y)
〉
=

(
1

Z2

δ

δη̄a(x)

δ

δηb(y)
Z2[η̄, η, J ]

)
η̄=η=J=0

= −iΥab(x− y),

Note that some care is needed with interchanges of Grassmann variables to obtain this expression.
Similarly for the bosonic scalar field

〈φ(x)φ(y)〉 =
(

1

Z2

δ

δJ(x)

δ

δJ(y)
Z2[η̄, η, J ]

)
η̄=η=J=0

= −i∆(x− y).
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Wick’s theorem
As discussed previously, one finds for the free theory

〈φ(x1) . . . φ(xn)〉 =
(

1

Z2

(
−i δ

δJ(x1)

)
· · ·
(
−i δ

δJ(xn)

)
Z2[η̄, η, J ]

)
η̄=η=J=0

=
∑

pairings
[−i∆(xj1 − xj2)] · · ·

[
−i∆(xjn−1

− xjn)
]
.

The sum in the last line goes over all possible ways to distribute x1, . . . , xn into pairs (xj1 , xj2),
(xj3 , xj4), . . ., (xjn−1

, xjn). This result is known as Wick’s theorem. It follows directly from the
combinatorics of functional derivatives acting on Z2.

For example,

〈φ(x1) φ(x2) φ(x3)φ(x4)〉 =[−i∆(x1 − x2)][−i∆(x3 − x4)]
+ [−i∆(x1 − x3)][−i∆(x2 − x4)]
+ [−i∆(x1 − x4)][−i∆(x2 − x3)].

In a similar way correlation functions involving ψ̄ and ψ can be written as sums over the possible
ways to pair ψ and ψ̄. For example〈

ψa1(x1)ψa2(x2)ψ̄a3(x3)ψ̄a4(x4)
〉
=−

〈
ψa1(x1)ψ̄a3(x3)

〉 〈
ψa2(x2)ψ̄a4(x4)

〉
+
〈
ψa1(x1)ψ̄a4(x4)

〉 〈
ψa2(x2)ψ̄a3(x3)

〉
=− [−iΥa1a3(x1 − x3)][−iΥa2a4(x2 − x4)]
+ [−iΥa1a4(x1 − x4)][−iΥa2a3(x2 − x3)].

Note that correlation functions at quadratic level (for the free theory) need to involve as many
fields ψ as ψ̄, otherwise they vanish. Similarly, φ must appear an even number of times. For mixed
correlation functions one can easily separate φ from ψ and ψ̄ at quadratic level, because Z2[η̄, η, J ]

factorizes. For example,〈
φ(x1) ψa(x2) φ(x3)ψ̄b(x4)

〉
= [−i∆(x1 − x3)][−iΥab(x2 − x4)]. (9.1)

Graphical representation
It is useful to introduce also a graphical representation. We will represent the scalar propagator by
a dashed line,

−i∆(x− y) = x y .

The Feynman propagator for the fermions will be represented by a solid line with arrow,

−iΥab(x− y) = (x, a) (y, b) .

We can then represent correlation functions graphically, for example, the mixed correlation function
in eqn. (9.1) for the free theory would be

〈φ(x1)ψa(x2)φ(x3)ψ̄b(x4)〉 = [−i∆(x1 − x3)] [−iΥab(x2 − x4)]

= x1 x3 (x2, a) (x4, b) .
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Perturbation theory in g

Let us now also consider the interaction terms in the action. In the functional integral it contributes
according to

eiS[ψ̄,ψ,φ] = eiS2[ψ̄,ψ,φ] exp

[
−ig

∫
d4xφ(x)ψ̄a(x)ψa(x)

]
.

We can assume that g is small and simply expand the exponential where it appears. This will
add field factors ∼ φ(x)ψ̄a(x)ψa(x) to correlation functions with an integral over x and an implicit
sum over the spinor index a. The resulting expression involving correlation functions can then be
evaluated as in the free theory. For example,〈

φ(x1)ψb(x2)ψ̄c(x3)
〉
=
〈
φ(x1)ψb(x2)ψ̄c(x3)

〉
0

+

〈
φ(x1)ψb(x2)ψ̄c(x3)

[
−ig

∫
y

φ(y)ψ̄a(y)ψa(y)

]〉
0

+ . . .

The index 0 indicates that the correlation functions get evaluated in the free theory. Graphically,
we can represent the interaction term as a vertex,

−ig
∫
y

∑
a

=

(y, a)

.

For each such vertex we need to include a factor −ig as well as an integral over the space-time
variable y and the spinor index a.
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Three point function
To order g, we find for the example above

〈φ(x1)ψb(x2)ψ̄c(x3)〉 =
(x2, b)

(y, a)
(x3, c)

x1

+

(x2, b) (x3, c)

(y, a)

x1

=− ig
∫
y

[−i∆(x1 − y)][−iΥba(x2 − y)][−iΥac(y − x3)]

+ ig

∫
y

[−i∆(x1 − y)][−iΥbc(x2 − x3)][−iΥaa(y − y)].

The sign in the last line is due to an interchange of Grassmann fields. The last expression involves
the fermion propagator for vanishing argument

Υab(0) = δab

∫
d4p

(2π)4
1

−p0 + p2

2m + V0 − iε
= iθ(0)δabδ

(3)(0).

We will set here θ(0) = 0 so that the corresponding contribution vanishes. In other words, we will
interpret

Υab(0) = lim
∆t→0

Υab(−∆t,~0) = 0.

Although this is a little ambiguous at this point, it turns out that this is the right way to proceed.
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Feynmann rules in position space

To calculate a field correlation function in position space we need to

• have a scalar line ending on x for a factor φ(x): x

• have a fermion line ending on x for a factor ψa(x): (x, a)

• have a fermion line starting on x for a factor ψ̄a(x): (x, a)

• include a vertex −ig
∫
y

with integral over y for every order g:

(y, a)

• connect lines with propagators −i∆(x− y) or −iΥab(x− y)

• determine the overall sign for interchanges of fermionic fields.

S-matrix elements from amputated correlation functions

To calculate S-matrix elements from correlation functions, we need to use the LSZ formula. For an
outgoing fermion, we need to apply the operator

i

[
−i∂t −

∇2

2m
+ V0

]
〈. . . ψa(x) . . .〉

and also go to momentum space by a Fourier transform∫
x

e+iωpx
0−ipx.

The operator simply removes the propagator leading to x, because of

i
[
−i∂x0 − ∇2

x

2m + V0

]
[−iΥab(x− y)] = δab

∫
d4p

(2π)4
eip(x−y)

−p0 + p2

2m + V0

−p0 + p2

2m + V0
= δabδ

(4)(x− y).

One says that the correlation function is “amputated” because the external propagator has been
removed.

Feynman rules for S-matrix elements in momentum space

Moreover, all expressions are brought back to momentum space. One can formulate Feynmann
rules directly for contributions to iT as follows.

• Incoming fermions are represented by an incoming line p (to be read from right to
left) associated with a momentum p and energy ωp = p2

2m + V0.

• Outgoing fermions are represented by an outgoing line p
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• Incoming or outgoing bosons are represented by p and p respectively.

• Vertices,

contribute a factor −ig.

• Internal lines that connect two vertices are represented by Feynmann propagators in momen-
tum space, e. g.

(p0,p)
=

−iδab
−p0 + p2

2m + V0
,

(p0,p)
=

−i
−(p0)2 + p2 +M2

.

• Energy and momentum conservation are imposed on each vertex.

• For tree diagrams, all momenta are fixed by energy and momenta conservation. For loop
diagrams one must include an integral over the loop momentum lj with measure d4lj/(2π)4.

• Some care is needed to fix overall signs for fermions.

• Some care is needed to fix overall combinatoric factors from possible interchanges of lines or
functional derivatives.

For the last two points it is often useful to go back to the algebraic expressions or to have some
experience. We will later discuss very useful techniques based on generating functionals.
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Fermion-fermion scattering

We will now discuss an example, the scattering of (spin polarized) fermions of each other. The
tree-level diagram is

(p1, ↑)

(q1, ↑)

(p2, ↓)

(q2, ↓)

Because the interaction with the scalar field does not change the spin, the outgoing fermion with
momentum q1 will have spin ↑, the one with momentum q2 will have spin ↓. By momentum
conservation the scalar line carries the four momentum

(ωp1
− ωq1

, p1 − q1) =
(

p2
1

2m −
q2
1

2m ,p1 − q1

)
= (ωq2

− ωp2
, q2 − p2).

The last equality follows from overall momentum conservation, p1 + p2 = q1 + q2. The Feynmann
rules give

iT = (−ig)2 −i
−(ωp1

− ωq1
)2 + (p1 − q1)2 +M2

.
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In the center-of-mass frame, one has ωp1
= ωp2

= ωq1
= ωq2

and thus

T =
g2

(p1 − q1)2 +M2
.
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Limits of large and small mass

Note that for g2 → ∞, M2 → ∞ with g2/M2 finite, T becomes independent of momenta. This
resembles closely the λ(φ∗φ)2 interaction we discussed earlier for bosons. More, generally, one can
write

(p1 − q1)
2 = 2|p1|2(1− cos(ϑ)) = 4|p1|2 sin2(ϑ/2),

where we used |p1| = |q1| in the center of mass frame and ϑ is the angle between p1 and q1

(incoming and outgoing momentum of the spin ↑ particle). For the differential cross-section

dσ

dΩq1
=
|T |2m2

16(π)2
,

we find
dσ

dΩq1
=
g4m2

16π2

[
1

4p2
1 sin

2(ϑ/2) +M2

]2
.

Another interesting limit is M2 → 0. One has then

dσ

dΩq1
=

g4m2

64π2|p1|4
1

sin4(ϑ/2)
.

This is the differential cross-section form found experimentally by Rutherford. It results from the
exchange of a massless particle or force carrier which is here the scalar boson φ and in the case of
Rutherford experiment (scattering of α-particles on Gold nuclei) it is the photon. This cross section
has a strong peak at forward scattering ϑ → 0, and for p2 → 0. These are known as colinear and
soft singularities. Note that they are regulated by a small, nonvanishing mass M > 0.
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LECTURE 18

10 Relativistic fermions

To understand relativistic fermions we need to first understand the properties of the Lorentz group
in more detail. Diracs description of relativistic fermions follows then very naturally.

– 93 –

https://www.tpi.uni-jena.de/~floerchinger/assets/videos/2eQzkpiaRt.mp4
https://www.tpi.uni-jena.de/~floerchinger/assets/videos/Z92FNZR1x4.mp4


Rotations and Lorentz transformations

We use here conventions where the metric in four dimensional Minkowski space is given by

ηµν = ηµν = diag(−1,+1,+1,+1).

Infinitesimal Lorentz transformations and rotations in Minkowski space are of the form

Λµν = δµν + δωµν , (10.1)

with Λµν ∈ R such that the metric ηµν is invariant, ηµν → ηρσΛ
ρ
µΛ

σ
ν = ηµν . This implies

(Λ−1)µν = Λ µ
ν and, for the inifinitesimal transformation,

δωµν = −δωνµ.

The spatial-spatial components describe rotations the three dimensional subspace and the spatial-
temporal components Lorentz boost in Minkowski space or rotations around a particular three-
dimensional direction in Euclidian space.
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Scalar, vector and tensor representations

Lorentz scalars are defined as objects that do not change at all under Lorentz transformations
(including rotations). For scalar fields only the argument gets transformed,

φ(x)→ φ′(x) = φ(Λ−1x).

Lorentz vectors are defined as quantities that get transformed by the matrix Λ. For example, the
momentum of a particle transforms as

pµ → p′µ = Λµνp
ν .

A vector field like for examle the velocity field of a relativistic fluid transforms as

uµ(x)→ u′µ(x) = Λµνu
ν(Λ−1x).

In addition to the transformation of the space-time argument there is now an exlicit transformation
matrix acting on the index of the field. In a similar way, a covector field like the electromagnetic
gauge field transforms according to

Aµ(x)→ A′µ(x) = (Λ−1)νµAν(Λ
−1x) = Λ ν

µ Aν(Λ
−1x).

One can go on in this way and define tensor field representations, for example a (2, 0)-tensor field
transforms like

T ρσ(x)→ T ′ρσ(x) = ΛρµΛ
σ
νT

µν(Λ−1x).

In the next step we generalize this concept even further.
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Lie groups and representaions

We consider representations of a group acting on a complex vector space. It can be seen as a map
ρ

ρ : G→ GL(n,C),

where GL(n,C) is the general linear group in N complex dimensions or group of complex n × n
matrices. The map must be such that

ρ(g1)ρ(g2) = ρ(g1g2),

for all g1, g2 ∈ G. We are specifically interested in Lie groups where finite transformations can be
written in terms of infinitesimal transformations through the exponential map,

g = exp(iξjTj) = lim
N→∞

(
1+ i

ξjTj
N

)N
.

Here, Tj are the generators of the Lie algebra. The Lie algebra, and indirectly the Lie group, are
characterized by the Lie bracket or commutation relation

[Tj , Tk] = if l
jk Tl,

where f l
jk are the structure constants.

A repesentation of a group element can similarly be written as an exponential map

ρ(g) = exp
(
iξjT

(R)
j

)
where T (R)

j are now representations of the Lie algebra generators acting in some vector space. They
must have the same Lie bracket relation as the original generators or fundamental representation,[

T
(R)
j , T

(R)
k

]
= if l

jk T
(R)
l .

In this sense one can construct representations of a Lie group by finding representations of the
associated Lie algebra.

Complex conjugate representations

For Lie groups where the structure constants are real one can find for representations T (R)
j acting

in a complex vector space also the complex conjugate representations

T
(C)
j = (T

(R)
j )†.

Indeed this also fulfills the Lie bracket relation as follows by taking the hermitean conjugate on both
sides. Sometimes the (representations of the) Lie algebra generators T (R)

j are hermitean already,
and in this case the complex conjugate representation is equivalent to the original one, but that is
not always the case.
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Lie algebra of Lorentz group

Representations of the Lorentz group with

L(Λ′Λ) = L(Λ′)L(Λ),

can be written in infinitesimal form as

L(Λ) = 1+
i

2
δωµνM

µν ,

where Mµν = −Mνµ are the generators of the Lorentz algebra (or Lie algebra associated to the
Lorentz group) acting in some representation space with the commutation relation or Lie bracket

[Mµν ,Mρσ] = i (ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) . (10.2)
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Decomposition of Lie algebra

In general, one can decompose the generators into the spatial-spatial part

Ji =
1

2
εijkM

jk, (10.3)

and a spatial-temporal part,
Kj =M j0. (10.4)

Equation (10.2) implies the commutation relations

[Ji, Jj ] = + i εijkJk,

[Ji,Kj ] = + i εijkKk,

[Ki,Kj ] = −i εijkJk.

One can define the linear combinations of generators

Nj =
1

2
(Jj − iKj), Ñj =

1

2
(Jj + iKj),

for which the commutation relations become

[Ni, Nj ] = iεijkNk,

[Ñi, Ñj ] = iεijkÑk,

[Ni, Ñj ] = 0.

This shows that the representations of the Lorentz algebra can be decomposed into two represen-
tations of SU(2) with generators Nj and Ñj , respectively.
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Fundamental representation
In the fundamental representation (10.1) one has the generators

(Mµν
F )αβ = −i(ηµαδνβ − ηναδ

µ
β ).

It acts on the space of four-dimensional vectors pα and the infinitesimal transformation in (10.1)
induces the infinitesimal change

δpα =
i

2
δωµν(M

µν
F )αβ p

β = δωαβp
β .

The generator of rotations in the fundamental representation is

(JFi )j k = −iεijk,

where j, k are spatial indices. All other components vanish, (JFi )00 = (JFi )0j = (JFi )j 0 = 0. Note
that JFi is hermitian, (JFi )† = JFi . The generator Kj has the fundamental representation

(KF
j )

0
m = −iδjm, (KF

j )
m
0 = −iδjm,

and all other components vanish, (KF
j )

0
0 = (KF

j )
m
n = 0. From these expression one finds that the

conjugate of the fundamental representation of the Lorentz algebra has the generators

JCj = (JFj )† = JFj , KC
j = (KF

j )
† = −KF

j . (10.5)

This implies that KF
j is anti-hermitian,

(KF
j )
† = −KF

j .

Note that Nj and Ñj are hermitian and linearly independent in the fundamental reprsentation.
There is however an interesting relation between them: Consider the hermitian conjugate represen-
tation of the Lorentz group as related to the fundamental one by eq. (10.5). The representation of
the generators Nj , Ñj is

NC
j =

1

2
(JCj − iKC

j ) =
1

2
(JFj + iKF

j ) = ÑF
j ,

ÑC
j =

1

2
(JCj + iKC

j ) =
1

2
(JFj − iKF

j ) = NF
j .

This implies that the role of Nj and Ñj is interchanged in the conjugate representation.

LECTURE 19

Classification of representaions
Representations of SU(2) are characterized by spin n of half integer or integer value. Accordingly,
the representations of the Lorentz group can be classified as (2n+ 1, 2ñ+ 1). For example

(1, 1) = scalar or singlet,
(2, 1) = left-handed spinor,
(1, 2) = right-handed spinor,
(2, 2) = vector.

One can also construct tensor product representations as done for a single copy of SU(2) and
decompose the latter again in terms of irreducible representations.
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Pauli spinor representation
In the non-relativistic description of spin-1/2 particles due to Pauli, the generators of rotation are

Ji =
1

2
σi,

where the hermitian Pauli matrices are given by

σ1 =

(
1

1

)
, σ2 =

(
−i

i

)
, σ3 =

(
1

−1

)
,

and fulfill the algebraic relation
σiσj = δij 1+ i εijk σk.

In other words, the Pauli matrices provide a mapping between the space of rotations SO(3) and
the space of unitary matrices SU(2). More concrete, an infinitesimal rotation

Λi j = δi j + δωi j ,

corresponds to
L(Λ) = 1+

i

4
δωij εijk σk.

By exponentiating this one obtains the mapping. Note, however, that the group SU(2) covers SO(3)
twice in the sense that a rotation by 360 degrees corresponds to L(Λ) = −1.
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Left handed spinor representations
We now construct first the left handed spinor representation of the Lorentz group by using that it
agrees with the Pauli representation for normal (spatial) rotations. When acting on the left-handed
representation (2,1), the generator Ñj vanishes. Since Jj = Nj + Ñj and Kj = i(Nj − Ñj) one has

Nj = Jj = −iKj =
1

2
σj , Ñj = 0.

Using (10.3) and (10.4) this yields for the left handed spinor representation

(M jk
L ) = εjklNl =

1

2
εjkl σl,

(M j0
L ) = iNj = i

1

2
σj .

(10.6)

As the name suggests, this representation acts in the space of left-handed spinors which are two-
components entities, for example

ψL =

(
ψ1

ψ2

)
.

We also use a notation with explicit indices ψa with a = 1, 2. The infinitesimal transformation in
(10.1) reads with the matrices (10.6)

δψa =
i

2
δωµν(M

µν
L ) b

a ψb. (10.7)

Blackboard video
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Map to special linear group SL(2,C)

From the concrete matrix representation we find that

i

2
δωµν(M

µν
L ) b

a =
i

2
(δak + iδbk)(σk)

b
a

with some coefficients δal and δbl. The right hand side is a general, complex but traceless 2 × 2

matrix and therefore an element of the Lie algebra of SL(2,C). Accordingly there is a map from
the Lie algebra of the Lorentz group SO(1, 3,R) to the Lie algebra of SL(2,C). In fact, there is an
isomorphism between groups SL(2,C)/Z2 = SO(1, 3,R). (Excercise: Construct the corresponding
map between group elements explicitely.)

Blackboard video

Tensor representations

One can also construct spinors in tensor product representations. They have several indices and
transform accordingly. For example, a spinor with two left-handed indices transforms according to

δχab =
i

2
δωµν

[
(Mµν

L ) c
a δ

d
b + δ c

a (Mµν
L ) d

b

]
χcd.

One can decompose such a spinor with two indices into an anti-symmetric and a symmetric part,
corresponding to the decomposition

(2, 1)⊗ (2, 1) = (1, 1)A ⊕ (3, 1)S . (10.8)

This is a decomposition into a spin singlet and a spin triplet or spin one representation.

Invariant symbol in left-handed singlet

From (10.8) it follows that there must be a Lorentz-singlet with two left-handed spinor indices
and it has to be anti-symmetric. The corresponding invariant symbol can be taken as εab with
components ε21 = 1, ε12 = −1 and ε11 = ε22 = 0. Indeed one finds from the concrete presentation
that

(Mµν
L ) c

a εcb + (Mµν
L ) c

b εac = 0. (10.9)

This is essentialy due to σjσ2 + σ2σ
T
j = 0 for j = 1, 2, 3 as can be checked easily. For clarity the

non-vanishing components are

ε12 = −ε21 = ε21 = −ε12 = 1. (10.10)

As an invariant symbol, εab plays for SU(2) a similar role as the metric ηµν for the Lorentz group.
It is natural to use εab and its inverse εab to pull the indices a, b, c up and down. We can write for
example a left-handed spinor with upper spinor index

ψa = εabψb = −εbaψb = −ψbεba = ψbε
ab.

(We wrote different equivalent expressions to show that care is needed here with minus signs.) From
eq. (10.9) it follows also that

(Mµν
L ) b

a = (Mµν
L )ba,

as well as
(Mµν

L )ab = (Mµν
L )ba,
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so that
εab(Mµν

L )ab = (Mµν
L ) a

a = 0.

The symbol δab is also invariant when spinors with upper left-handed indices have the Lorentz-
transformation behavior

δψa = − i
2
δωµνψ

b(Mµν
L ) a

b = − i
2
δωµν(M

µν
L )abψ

b.

This implies also that upper and lower indices can be contracted, for example

ψaχa = εabψbχa = −εbaψbχa = −ψbχb,

is invariant. (Again we wrote several equivalent expressions to show that care is needed with signs.)

Right handed spinor representation

Similarly one finds for the right-handed spinor representation (1,2) using

Nj = 0, Ñj = Jj = iKj =
1

2
σj ,

the relations

(M jk
R ) = εjklÑl =

1

2
εjkl σl

(M j0
R ) = −iÑj = −i

1

2
σj .

(10.11)

The representation (10.11) acts in the space of right handed spinors, for example

ψ̄ =

(
ψ̄1

ψ̄2

)
.

For right handed spinors we will also use a notation with an explicit index that has a dot in order
to distinguish it from a left-handed index, i. e. ψ̄ȧ with ȧ = 1, 2 denotes a right-handed spinor. The
infinitesimal transformation in (10.1) reads with the matrices in (10.11)

δψ̄ȧ =
i

2
δωµν(M

µν
R )ȧ

ḃ
ψ̄ḃ.

Blackboard video

Invariant symbol in right-handed singlet

In a completely analogous way the relation

(1, 2)× (1, 2) = (1, 1)A + (1, 3)S

implies that there is a Lorentz singlet with two right-handed spinor indices. The corresponding
symbol can be taken as εȧḃ, with inverse εȧḃ, with components as in (10.10). This symbol is used
to lower and raise right-handed indices. Spinors with lower right handed index transform under
Lorentz-transformations as

δψ̄ȧ = − i
2
δωµνψ̄ḃ(M

µν
R )ḃ ȧ = − i

2
δωµν(M

µν
R ) ḃ

ȧ ψ̄ḃ.
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Invariant symbols for vectors

Consider now an object with a left-handed and a right-handed index. It is in the representation
(2, 2) which should also contain the vector. There is therefore an invariant symbol which can be
chosen as

(σµ)aȧ = (1,σ),

and similarly
(σ̄µ)ȧa = (1,−σ).

These symbols are invariant in the sense that they get mapped to themselves when all indices are
transformed appropriately, e. g.

ΛµνL
b
a R

ḃ
ȧ (σν)bḃ = (σµ)aȧ.

Here L b
a and R ḃ

ȧ are finite Lorentz transformation matrices in appropriate representations for left
handed and right handed spinors respectively.

It turns out that the matrices for infinitesimal Lorentz transformations can be written as

(Mµν
L ) b

a =
i

4
(σµσ̄ν − σν σ̄µ) b

a ,

(Mµν
R )ȧ

ḃ
=
i

4
(σ̄µσν − σ̄νσµ)ȧ

ḃ
.

Some useful identities are

(σµ)aȧ(σµ)bḃ = −2 εabεȧḃ ,

(σ̄µ)ȧa(σ̄µ)
ḃb = −2εabεȧḃ,

εabεȧḃ(σµ)aȧ(σ
ν)bḃ = −2 η

µν ,

(σ̄µ)ȧa = εabεȧḃ(σµ)bḃ,

(σµσ̄ν + σν σ̄µ) b
a = −2 ηµνδba,

Tr(σµσ̄ν) = Tr(σ̄µσν) = −2 ηµν ,
σ̄µσν σ̄µ = 2 σ̄ν ,

σµσ̄νσµ = 2σν .

We leave it as an excercise to prove these.

Complex conjugation

The matrices (10.6) and (10.11) are hermitian conjugate of each other, i. e.

(Mµν
L )† =Mµν

R , (Mµν
R )† =Mµν

L .

The hermitian conjugate of the Lorentz transformation (10.7) is given by

[δψa]
†
= − i

2
δω∗µν [ψb]

† [
(Mµν

L ) b
a

]†︸ ︷︷ ︸
=(Mµν

R )ḃ ȧ

. (10.12)

For δωµν ∈ R this is of the same form as eq. (10). In Minkowski space it is therefore consistent to
take ψ† to be a right-handed spinor with lower dotted index, we write

[ψa]
†
= (ψ†)ȧ, (Minkowski)

– 101 –



and in an analogous way one finds that it is consistent to write[
ψ̄ȧ
]†

= (ψ̄†)a, (Minkowski)

which is a left-handed spinor. So far we have considered Minkowski space only. In Euclidean space
or for more general complex δωµν the hermitian conjugation is more complicated. For complex
δωµν eq. (10.12) constitutes a transformation behavior that is not of any already discussed type.
For a consistent analytic continuation it is actually necessay to have all fields transforming such
that the infinitesimal transformation law involves only δωµν (and not δω∗µν).

Dirac spinors in chiral basis

Dirac spinors are composed of a left handed and a right handed spinor. In the chiral basis they
read

Ψ =

(
ψa
ξ̄ȧ

)
, Ψ̄ =

(
ξa, ψ̄ȧ

)
. (10.13)

Note that, as the notation suggests, ξa transforms as a left handed spinor and ψ̄ȧ as a right-handed
one. One should see Ψ and the Dirac conjugate Ψ̄ as independent fields and they are in any case
represented as independent Grassmann variables. In Minkowski space one can identify

Ψ̄ = Ψ†β, Ψ = β−1Ψ̄† (Minkowski space).

with

β =

(
δȧ
ḃ

δ b
a

)
, β−1 =

(
δ b
a

δȧ
ḃ

)
.

This is useful to ckeck that actions are hermitean or real and lead to unitary time evolution.

Blackboard video

Blackboard video

Clifford algebra

The gamma matrices are in this representation given by1

γµ =

(
−i(σµ)aḃ

−i(σ̄µ)ȧb

)
.

They fulfill an anti-commutation relation

{γµ, γν} = γµγν + γνγµ = 2ηµν . (10.14)
1This is the convention of Weinberg and Wetterich. There is an alternative definition of the gamma matrices often

used in the literature (for example Peskin & Schroeder, Srednicki, Elvang & Huang) where one has

γµ =

(
(σµ)aȧ

(σ̄µ)ȧa

)
, {γµ, γν} = −2 ηµν .
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An anti-commutation relation like (10.14) defines a Clifford algebra and can also be taken as the
starting point for the coonstruction of spinor representations of the Lorentz group. Note that one
may redefine the gamma matrices and spinors

γµ → UγµU†, Ψ→ UΨ,

to obtain another representation of the Clifford algebra that works equally well.

Blackboard video

Antisymmetric matrices
Define the commutator of gamma-matrices as2

σµν = − i
2
[γµ, γν ] =

(
i
2 (σ

µσ̄ν − σν σ̄µ) b
a

i
2 (σ̄

µσν − σ̄νσµ)ȧ
ḃ

)
.

It is useful to define also

(τµν) b
a =

i

2
(σµσ̄ν − σν σ̄µ) b

a ,

(τ̄µν)ȧ
ḃ
=
i

2
(σ̄µσν − σ̄νσµ)ȧ

ḃ
,

such that
σµν =

(
τµν

τ̄µν

)
.

As matrix, σµν can be written in terms of Pauli matrices,

σij =εijk
(
σk

σk

)
,

σj0 =− σ0j =

(
iσj

−iσj

)
.

Commutation relations with gamma matrices are

1

2
[σµν , γρ] = − i

4
[[γµ, γν ] , γρ]

= − i
4
({γµ, {γν , γρ}} − {γν , {γµ, γρ}})

= −i (γµηνρ − γνηµρ) .

This can be understood as a kind of adjoint representation of the Lie algebra of the Lorentz group.
One can write the Lie algebra generators acting on Dirac spinors directly as

Mµν =
1

2
σµν .

This definition works also in other representations of the Clifford algebra because only the defining
anticommutation relation (10.14) has been used. In other words, we could have started with some
representation of (10.14) and would have obtained automatically a spinor representation of the
Lorentz group. This would have been a reducible representation though, because it involves left-
handed and right-handed spinors simultaneously. The representation can be decmposed again into
its parts with gamma five, which we introduce now.

2These are the conventions of Peskin & Schroeder. Weinberg uses J µν = 1
2
σµν . Wetterich uses the opposite sign
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Blackboard video

Gamma five

The matrix γ5 is defined as3

γ5 = −iγ0γ1γ2γ3

=
i

4!
εµνρσγ

µγνγργσ.

The four-dimensional Levi-Civita symbol is completely anti-symmetric with ε0123 = −1. In chiral
representation one has

γ5 =

(
1

−1

)
=

(
δ b
a

−δȧ
ḃ

)
.

The projectors to the left- and right-handed spinors are

PL =
1

2
(1+ γ5) =

(
δ b
a 0

0 0

)
,

and

PR =
1

2
(1− γ5) =

(
0 0

0 δȧ
ḃ

)
.

They can be used to project Dirac spinors with four components to Weyl spinors with only two
nonvanishing components.

Due to the definitions one has

{γ5, γµ} = 0

[γ5, σ
µν ] = 0

(γ5)
2 = 1.

Blackboard video

Charge conjugation

Consider a Dirac spinor and its conjugate as in eq. (10.13). The charge conjugate spinors are defined
as

ΨC =

(
ξa
ψ̄ȧ

)
, Ψ̄C =

(
ψa, ξ̄ȧ

)
.

A Majorna spinor is a Dirac spinor which obeys ψC = ψ or, in terms of Weyl spinors, ξa = ψa and
ψ̄ȧ = ξ̄ȧ. In other words, we can write the four component Majorana spinor as

Ψ = ΨC =

(
ψa
ψ̄ȧ

)
.

The relation between Dirac spinors and Majorana spinors is as the relation between a complex and a
real scalar field. As one can construct complex scalar fields out of two real fields, one can construct

3These is the convention of Weinberg, Wetterich. Peskin & Schroeder, Srednicki define γ5 with opposite sign
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Dirac spinors out of Majorana spinors (exercise). Note that a Majorana spinor has formally as
many real degrees of freedom as a Weyl spinor.

The charge conjugate fields can be written as

ΨC = C Ψ̄T , Ψ̄C = −ΨTC−1, (10.15)

with the transpose spinors

Ψ̄T =

(
ξa

ψ̄ȧ

)
, ΨT =

(
ψa, ξ̄

ȧ
)

and the charge conjugation matrix4

C =

(
εab

εȧḃ

)
, C−1 =

(
εab

εȧḃ

)
.

As a matrix, C obeys

C = −C−1 = −C † = −C T = C ∗ =


−1

1

1

−1

 .

One has also

C−1γµC =

(
εab

εȧḃ

)(
−i(σµ)bċ

−i(σ̄µ)ḃc

)(
εcd

εċḋ

)

=

(
−iεab(σµ)bċεċḋ

−iεȧḃ(σ̄µ)ḃcεcd

)

=

(
i(σ̄µ)ḋa

i(σµ)dȧ

)
,

or, in matrix notation
C−1γµC = −(γµ)T . (10.16)

Similarly,

C−1σµνC = −(σµν)T ,
C−1γ5C = (γ5)

T ,

C−1γ5γµC = (γ5γµ)T .

(10.17)

The index structure in (10.16) and (10.17) is appropriate for transposed spinors.

Blackboard video

Parity

Parity transforms the coordinates as (t, ~x) → (t,−~x). For a Dirac spinor and its conjugate as in
(10.13) one defines the parity transformed spinors

ΨP =

(
iξ̄ȧ

iψa

)
, Ψ̄P =

(
iψ̄ȧ, iξ

a
)
. (10.18)

4This is the convention of Srednicki
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Note that the role of right-handed and left-handed spinors (and their corresponding indices) is
interchanged for the parity-transformed field. Eq. (10.18) can also be written as

ΨP = iβΨ Ψ̄P = −iΨ̄β−1,

with the matrix

β =

(
δȧ
ḃ

δ b
a

)
, β−1 =

(
δ b
a

δȧ
ḃ

)
.

As a matrix, β obeys

β = β−1 = β† = βT = β∗ =

(
1

1

)
.

Parity transformations of the gamma matrices are given by

βγjβ−1 = −γj ,
βγ0β−1 = γ0.

(10.19)

The gamma matrices on the right hand side of (10.19) agree with (10) as matrices but have a
different index structure such that they fit to the spinors in (10.18),

βγµβ−1 =

(
−i(σ̄µ)ȧb

−i(σµ)aḃ

)
.

When doing a parity transform of an expression (e.g. a Lagrangian) and replacing spinors with
parity transformed spinors, one should also replace gamma matrices by the expressions in (10.19).
Similarly for the antisymmetric matrices

βσijβ−1 = σij ,

βσj0β−1 = −σj0.

The matrix γ5 is a pseudoscalar in the sense

βγ5β
−1 = −γ5.

Time reversal
Time reversal changes the time direction, (t, ~x) → (−t, ~x). It is also a anti-unitary transformation
that transforms all complex numbers to there complex conjugates. The time-reversed version of the
Dirac spinor and its conjugate as in (10.13) is given by

ΨT =

(
ψa

−ξ̄ȧ

)
, Ψ̄T =

(
−ξa, ψ̄ȧ

)
. (10.20)

Note that the role of upper and lower indices has been interchanged. With the matrices C and γ5
one can write this as

ΨT = C−1γ5Ψ, Ψ̄T = Ψ̄γ5C .

When considering time-reversal transformations, the following identities are useful

C−1γ0C−1 = (γ0)∗

C−1γjC−1 = −(γj)∗

C−1γ5C
−1 = (γ5)

∗

C−1σijC−1 = −(σij)∗

C−1σj0C−1 = (σj0)∗.

Similarly as in the case of parity, the index structure of these expressions is such that it fits to
eq. (10.20). In other words, one should use these expressions for (γµ)∗ ect. in connection with
time-reversed spinors.
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Grassmann property of fields and index-free notation

Define products of left-handed two-component Weyl spinors as

χψ = χaψa, (10.21)

and similarly for right handed spinors,
χ̄ψ̄ = χ̄ȧψ̄

ȧ. (10.22)

In other words, contracted indices that are not written should be interpreted as c
c for left-handed

spinors and ċ
ċ for right-handed spinors. Since χ and ψ are Grassmann valued their components

anti-commute, e. g.
χψ = χaψa = −ψaχa = ψaχa = ψχ. (10.23)

So with this notation one has χψ = ψχ and similarly χ̄ψ̄ = ψ̄χ̄ etc.
Hermitian conjugation includes also a commutation of Grassmann numbers, e. g.

(χψ)† = (χaψa)
†
= [ψa]

†
[χa]

†
= (ψ†)ȧ(χ

†)ȧ = ψ†χ†.

Another example for manipulating spinor indices is

ψ̄σ̄µχ = ψ̄ȧ(σ̄
µ)ȧbχb = −χb

[
εȧċεbd(σµ)dċ

]
ψ̄ȧ

= −χd(σµ)dċψ̄ċ = −χσµψ̄.
(10.24)

The minus sign in the second equation is due to the Grassmann property and the interchange of
spinors.

Blackboard video

LECTURE 20

Lagrangian for Weyl fermions

A Lagrangian for a left-handed, two-component Weyl fermion ψa and its right-handed hermitean
conjugate ψ̄ȧ = ψ†ȧ in Minkowski space can be written as

L =iψ̄ȧ(σ̄
µ)ȧb∂µψb −

1

2
mψaψa −

1

2
mψ̄ȧψ̄

ȧ = iψ̄σ̄µ∂µψ −
1

2
mψψ − 1

2
mψ̄ψ̄. (10.25)

In the second equation we used the short hand notation introduced above, keeping in mind that we
deal here with two-component spinors.

The two mass terms go into each other under hermitian conjugation assuming real m. More
general one could allow them to have complex conjugate masses m and m∗ respectively, but the
complex phase of m = eiβ |m| can be absorbed into a redefinition ψ → e−iβ/2ψ, ψ̄ → eiβ/2ψ̄, so
that real m > 0 can be assumed without loss of generality.

On the other side, if the theory is supposed to be invariant under the U(1) symmetry ψ → eiαψ,
ψ̄ → e−iαψ̄, a mass term as in (10.25) is actually excluded. In other words, such a symmetry would
only be unbroken for m = 0.

Let us also consider the hermitian conjugate of the first, kinetic term in the Lagrangian,[
iψ̄ȧ(σ̄

µ)ȧb∂µψb
]†

= −i∂µ[ψb]†
[
(σ̄µ)ȧb

]∗
[ψ̄ȧ]

† = −i∂µ[ψb]†(σ̄µ)bȧ[ψ̄ȧ]† = −i∂µψ̄ḃ(σ̄
µ)ḃaψa

= iψ̄ḃ(σ̄
µ)ḃa∂µψa − ∂µ

[
iψ̄ḃ(σ̄

µ)ḃaψa

]
.
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The last term on the right is a total derivative and contributes only an irrelvant boundary term
in the action. This shows that the kinetic term in also hermitian. Note also that using (10.24)
with χ = ∂µψ and droping another boundary term from partial integration, one can also bring the
kinetic term into the form

iψσµ∂µψ̄.

This shows that (10.25) is as well a Lagrangian for the left-handed field ψa as for the right-handed
field ψ̄ȧ.

Blackboard video

Lagrangian for Majorana fermions

We can now also write down directly a Lagrangian for four-component Majorana spionors,

Ψ = ΨC =

(
ψa
ψ̄ȧ

)
, Ψ̄ = Ψ̄C =

(
ψa, ψ̄ȧ

)
.

In fact, the Lagrangian (10.25) can be rewritten in terms of a Majorana spinor Ψ as

L = −1

2
Ψ̄Cγ

µ∂µΨ−
1

2
mΨ̄CΨ =

1

2
ΨTC−1γµ∂µΨ+

1

2
mΨTC−1Ψ. (10.26)

In the second equation we wrote everything in terms of the spinor Ψ only, using (10.15), to make
explicit that there is only one independant spionor field here.

Blackboard video

Lagrangian for Dirac fermions

Dirac fermions represented by the spinors

Ψ =

(
ψb

ξ̄ḃ

)
, Ψ̄ =

(
ξb, ψ̄ḃ

)
,

are charged fermions. This means one can do a U(1) transformation

Ψ→ eiαΨ, Ψ̄→ Ψ̄e−iα,

or
ψb → eiαψb, ξ̄ḃ → eiαξ̄ḃ, ξb → e−iαξb, ψ̄ḃ → e−iαψ̄ḃ. (10.27)

This implies that a mass term as for the Majorana fermions is not allowed. However, for Dirac
spinors, which have twice as many degrees of freedom as the Weyl or Majorana fermions, it is
possible to include a differnt kind of mass term, involving the combination

−mΨ̄Ψ = −m
[
ξaψa + ψ̄ȧξ̄

ȧ
]
. (10.28)

Note that this mixes the spinors ψ and ξ and is only allowed because they have opposite charges
under the U(1) transformation in eq. (10.27). In turn a mass term as in (10.28) actually breaks
another U(1) symmetry, the so-called chiral or axial symmetry

ψb → eiβψb, ξ̄ḃ → e−iβ ξ̄ḃ, ξb → eiβξb, ψ̄ḃ → e−iβψ̄ḃ.
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In terms of gamma five this can be written as

Ψ→ eiβγ5Ψ, Ψ̄→ Ψ̄eiβγ5 .

Indeed, the typical Lagrangian for charged massive Dirac fermions is given by

L = −Ψ̄γµ∂µΨ−mΨ̄Ψ

= iψ̄ȧ(σ̄
µ)ȧb∂µψb + iξa(σµ)aḃ∂µξ̄

ḃ −m[ξaψa + ψ̄ȧξ̄
ȧ].

(10.29)

Blackboard video

Dirac equation
Variation with respect to Ψ̄ yields the Dirac equation,

(γµ∂µ +m)Ψ = 0.

The equation of motion following from the Majorana Lagrangian (10.26) would actually be of the
same form, but it would be for a constrained or “real” Majorana spinor and not for an unconstrained
or “complex” Dirac spinor.

Blackboard video

Relation to Klein-Gordon equation
It is interesting to apply another derivative operator to the Dirac equation,

(−γµ∂µ +m)(γν∂ν +m)Ψ = 0.

Here one can replace
γµγν∂µ∂ν =

1

2
{γµ, γν}∂µ∂ν = ηµν∂µ∂ν ,

because the partial derivatives commute. This leads to

(−ηµν∂µ∂ν +m2)Ψ = 0,

which shows that all components of the Dirac spionor that solves the free Dirac equation are also
solutions to the Klein-Gordon equation. This implies also that one can solve the free Dirac equation
in terms of plane waves.

Partition function for Dirac fermions
We can now also write down a partition function for free Dirac fermions in the form of a Grassmann
functional integral,

Z2[η̄, η] =

∫
DΨ̄DΨexp

(
i

∫
d4x

{
−Ψ̄γµ∂µΨ−mΨ̄Ψ

}
+ i

∫
d4x

{
η̄Ψ+ Ψ̄η

})
.

The fields Ψ and Ψ̄, as well as the sources η and η̄ are here Grassmann valued fields which also
have the structure of four-component Dirac spinors. For example,

η̄Ψ =

4∑
α=1

η̄αΨα.
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As usual one can now determine correlation functions by taking functional derivatives, for example

〈Ψα(x)Ψ̄β(y)〉 =
1

Z2[η̄, η]

(
1

i

δ

δη̄α(x)

)(
i

δ

δηβ(y)

)
Z2[η̄, η] =

1

i
Sαβ(x− y).

The signs take here the Grassmann properties into account.

Blackboard video

Feynmann propagator for Dirac fermions

As usual, it is possible to perform the Gaussian integral by completing the square,

Z2[η̄, η] = exp

(
i

∫
d4x {η̄α(x)Sαβ(x− y)ηβ(y)}

)
,

where the propagator or time-ordered Greens function Sαβ(x− y) is defined such that(
γµ

∂

∂xµ
+m

)
ακ

Sκβ(x− y) = δαβδ
(4)(x− y).

This opertor inversion can be done conveniently in Fourier space,

Sαβ(x− y) =
∫

d4p

(2π)4
eip(x−y)(i/p+m)−1αβ

=

∫
d4p

(2π)4
eip(x−y)

(−i/p+m)αβ

p2 +m2 − iε
.

We have used here that

(−i/p+m)(i/p+m) = /p/p+m2 = γµγνpµpν +m2 =
1

2
{γµ, γν}pµpν +m2 = p2 +m2,

and have inserted the usual iε term to ensure the right causality properties for a Feynmann propa-
gator.

Blackboard video

Coupling to gauge fields

We can now also write down the Lagrangian for Dirac fermions coupled to the electromagnetic
gauge field Aµ,

L = −Ψ̄γµ(∂µ − ieAµ)Ψ−mΨ̄Ψ.

This is invariant under the local U(1) gauge transformation

Ψ→ eiα(x)Ψ, Ψ̄→ Ψ̄e−iα(x), Aµ(x)→ Aµ(x) +
1

e
∂µα(x).

Blackboard video
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Lagrangian for Quantum electrodynamics

We can now also write down a Lagrangian for quantum electrodynamics in complete form after
adding a kinetic term for the gauge fields,

L = −Ψ̄γµ(∂µ − ieAµ)Ψ−mΨ̄Ψ− 1

4
FµνF

µν .

We use here the electromagnetic field strength tensor

Fµν = ∂µAν − ∂νAµ.

It is obviously anti-symmetric and invariant under the U(1) gauge transformations introduced above.
Accordingly entire Lagrangian for quantum electrodynamics (QED) is gauge invariant.

Blackboard video

LECTURE 21

11 Poincaré group, fields and particles

We have seen that quantum fields build representations of the Lorentz group. We have specifically
investigated scalar and spinor fields, but will soon also turn to vector fields. On the other side,
we have seen that excitations of fields in the asymptotic regimes, where they propagate over large
distances, can be understood as particles. In this section we will investigate the relation further
using spacetime symmetries.

Asymptotic states and the Poincaré group

Asymptotic states that describe freely propagating particles correspond fields correlated over large
distances in spacetime and are independent of each other. Formally they can be associated to poles
in propagators or correlation functions in momentum space. These asymptotic regions are governed
by a set of symmetries, and it was shown by Eugene Wigner that one can use them to characterize
the properties of particles.

Transformations of fields

So far we have discussed how the “internal” indices of a field transform under Lorentz transforma-
tions. However, a field depends on a space-time position xµ which also transforms. This is already
the case for a scalar field,

φ(x)→ φ′(x) = φ(Λ−1x).

(A maximum at xµ is moved to a maximum at Λµνx
ν .) In infinitesimal form

(Λ−1)µν = δµν − δωµν ,

and thus
φ(x)→ φ′(x) = φ(x)− xνδωµν∂µφ(x).

This can also be written as
φ′(x) =

(
1 +

i

2
δωµνMµν

)
φ(x),
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with generator
Mµν = −i(xµ∂ν − xν∂µ).

Indeed, these generators form a representation of the Lie algebra (10.2), i. e.

[Mµν ,Mρσ] = i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ). (11.1)

For fields with non-vanishing spin, the complete generator contains Mµν and the generator of
“internal” transformations, for example for a left-handed spinor

ψa(x)→ ψ′a(x) =

(
δ b
a +

i

2
δωµν(Mµν)

b
a

)
ψb(x),

with
(Mµν)

b
a = (ML

µν)
b
a +Mµν δ

b
a .

This can now be extended to fields in arbitrary representations of the Lorentz group.

Pioncaré group
Poincaré transformations consist of Lorentz transformations plus translations,

xµ → Λµνx
ν − bµ.

Translations only (without Lorentz transformations) form themselves an abelian Lie group, the
additive group R4. It is clear that Poincaré transformations form a group. The composition law is

(Λ2, b2) ◦ (Λ1, b1) = (Λ2Λ1, b2 + Λ2b1).

[Exercise: Show this.] The composition law is an example for a semi-direct product, namely of the
Lorentz group O(1, 3) and the additive group R4 of space and time translations,

Poincaré group ∼= O(1, 3)nR4.

Lorentz transformations can be parametrized by six parameters, which are supplemented by four
parameters for translations. The entire symmetry group of Minkowski space has therefore ten
parameters.

Lie algebra of Poincaré group
Let us now find the Lie algebra associated with the Poincaré group. As transformations of fields,
translations are generated by the momentum operator

Pµ = −i∂µ.

For example, as an infinitesimal transformation,

φ(x)→ φ′(x) = φ(Λ−1(x+ b))

= φ(xµ − δωµνxν + bµ)

=

(
1 +

i

2
δωµνMµν + ibµPµ

)
φ(x).

One finds easily
[Pµ, Pν ] = 0, (11.2)

and
[Mµν , Pρ] = i (ηµρPν − ηνρPµ) , (11.3)

which together with (11.1) forms the Lie bracket relations of the Poincaré algebra. The commutator
(11.2) tells that the different components of the energy-momentum operator can be diagonalized
simultaneously, while (11.3) says that Pρ transforms as a covector under Lorentz transformations.
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Representations of the Poincaré group

Let us now discuss representations of the Poincaré algebra (and corresponding representations of
the Poincaré group). We concentrate here on the part of the group that is connected to the identity
transformations, i. e. SO↑(1, 3)nR4. It turns out that single-particle states can be understood as
examples for such representations.

As we have done before, we will use a maximal number of commuting generators to label states.
In particular, the different components of the momentum operator Pµ = −i∂µ commute and we can
work with corresponding eigenstates, namely plane waves eipµxµ . The eigenvalues are then energy
and momentum, pµ = (−E, ~p).

Casimir operators

To classify representations, we first search for Casimir operators, i. e. operators that commute with
all generators. One Casimir operator is

P 2 = PµP
µ,

which obviously commutes withMµν and Pµ. For single particle states of massive particles we have
pµp

µ +M2 = 0 so that −P 2 = M2 gives the particle mass. The other Casimir operator follows
from the Pauli-Lubanski vector

Wµ =
1

2
εµνρσMνρPσ.

It is orthogonal to the momentum, WµPµ = 0, and has the commutation relations

[Wµ, Pν ] = 0, [Mρσ,W
µ] = i

(
δµρWσ − δµσWρ

)
,

as well as
[Wµ,W ν ] = −iεµνρσWρPσ.

The second Casimir of the Poincaré algebra is then given by

W 2 =WµW
µ.

The little group

When discussing representations of the Poincaré group it is convenient to first make a case separation
in terms of the quadratic Casimir P 2 = PµP

µ. In each of the cases one can then fix a reference
choice for pµ∗ and discuss remaining transformations that leave this reference invariant,

(δµν + δωµν)p
ν
∗ = pµ∗ . (11.4)

This remaining symmetry group is then known as the little group. We will see this working in
practise below.

Representations with vanishing momentum

The eigenvalue of the momentum operator Pµ may actually simply vanish, pµ∗ = (0, 0, 0, 0). In that
case the little group corresponds to the entire Lorentz group SO(1, 3). An example for such a state
is the vacuum.
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Representations with positive mass squared

Let us now first consider situations with −P 2 = M2 > 0. Examples for such representations are
single particle states with positive mass.

We can fix a reference momentum pµ∗ = (M, 0, 0, 0) which corresponds to a particle momentum
in its rest frame. The little group then consists of transformations that leave pµ∗ invariant. These
are just rotations so the little group is here SO(3) or its double cover SU(2) which has the same Lie
algebra. More explicitly, this follows from searching solutions to (11.4) which is here equivalent to
δωµ0 = 0. Lorentz boosts are excluded; what is left are rotations.

In the particles rest frame, the Pauli-Lubanski vector evaluates to

W0 = 0, Wj =
M

2
εjklMkl =MJj ,

with angular momentum or spin operator Jj . The second Casimir of the Poincaré algebra is
accordingly W 2/M2 = ~J2. Single particle states |p, j,m〉 can be labeled by momentum pµ, total
spin ~J2 = j(j + 1) and eigenvalue m of the spin operator in z-direction J3.

Symmetric spinor-tensor representation of SU(2)

Besides the standard representations of SU(2) discussed in the context of quantum mechanics, an
alternativ representation is in terms of symmetric spinor-tensors. As we have seen, the spin-1/2
representation is a Pauli spionor ψs, where s = 1, 2, which transforms under rotations according to

ψs → L t
s ψt =

(
δ t
s +

i

4
δωijεijk(σk)

t
s

)
ψt, (11.5)

where L t
s describes here the little group rotation matrix. One can now simply construct higher

order representations as symmtric spinors with several SU(2) indices ψst···u, and they transform
accordingly under the little group transformations. In this way one obtains representations with
higher spin, and a symmetric SU(2) tensor with n indices describes particles with spin n/2. The
interesting feature about the little group is that every incoming or outgoing massive particle in a
scattering experiment as its own little group and can be rotated independently in its respective rest
frames.

Representations with negative mass squared

Here we have a situation with −P 2 =M2 < 0. This corresponds to so-called tachyonic modes and
if they appear they are usually associated to an instability.

We can fix a reference momentum as pµ∗ = (0, 0, 0,M). The little group consists now of trans-
formations that leave pµ∗ invariant and these are Lorentz transformations in the remaining 1 + 2

dimensional space, SO(1, 2). We will not discuss these representations in more detail.

Representations with vanishing mass

Let us now consider representations with P 2 = 0. This is again a rather interesting case. Examples
are here single particle states with vanishing mass M = 0.

Massless particles do not have a restframe, so to discuss the little group one must pick another
reference momentum, for example pµ∗ = (p, 0, 0, p) = p(δµ0 + δµ3 ). The little group consists of
transformations that leave this invariant. Specifically, eq. (11.4) implies here δωµ0 = δωµ3. One
can write this as

ωµν =


0 α β 0

−α 0 θ −α
−β −θ 0 −β
0 α β 0

 .
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Here, if only θ was non-vanishing, it would be the angle of a rotation in the 1-2-plane, i. e. around the
propagation direction of the massless particle. Instead non-vanishing α would parametrize a com-
bination of a boost in 1-direction together with a rotation in the 1-3 plane. Finally, β parametrizes
a combination of a boost in the 2-direction with a rotation in 2-3-plane. An infinitesimal group
transformation out of the litte group can be written as

1+ iδθJ3 + iδαA+ iδβB, (11.6)

with
A = K1 + J2 =M10 +M31, B = K2 − J1 =M20 +M32.

The Lie algebra of the little group is

[J3, A] = iB, [J3, B] = −iA, [A,B] = 0. (11.7)

This is in fact the Lie algebra of the so-called special Euclidean group E+(2) consisting of translations
and rotations in the two-dimensional Euclidean plane. It contains an SO(2) subgroup of rotations,
as well as a subgroup of translations R2. The abelian subgroup of translations is in fact a normal
subgroup. Similar to the Poincaré group itself, the Euclidean group E+(2) has the structure of a
direct product, E+(2) = SO(2)nR2. [Exercise: Check all this!]

In the fundamental representation of the Lorentz algebra, the operators A and B are actually
nilpotent. In fact, one has A3 = B3 = AB = BA = 0. However, there are also representations of
(11.7) where A and B are hermitian such that the group has a unitary representation. However, as
for any non-compact group, such unitary representations are necessarily infinite dimensional.

Physically, A and B can be related to gauge transformations. To see this consider polarization
vectors for photons with momentum pµ∗ ,

εµ± =
1√
2
(0, 1,±i, 0).

These are eigenstates of J3, namely in the fundamental or vector representation of the Lorentz
group,

(J3)
µ
νε
ν
± = ±εµ±.

The two polarizations εµ± describe therefore states with helicity ±1, respectively. Now consider the
action of (11.6) with δθ = 0,

εµ± → εµ± +
(δα± iδβ)√

2p
pµ∗ .

Interestingly, the generators A and B are not realized trivially here, but they actually do change
the polarization vector by a term proportional to the momentum. This is in fact a gauge transfor-
mation! To see this, consider the gauge transformation Aµ(x) → Aµ(x) + ∂µα(x), which becomes
in momentum space

Aµ(p)→ Aµ(p) + ipµα(p).

The physical photon states are supposed to be independent of this gauge choice, and one takes them
to be gauge equivalence classes. In other words, all states that differ by a gauge transformation are
getting identified. This works similarly for massless particles of spin two, where the gauge symmetry
is then the one of general relativity.

For such gauge equilvalence classes, or in a gauge fixed description, physical states of single
massless particles can be characterized as having vanishing eigenvalues with respect to the operators
A and B. We are then left with J3 which generates rotations around the direction of propagation.
This is in fact helicity, J3 = h. The little group for massless particles is then U(1).
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Fermionic massless particle states can change by a factor −1 under rotations of 2π around the
propagation direction. This implies half-integer helicity h. In contrast, bosonic massless particle
states should be invariant under 2π rotations, so that helicity h must be integer valued. These
quantization conditions arise here from topological properties of the group, and not from properties
of the Lie algebra.

Spinor helicity variables for massless momenta

Consider the (2, 2) representaion of a momentum pµ,

pµ(σ
µ)aȧ =

(
−p0 + p3 p1 − ip2
p1 + ip2 −p0 − p3

)
.

The determinant of this matrix is (p0)2−p2 = −ηµνpµpν . For momenta corresponding to massless
particles this vanishes. This means that one eigenvalue is zero, or that the matrix has rank 1. As
an example, take pµ = pµ∗ , the reference momentum we have chosen above for massless particles.
In that case,

pµ(σ
µ)aȧ =

(
0 0

0 −2p0

)
.

This shows that one can write for such momenta

pµ(σ
µ)aȧ = −λaλ̃ȧ. (11.8)

The objects λa and λ̃ȧ are known as spinor helicity variables or twistors. They are formally
left-handed and right-handed spinors, respectively, but are taken to be commuting, i. e. they are
composed out of ordinary complex numbers and not Grassmann variables. For real momenta pµσµ
is hermiten and one has

λ̃ȧ = ±(λa)∗

where the positive sign must be choosen for p0 > 0 and the negative sign for p0 < 0. More generally
one may also consider complex momenta and then λa and λ̃ȧ become independent. An explicit
realization for p0 > 0 and massless on-shell momenta is

λa =
1√

p0 + p3

(
−p1 + ip2

p0 + p3

)
, λ̃ȧ =

1√
p0 + p3

(
−p1 − ip2
p0 + p3

)
.

This assignment is not unique, however. Specifically one could transform

λa → eiθλa, λ̃ȧ → e−iθλ̃ȧ,

and obtain new twistors that also fulfill (11.8). One may use this to analytically continue for
negative frequency p0 < 0 such that for pµ → −pµ

λa → λa, λ̃ȧ → −λ̃ȧ.

Pulling indices up and down

As we have seen previously one can sensibly pull indices up and down with εab and its inverse εab,
for example a twistor with upper left-handed index is obtained by

λa = εabλb.

Similarly this can be done for right-handed indices. One can then also write

pµ(σ̄
µ)ȧa = εȧḃεabpµ(σ

µ)bḃ = −λ̃
ȧλa.
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Bracket notation and scalar products
It is customary to introduce the following notation for the left handed twistor associated with the
momentum p,

|p〉a = λa, 〈p|a = λa = εab|p〉a,
and similarly for the right handed twistor,

|p]ȧ = λ̃ȧ, [p|ȧ = λ̃ȧ = εȧḃ|p]
ḃ.

The analytic continuation properties can be choosen such that

| − p〉a = |p〉a, | − p]ȧ = −|p]ȧ.

The bracket notation (not to be confused with the bra-ket notation of quantum mechanics) allows
also to work nicely in situations where differnt momenta are involved, for example |p〉a = λa and
|q〉a = µa. One defines the SU(2) invariant scalar product between left-handed twistors

〈pq〉 = 〈p|a|q〉a = λaµa = εabλbµa = −µaλb = −〈p|a|q〉a = −〈qp〉,

and between right-handed twistors,

[pq] = [p|ȧq]ȧ = λ̃ȧµ̃
ȧ = εȧḃλ̃

ḃµ̃ȧ = −µ̃ȧλ̃ȧ = −[q|ȧ|p]ȧ = −[qp].

Note that it is not possible to sensibly define a scalar product between a left-handed and a right-
handed twistor. The anti-symmetry implies also that for massless momenta

〈pp〉 = [pp] = 0.

This will be useful in the following. In the bracket notation we can also write

pµ(σ
µ)aḃ = −|p〉a[p|ḃ, pµ(σ̄

µ)ȧb = −|p]ȧ〈p|b.

This also implies

2pµq
µ = −tr{pµσµqµσ̄ν} = −|p〉a[p|ḃ|q]

ḃ〈q|a = −〈qp〉[pq] = 〈pq〉[pq].

Weyl equations
The equation of motion i(σ̄µ)ȧb∂µψb(x) for free massless left-handed Weyl spinor in plane wave
form ψb(x) = ψb(p)e

ipx reads now

−pµ(σ̄µ)ȧbψb(p) = |p]ȧ〈p|bψb(p) = 0.

One can see that ψb(p) ∼ |p〉b is actually a solution,

|p]ȧ〈p|b|p〉b = |p]ȧ〈pp〉 = 0.

(Some care is needed here, however, because ψb(p) is a spinor with Grassmann property while |p〉b
is a twistor with no Grassmann property.) The complex conjugate

ψ̄ȧ(p) = εȧḃ(ψb(−p))∗ = −| − p]ȧ = |p]ȧ

is similarly a solution of the right-handed Weyl equation,

−pµ(σµ)aḃ|p]
ḃ = |p〉a[p|ḃ|p]

ḃ = .|p〉a[pp] = 0.

In other words, we can identify ψa(p) ∼ |p〉a and ψ̄ȧ(p) ∼ |p]ȧ is the corresponding conjugate spinor
(of course some care is needed with Grassmann properties).

A solution of the free Majorana equation at vanishing mass, γµpµΨ(p) = 0, can accordingly be
written in the form

Ψ(p) =

(
ψa(p)

ψ̄ȧ(p)

)
∼
(
|p〉a
|p]ȧ

)
.
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Little group representation for massless twistors

To construct |p〉b = λb explicitely it is useful to start with a specific reference frame, for example
the one where pµ = pµ∗ = (p, 0, 0, p) points in the three-direction. One has then

|p〉a = λa =

(
0√
2p

)
.

One can then apply a Lorentz transformation in the left-handed representation L b
a to go to other

momenta.
At this point it is also interesting how the little group acts here. For the left-handed represen-

tation one finds
1+ iδθJ3 + iδαA+ iδβB =

(
1 + i

2δθ 0

−δα− iδβ 1− i
2δθ

)
.

Interestingly this implies that under such a transformation

|p〉a → e−iθ/2|p〉a.

For the left handed twistor the generators A and B are represented trivially and have no effect.
The little group is here just a complex phase e−iθ/2. The negative sign and the factor 1/2 tell that
we are dealing with states of helicity h = −1/2 as appropriate for left-handed Weyl fermions. For
right-handed twistors oe has instead

|p]ȧ → eiθ/2|p]ȧ,

which tells that they have helicity h = 1/2. For practical caluclations it is useful to know that the
little group transformations can be done independently for each incoming or outgoing particle and
a scattering amplitude must transform accordingly with the respective phase factors.

Extension to nonzero mass

Consider now momenta pµ such that ηµνpµpν +m2 = 0 with nonzero mass m. In that case one can
introduce two twistors λsa with s = 1, 2 and write

pµ(σµ)aḃ = −λsaλ̃
s
ḃ
= −λsaεstλ̃tḃ.

By taking the determinant of this matrix one obtains −(p0)2+p2 = −m2 and accordingly one may,
as a matrix with indices a and s, take

det(λsa) = det(λ̃tḃ) = m.

The index s is here a kind of internal SU(2) index associated with a particle of momentum pµ where
the group SU(2) corresponds to the appropriate little group of roations for massive particles with
spin 1/2. Accordingly, these indices can also be pulled up and down with εst and its inverse εst, for
example

λ̃sȧ = εstλtȧ.

Bracket notation for massive twistors

Also for the massive twistors one can work with the bracket notation

|ps〉a = λsa, 〈ps|a = λas = εab|ps〉b.

We can follow conventions where the little group SU(2) index is taken in an upper position. Similarly
for right-handed massive twistors (where λ̃sȧ = (λsa)

∗ in Minkowski space for positive energy)

|ps]ȧ = λ̃ȧs , [ps|ȧ = λ̃sȧ = εȧḃ|ps]
ḃ.

– 118 –



Sometimes one uses also a notation where the little group SU(2) or spin indices are suppressed but
then uses bold face letters to indicate that these are massive twistors, e. g.

|p〉a = |ps〉a.

Little group transformations for massive twistors

The little group of SU(2) rotations acts on these twistors according to

|ps〉a → L t
s |pt〉a,

which is precisely the transformation in (11.5). This is actually the same transformation for any
twistor with an upper little group index.

Dirac equation for Majorana spionors

The Majorana spinor in momentum space can be written as

Ψs(p) =

(
ψsa(p)

ψ̄ȧs (p)

)
∼
(
|ps〉a
|ps]ȧ

)
.

The index s labels now the little group or, in other words, parametrizes the two independent spin
states in the particles rest frame. The Dirac equation (iγµpµ +m)Ψs(p) = 0 reads(

mδ b
a pµ(σ

µ)aḃ
pµ(σ̄

µ)ȧb mδȧ
ḃ

)(
|ps〉b
|ps]ḃ

)
=

(
mδ b

a −|pt〉a[pt|ḃ
−|pt]ȧ〈pt|b mδȧ

ḃ

)(
|ps〉b
|ps]ḃ

)
= 0.

One infers from this that

m|ps〉a + pµ(σ
µ)aḃ|ps]

ḃ = m|ps〉a − |pt〉a[ptps] = 0,

and similarly
m|ps]ȧ + pµ(σ̄

µ)ȧb|ps〉b = m|ps]ȧ − |ps]ȧ〈ptps〉 = 0.

These are just other ways to write the free Dirac equation for free massive Majorana particles in
Minkowski space. Here we are using the scalar products 〈psqt〉 = −〈qtps〉 and [psqt] = −[qtps],
which generalize the corresponding definitions for massless twistors. Because of the additional
index, such scalar products with the same momentum 〈pspt〉 and [pspt] are now non-zero, albeit
they are antisymmetric and proportional to εst.

We leave the generalization of the formalism from Majorana to Dirac spinors for the future.

Mode expansion for Dirac fields

We will also need a mode expansion for free Dirac fields in order to describe asymptotic (incoming
and outgoing) fermion states. We write the fields as

Ψ(x) =

2∑
s=1

∫
d3p

(2π)3
1√
2Ep

{
bsp us(p) e

ipx + ds†p vs(p) e
−ipx} ,

Ψ̄(x) =

2∑
s=1

∫
d3p

(2π)3
1√
2Ep

{
dsp v̄s(p) e

ipx + bs†p ūs(p) e
−ipx} .

Here, bsp, dsp etc. can be seen as expansion coefficients and become operators in the operator picture.
Because of the fermionic or Grassmann exchange symmetry, they fulfill actually anti-commutation
relations,

{brp, bs†q } = {drp, ds†q } = (2π)3δrsδ(3)(p− q),
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with all other anti-commutators vanishing. The index s sums over independent spin states. One
can interpret bs†p as a creation opertors for fermionoc particles (such as electrons) with momentum
p and spin s, and similarly ds†p as the corresponding creation operator for anti-particles (such as
positrons). The fact that there are particles and anti-particles arises from the “complex” nature of
Dirac spionors; for Majorana fermions there would be only one kind of creation operator.

Blackboard video

Solutions of Dirac equation

The Dirac equation
(γµ∂µ +m)ψ(x) = 0,

becomes for the plane waves

(i/p+m) us(p) = 0,

(−i/p+m) vs(p) = 0,

with the Dirac slash notation /p = γµpµ. We consider this first in the frame where the spatial
momentum vanishes, p = 0, such that pµ = (m, 0, 0, 0),

/p = −γ0m = im

(
1

1

)
.

The last equation holds in the chiral basis where

γµ =

(
0 −iσµ
−iσ̄µ 0

)
.

with σµ = (1, ~σ) and σ̄µ = (1,−~σ). For the spinor us(0) one has the equation

(i/p+m)us(0) = m

(
+1 −1
−1 +1

)
us(0) = 0.

The two independent solutions are

u1(0) =
√
m


1

0

1

0

 , u2(0) =
√
m


0

1

0

1

 .

The normalization has been chosen for later convenience. Similarly

(−i/p+m)vs(0) = m

(
1 1

1 1

)
vs(0) = 0,

has the two independent solutions

v1(0) =
√
m


0

+1

0

−1

 , v2(0) =
√
m


−1
0

+1

0

 .

– 120 –

https://www.tpi.uni-jena.de/~floerchinger/assets/videos/4uyJQBIEnz.mp4


We see here that the Dirac equation has two independent solutions (for spin up and and down with
respect to some basis) for particles and two more for anti-particles. One can now go to an arbitrary
reference frame by performing a Lorentz transformation to obtain us(p), vs(p) and their conjugates
= u†s(p)β as well as v̄s(p) = v†s(p)β. We derive more identities about these objects when we need
them later on.

Blackboard video

LECTURE 22

11.1 Relativistic scattering and decay kinematics

Covariant normalization of asymptotic states

For non-relativistic physics this we have used a normalization of single particle states in the asymp-
totic incoming and out-going regimes such that

〈p|q〉 = (2π)3δ(3)(p− q).

For relativistic physics this has the drawback that it is not Lorentz invariant. To see this let us
consider a boost in z-direction

E′ =γ(E + βp3),

p1′ =p1,

p2′ =p2,

p3′ =γ(p3 + βE).

Using the identity
δ (f(x)− f(x0)) =

1

|f ′(x0)|
δ(x− x0),

one finds

δ(3)(p− q) = δ(3)(p′ − q′)
dp3′

dp3
= δ(3)(p− q)γ

(
1 + β

dE

dp3

)
= δ(3)(p′ − q′)

1

E
γ
(
E + βp3

)
=
E′

E
δ(3)(p′ − q′).

This shows, however, that E δ(3)(p− q) is in fact Lorentz invariant.
This motivates to change the normalization such that

|p; in〉 =
√
2Epa

†
p(−∞)|0〉 =

√
2Ep |p; in〉.

Note the subtle difference in notation between |p; in〉 (relativistic normalization) and |~p; in〉 (non-
relativistic normalization). This implies for example

〈p; in|q; in〉 = 2Ep(2π)
3δ(3)(p− q).
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With this normalization we must divide by 2Ep at the same places. In particular the completeness
relation for single particle incoming states is

11−particle =

∫
d3p

(2π)3
1

2Ep
|p; in〉〈p; in|.

In fact, what appears here is a Lorentz invariant momentum measure. To see this consider∫
d4p

(2π)4
(2π) δ(p2 +m2) θ(p0) =

∫
d3p

(2π)3
1

2Ep
.

The left hand side is explicitly Lorentz invariant and so is the right hand side.

Blackboard video

Covariantly normalized S-matrix
We can use the covariant normalization of states also in the definition of S-matrix elements. The
general definition is as before

Sβα = 〈β; out|α; in〉 = δβα + i Tβα(2π)4δ(4)(pin − pout).

But now we take elements with relativistic normalization, e.g. for 2→ 2 scattering

Sq1q2,p1p2 = 〈q1, q2; out|p1, p2; in〉.

We can calculate these matrix elements as before using the LSZ reduction formula to replace√
2Epa

†
p(−∞) by fields. For example, for relativistic scalar fields√

2Ep a
†
p(−∞) =

√
2Ep a

†
~p(∞) + i

[
−(p0)2 + p2 +m2

]
φ∗(p).

This allows to calculate S-matrix elements through correlation functions.

Blackboard video

Cross sections for 2→ n scattering
Let us now generalize our discussion of 2→ 2 scattering of non-relativistic particles to a scattering
2→ n of relativistic particles. The transition probability is as before

P =
|〈β; out|α; in〉|2

〈β; out|β; out〉〈α; in|α; in〉
.

Rewriting the numerator in terms of Tβα and going over to the transition rate we obtain as before

Ṗ =
V (2π)4δ(4)(pout − pin)|T |2

〈β; out|β; out〉〈α; in|α; in〉
. (11.9)

But now states are normalized in a covariant way

〈p|p〉 = lim
q→p
〈p|q〉

= lim
q→p

2Ep(2π)
3δ(3)(p− q)

= 2Ep(2π)
3δ(3)(0)

= 2EpV
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One has thus for the incoming state of two particles

〈α; in|α; in〉 = 4E1E2V
2.

For the outgoing state of n particles one has instead

〈β; out|β; out〉 =
n∏
j=1

{2q0jV }.

The product goes over final state particles which have the four-momentum qnj . So, far we have thus

Ṗ =
V (2π)4 δ(4)(pin − pout)|T |2

4E1E2V 2
∏n
j=1{2q0jV }

.

Blackboard video

Lorentz invariant phase space
To count final state momenta appropriately we could go back to finite volume and then take the
continuum limit. This leads to an additional factor∑

~nj

→ V

∫
d3q

(2π)3

for each final state particle. The transition rate becomes

Ṗ =
|T |2

4E1E2V

(2π)4 δ(4)(pin −
∑
j

qj

) n∏
j=1

{
d3qj

(2π)32q0j

}
The expression in square brackets is known as the Lorentz-invariant phase space measure (sometimes
”LIPS”).

Flux and differential cross section
To go from there to a differential cross section we need to divide by a flux of particles. There is one
particle per volume V with velocity v = v1 − v2, so the flux is

F =
|v|
V

=
|v1 − v2|

V
=

∣∣∣p31p01 − p32
p02

∣∣∣
V

.

In the last equality we chose the beam axis to coincide with the z-axis. For the differential cross
section we obtain

dσ =
|T |2

4E1E2|v1 − v2|
[LIPS].

The expression in the prefactor can be rewritten like
1

E1E2|v1 − v2|
=

1

p01p
0
2

∣∣∣p31p01 − p32
p02

∣∣∣ = 1

|p02p31 − p01p32|
=

1

|εµxyνpµ2pν1 |
.

This is not Lorentz invariant in general but invariant under boosts in the z-direction. In fact it
transforms as a two-dimensional area element as it should.

Blackboard video
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Differential cross section in the centre of mass frame

In the center of mass frame one has p32 = −p31 = ±|p1| and

1

|p02p31 − p01p02|
=

1

|p1|(p01 + p02)
=

1

|p1|COM
√
s

This leads finally to the result for the differential cross section

dσ =
|T |2

4|p1|COM
√
s

(2π)4δ(4)(pin −
∑
j

qj

) n∏
j=1

{
d3qj

(2π)32q0j

} .

Blackboard video

2→ 2 scattering

For the case of n = 2 one can write the Lorentz invariant differential phase space element in the
center of mass frame (exercise)[

(2π)4 δ(4)(pin − q1 − q2)
d3q1

(2π)32q01

d3q2
(2π)3q02

]
=

|q1|
16π2

√
s
dΩ

such that
dσ

dΩ
=

1

64π2s

|q1|
|p1|
|T |2.

Decay rate

Let us now consider the decay rate of a single particle, i. e. a process 1 → n. We can still use
equation (11.9), but now the initial state is normalized like

〈α; in|α; in〉 = 2E1V.

We find then for the differential transition or decay rate dΓ = Ṗ

dΓ =
|T |2

2E1

(2π)4δ(4)(pin −
∑
j

qj

) n∏
j=1

{
d3qj

(2π)32q0j

}
In the center of mass frame one has E1 = m1. For the special case of 1→ 2 decay one finds in the
center of mass frame or rest frame of the initial particle

dΓ =
|T |2|q1|
32π2m2

1

dΩ.

Blackboard video
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12 Quantum electrodynamics

Functional integral for photons

For photons, the field one integrates over in the functional integral is the gauge field Aµ(x). The
field theory is described by the partition function

Z2[J ] =

∫
DA exp

[
iS2[A] + i

∫
JµAµ

]
=

∫
DA exp

[
i

∫
d4x

{
−1

4
FµνFµν + JµAµ

}]
.

One can go to momentum space as usual

Aµ(x) =

∫
d4p

(2π)4
eipxAµ(p),

and finds for the term in the exponential∫
x

{
−1

4
FµνFµν + JµAµ

}
=

1

2

∫
d4p

(2π)4
{
−Aµ(−p)

(
p2ηµν − pµpν

)
Aν(p) + Jµ(−p)Aµ(p) +Aµ(−p)Jµ(p)

}
.
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Attempt to invert the inverse propagator and gauge fixing

The next step would now be to perform the Gaussian integral over Aµ by completing the square.
However, a problem arises here: The “inverse propagator” for the gauge field

p2ηµν − pµpν = p2Pµν(p),

is not invertible. We wrote it here in terms of

P ν
µ (p) = δ ν

µ −
pµp

ν

p2
,

which is in fact a projector to the space orthogonal to pν

P ν
µ (p)P ρ

ν (p) = P ρ
µ (p).

As a projector matrix it has eigenvalues 0 and 1, only. However,

P ν
µ (p) pν = 0.

The field Aν(p) can be decomposed into two parts,

Aν(p) =
i

e
pνβ(p) + Âν(p),

with
Âν(p) = P ρ

ν (p)Aρ(p),
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such that pνÂν(p) = 0. Moreover
β(p) =

e

ip2
pνAν(p).

When acting on Âν(p), the projector P ν
µ (p) is simply the unit matrix.

Recall that gauge transformations shift the field according to

Aµ(x)→ Aµ(x) +
1

e
∂µα(x),

or in momentum space
Aµ(p)→ Aµ(p) +

i

e
pµα(p).

One can therefore always perform a gauge transformation such that β(p) = 0 or

∂µAµ(x) = 0.

This is known as Lorenz gauge or Landau gauge. We will use this gauge in the following and restrict
the functional integral to field configurations that fulfil the gauge condition.
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Quadratic partition function
Now we can easily perform the Gaussian integral,

Z2[J ] =

∫
DA exp

[
i

2

∫
p

{
−
(
Aµ(−p)− Jρ(−p)

Pρ
µ

p2

)
p2Pµν

(
Aν(p)−

P σ
ν

p2
Jσ(p)

)}]
× exp

[
i

2

∫
p

Jµ(−p)Pµν(p)

p2
Jν(p)

]
= const× exp

[
i

2

∫
x,y

Jµ(x)∆µν(x− y)Jν(y)
]
.

In the last line we used the photon propagator in position space (in Landau gauge)

∆µν(x− y) =
∫

d4p

(2π)4
eip(x−y)

Pµν(p)

p2 − iε
.

In the last step we have inserted the iε term as usual.

Blackboard video

Photon propagator in position space
In the free theory one has

〈Aµ(x)Aν(x)〉 =
1

i2

(
1

Z[J ]

δ2

δJµ(x)δJν(y)
Z[J ]

)
J=0

=
1

i
∆µν(x− y).

We use the following graphical notation

(x, µ) (y, ν) =
1

i
∆µν(x− y),

or with sources iJµ(x) at the end points

=
1

2

∫
x,y

iJµ(x)
1

i
∆µν(x− y) iJν(y).
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Free solutions

To describe incoming and outgoing photons we need to discuss free solutions for the gauge field.
In momentum space, and for the gauge-fixed field (Landau gauge), the linear equation of motion
(Maxwell’s equation) is simply

p2P ν
µ (p)Âν(p) = p2Âµ(p) = 0.

Non-trivial solutions satisfy p2 = 0. Without loss of generality we assume now pµ = (E, 0, 0, E); all
other light like momenta can be obtained from this via Lorentz transformations.

Polarizations

Quite generally, a four-vector can be written as

Âν(p) =

(
b,
a1 + a2√

2
,
−ia1 + ia2√

2
, c

)
.

From the Landau gauge condition pνÂν = 0 it follows that b = −c, so that one can write

Âν(p) = c̃× (−E, 0, 0, E) + a1ε
(1)
ν + a2ε

(2)
ν ,

with
ε(1)ν =

(
0,

1√
2
,
−i√
2
, 0

)
, ε(2)ν =

(
0,

1√
2
,
i√
2
, 0

)
.

However, the term ∼ c̃ is in fact proportional to pν = (−E, 0, 0, E). We can do another gauge
transformation such that c̃ = 0. This does not violate the Landau gauge condition because of
pνpν = 0. In other words, the photon field has only two independent polarization states, chosen
here as positive and negative circular polarizations, or helicities.

Blackboard video

Mode expansion

In summary, we can expand free solutions of the photon field like

Aµ(x) =

2∑
λ=1

∫
d3p

(2π)3
1√
2Ep

{
ap,λ ε

(λ)
µ (p) eipx + a†p,λ ε

(λ)∗
µ (p) e−ipx

}
,

where Ep = |p| is the energy of a photon. The index λ labels the two polarization states.
In the current setup, ap,λ and a†p,λ are simply expansion coefficients, while they become an-

nihilation and creation operators in the operator picture. The non-trivial commutation relation
becomes then [

ap,λ, a
†
p′,λ′

]
= (2π)3δ(3)(p− p′)δλλ′ .

Blackboard video
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LSZ reduction formula for photons

We also need a version of the Lehmann-Symanzik-Zimmermann reduction formula for photons.
Recall that for non-relativistic bosons we could replace for the calculation of the interacting part
of the S-matrix

aq(∞)→ i
[
−q0 + q2

2m + V0

]
ϕ(q),

a†q(−∞)→ i
[
−q0 + q2

2m + V0

]
ϕ∗(q).

For relativistic fields this is in general somewhat more complicated because of renormalization. This
will be discussed in more detail in the second part of the course. In the following we will discuss
only tree level diagrams where this plays no role. For photons one can replace for outgoing states√

2Ep ap,λ(∞)→ iεν∗(λ)(p)

∫
d4x e−ipx[−∂µ∂µ]Aν(x)√

2Ep a
†
p,λ(−∞)→ iεν(λ)(p)

∫
d4x eipx[−∂µ∂µ]Aν(x).

These formulas can be used to write S-matrix elements as correlation functions of fields. Note that
[−∂µ∂ν ] is essentially the inverse propagator in Landau gauge.

LSZ reduction for Dirac fermions

Finally, let us give the LSZ reduction formulas for Dirac fermions (again neglecting renormalization
effects) √

2Epbp,s(∞)→ i

∫
d4x e−ipxūs(p)(γ

µ∂µ +m)ψ(x),√
2Epd

†
p,s(−∞)→ −i

∫
d4x eipxv̄s(p)(γ

µ∂µ +m)ψ(x),√
2Epdp,s(∞)→ −i

∫
d4x ψ̄s(x)(−γµ

←−
∂ µ +m)vs(p) e

−ipx,√
2Epb

†
p,s(−∞)→ i

∫
d4x yψ̄s(x)(−γµ

←−
∂ µ +m)us(p) e

ipx.

The left-pointing arrows indicate here that these derivatives act to the left (on the field ψ̄s(x)).
These relations have been obtained as part of the exercises.

The factors of i will typically cancel out in claculations of S-matrix elements with similar
factors that come with propagators. For anti-fermion lines there is an additional factor (−1) in the
propagator because the momentum is there counted opposite to the fermion flow direction.
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Action and partition function

We are now ready to formulate the Feynman rules for a perturbative treatment of quantum elec-
trodynamics. The microscopic action is

S =

∫
d4x

{
−1

4
FµνFµν − ψ̄γµ(∂µ − ieAµ)ψ −mψ̄ψ

}
= S2[ψ̄, ψ,A] + ie

∫
d4x ψ̄γµAµψ.
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The last term is cubic in the fields ψ̄, ψ and Aµ, while all others terms are quadratic. We will
perform a perturbative expansion in the electric charge e.

Let us write the partition function as

Z[η̄, η, J ] =

∫
Dψ̄DψDA exp

[
iS[ψ̄, ψ,A] + i

∫ {
η̄ψ + ψ̄η + JµAµ

}]
with η̄ψ = η̄αψα where α = 1, . . . , 4 sums over spinor components. Formally, one can write

Z[η̄, η, J ] = exp
[
−e
∫
d4x

(
1

i

δ

δJµ(x)

)(
i

δ

δηα(x)

)
(γµ)αβ

(
1

i

δ

δη̄β(x)

)]
Z2[η̄, η, J ],

with quadratic partition function

Z2 =

∫
Dψ̄DψDA exp

[
iS2[ψ̄, ψ,A] + i

∫ {
η̄ψ + ψ̄η + JµAµ

}]
= exp

[
i

∫
d4xd4y η̄(x)S(x− y)η(y)

]
× exp

[
i

2

∫
d4xd4y Jµ(x)∆µν(x− y)Jν(y)

]
.

Propagator for Dirac fermions
We have used here also the propagator for Dirac fermions Sαβ(x−y) introduced previously. We can
now calculate S-matrix elements by first expressing them as correlation functions which get then
evaluated in a perturbative expansion of the functional integral. These perturbative expressions
have an intuitive graphical representation as we have briefly discussed before. We concentrate here
on tree diagrams for which renormalization is not needed yet.

The correlation function of two Dirac fields can also be expressed in terms of the Dirac propa-
gator,

〈ψα(x)ψ̄β(y)〉 =
1

Z2

(
1

i

δ

δη̄α(x)

)(
i

δ

δηβ(y)

)
Z2

∣∣∣
η̄=η=J=0

=
1

i
Sαβ(x− y).

We introduce a graphical representation for thus, as well,

(x, α) (y, β) =
1

i
Sαβ(x− y).

With sources iη̄α(x) and iηβ(y) at the end this would be

=

∫
x,y

iη̄α(x)
1

i
Sαβ(x− y) iηβ(y) = i

∫
x,y

η̄(x)S(x− y)η(y).

The conventions are such that the arrow points away from the source η and to the source η̄. It
can also be seen as denoting the direction of fermions while anti-fermions move against the arrow
direction. The Dirac indices α, β are sometimes left implicit when there is no doubt about them.

LECTURE 24

Expanding out exponentials
We now consider the full partition function and expand out the exponentials,

Z[η̄, η, J ] =

∞∑
V=0

1

V !

[∫
x

(
1

i

δ

δJµ(x)

)(
i

δ

δηα(x)

)(
−eγµαβ

)(1

i

δ

δη̄β(x)

)]V
×
∞∑
F=0

1

F !

[∫
x′,y′

iη̄α(x
′)

(
1

i
Sαβ(x

′ − y′)
)
iηβ(y

′)

]F
×
∞∑
p=0

1

P !

[
1

2

∫
x′′,y′′

iJµ(x′′)

(
1

i
∆µν(x

′′ − y′′)
)
iJν(y′′)

]P
.

(12.1)
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The index F counts the number of fermion propagators (corresponding to fermion lines in a graphical
representation), the index P counts the number of photon propagators (photon lines). The index
V counts vertices that connect fermion and photon in a specific way. More specifically, each power
of this term removes one of each kind of sources and introduces −eγµαβ to connect the lines in the
graphical representation. The organization where factors of 1/i come together with the fermion
and boson propagators has also the advantage that factors of i that appear in the LSZ reduction
rules nicely cancel out against them.

Blackboard video

Graphical representation for partition function

In the full expression for Z[η̄, η, J ] many terms are present, in fact all graphs one can construct
with fermion lines, photon lines and the vertex. For example

Z = + + . . .+ + . . .

+ + . . .+ + . . .

Note that these graphs need not be connected and the last diagram in the first line consists of two
disconnected pieces.

Connected and disconnected diagrams

One distinguishes connected diagrams where all endpoints are connected with lines to each other,
for example

or or or

Disconnected diagrams can be decomposed into several connected diagrams.

Blackboard video
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Tree and loop diagrams
One also distinguishes tree diagrams and loop diagrams. Loop diagrams have closed loops of particle
flow, for example

or or

or etc.

Tree diagrams have no closed loop, for example

or or

Blackboard video

Counting the number of loops
Consider the partition function in (12.1). We have in each term

• V vertices, each with 3 functional derivatives

• F fermion propagators, each with 2 sources

• P photon propagators, each with 2 sources

At the end this will lead to a term with the following number of sources left

E = 2(F + P )− 3V.

It is also useful to count the number of internal lines (those not connected to one of the E sources)
and it must be such that

2I = 3V − E.
Another useful formula relates the number of loops L to the number of internal lines and vertices

I = L+ V − 1.

To see this one may start drawing each loop in a simple topology with just one vertex and one line
and then to modify it by adding more vertices. One can combine these formulas to give the number
of loops as

L =
1

2
V − 1

2
E + 1 = 2V − (F + P ) + 1.

It is reassuring to check this formula on a few examples.

– 131 –

https://www.tpi.uni-jena.de/~floerchinger/assets/videos/m4OhQfZFhn.mp4


Corresponding algebraic expressions

To each of these diagrams with sources corresponds of course an algebraic expression, for example

=
1
iS(z − y)

1
iS(x− z)

1
i∆µν(z − w)

iη(y)

−eγµ

iη̄(x)

iJν(w)

=

∫
x,y,z,w

iη̄(x)

[
1

i
S(x− z)

]
(−eγµ)

[
1

i
S(z − y)

]
iη(y)

[
1

i
∆µν(z − w)

]
iJν(w).

To calculate S-matrix elements we are mainly interested in the connected diagrams because discon-
nected diagrams describe events where not all particles scatter. Also, we concentrate here on tree
diagrams. Loop diagrams will be discussed somewhat later.

Blackboard video

S-matrix elements

Now that we have seen how to represent Z[η̄, η, J ], let us discuss how to obtain S-matrix elements.
For example, for an outgoing photon we had the LSZ rule√

2Ep ap,λ(∞)→ iεν∗(λ)(p)

∫
d4x e−ipx [−∂µ∂µ]Aν(x).

To obtain the field Aν(x) under the functional integral we can use

Aν(x)→
1

i

δ

δJν(x)
,

acting on Z[η̄, η, J ]. Moreover, i[−∂µ∂µ] will remove one propagator line for the outgoing photon,

i [−∂µ∂µ]
1

i
∆ρσ(x− y) = [−∂µ∂µ]

∫
d4p

(2π)4
eip(x−y)

Pρσ(p)

p2 − iε

=

∫
d4p

(2π)4
eip(x−y)Pρσ(p)→ ηρσδ

(4)(x− y).

The projector has no effect if the photon couples to conserved currents and the result is simply
ηρσδ

(4)(x− y). What remains is to multiply with the polarization vector

ε∗(λ)µ(p)

for the out-going photon with momentum p. Also, the Fourier transform brings the expression to
momentum space. The out-going momentum is on-shell, i. e. it satisfies pµpµ = 0 for photons.
Similarly, for incoming photons we need to remove the external propagator line and contract with

ε(λ)µ(p),

instead.
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For out-going electrons we need to remove the external fermion propagator and multiply with
ūs(p) where p is the momentum of the out-going electron satisfying p2+m2 = 0 and s labels its spin
state. Similarly, for an incoming electron we need to contract with us(p). For out-going positrons
we need to contract with vs(p). For an incoming positron the corresponding external spinor is v̄s(p).

Blackboard video

Propagators in momentum space

Working now directly in momentum space, the photon line is represented by

−i∆µν(p) = −i
Pµν(p)

p2 − iε
= −i

ηµν − pµ pν
p2

p2 − iε
.

The fermion line corresponds to

−iS(p) = −i
−i/p+m

p2 +m2 − iε
.

The vertex is as before −eγµ. Momentum conservation must be imposed at each vertex. Together
these rules constitute the Feynman rules of QED. One can work with the graphical representation
and then translate to formula at a convenient point. However, when in doubt, one can always go
back to the functional representation.

LECTURE 25

12.1 Elementary scattering processes

We are now ready to use the formalism of quantum field theory, specifically quantum electrody-
namics, to determine actually scattering amplitudes and cross section. The incoming and outgoing
states can consist of photons, electrons and positrons but also muons or anti-muons and more gener-
ally any charged particles. When the charged particles are scalar bosons, one would use a variant of
the theory called scalar electrodynamics, but we are here concerned with charged spin-1/2 particles
which are described by standard spinor electrodynamics.

In the following we will bring together several of the elements we have discussed before, such
as

• the Lagrangian of spinor quantum electrodynamics,

• the idea of perturbation theory as an expansion in the coupling constant e,

• the graphical representation in terms of Feynman diagrams,

• solutions to the free Dirac equation for incoming or outgoing electrons and positrons (or
muons and anti-muons),

• the propagators for Dirac femions and for photons,

It might be a good idea to go back and revise these topics if you feel uncertain about them. We
will see on the way that we need some additional technical knowledge, specifically
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• how to do spin sums,

• how to calculate traces of gamma matrices

• how Mandelstam variables are defined and how one can work with them.

These points will also be discussed in the exercises.
We will then start to look at the elastic scattering of a photon and an electron, a process

known as Compton scattering. We will write down the Feynman diagrams and the corresponding
algebraic expressions. For another process, namely the scattering of an electron-positron pair to
a muon-anti-muon pair we will do this, as well, but then also go on and evaluate the expressions
further until we arrive at a nice and compact result for the scattering cross-section.

Compton Scattering

As a first example let us consider Compton scattering e−γ → e−γ

p1, s1

µ

ν

q1, λ1

p2, s2 q2, λ2

p1 + q1

p1, s1

ν

µ

q1, λ1

p2, s2 q2, λ2

p1 − q2

These are two diagrams at order e2, as shown above. The first diagram corresponds to the expression

ūs2(p2)(−eγν)
(
−i
−i(/p1 + /q1) +m

(p1 + q1)2 +m2

)
(−eγµ) us1(p1) ε(λ1)µ(q1) ε

∗
(λ2)ν

(q2).

Similarly, the second diagram gives

ūs2(p2)(−eγµ)
(
−i
−i(/p1 − /q1) +m

(p1 − q2)2 +m2

)
(−eγν) us1(p1) ε(λ1)µ(q1) ε

∗
(λ2)ν

(q2).

Combining terms and simplifying a bit leads to

iT = −ie2ε(λ1)µ(q1) ε
∗
(λ2)ν

(q2) ūs2(p2)

[
γν
−i(/p1 + /q1) +m

(p1 + q1)2 +m2
γµ + γµ

−i(/p1 − /q2) +m

(p1 − q2)2 +m2
γν
]
us1(p1).

Electron-positron to muon-anti-muon scattering

As another example for an interesting process in QED we consider e−e+ → µ−µ+. From the point
of view of QED, the muon behaves like the electron but has a somewhat larger mass. Diagrams
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contributing to this process are (we keep the polarizations implicit)

e−

µ

ν

e+

µ− µ+

p1

p1 + p2 = k

p2

p3 p4

The corresponding expression is

iT = v̄(p2)(−eγµ) u(p1)

(
−i
ηµν − kµkν

k2

(k2)

)
ū(p3) (−eγν) v(p4),

with k = p1 + p2 = p3 + p4.

Blackboard video

On-shell conditions

The external momenta are on-shell and the spinors u(p1) etc. satisfy the Dirac equation,

(i/p1 +me)u(p1) = 0, (−i/p4 +mµ)v(p4) = 0,

ū(p3)(i/p3 +mµ) = 0, v̄(p2)(−i/p2 +me) = 0.

This allows to write

v̄(p2) iγ
µkµ u(p1) = v̄(p2) i(/p1 + /p2)u(p1) = v̄(p2) (−me +me)u(p1) = 0,

ū(p3) iγ
νkν v(p4) = ū(p3) i(/p3 + /p4) v(p4) = ū(p3) (−mµ +mµ) v(p4) = 0.

These arguments show that the term ∼ kµkν can be dropped. This is essentially a result of gauge
invariance.

Complex conjugate and squared amplitudes

We are left with
T = − e

2

k2
v̄(p2)γ

µu(p1) ū(p3)γµv(p4).

To calculate |T |2 we also need T ∗ which follows from hermitian conjugation

T ∗ = − e
2

k2
v†(p4)γ

†
µū
†(p3) u

†(p1)γ
µ†v̄†(p2).

Recall that ū(p) = u(p)†β with β = iγ0. With the explicit representation

γµ =

(
−iσ̄µ

−iσµ

)
,
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it is also easy to prove βγµ†β = −γµ. By inserting β2 = 1 at various places we find thus

T ∗ = − e
2

k2
v̄(p4)γµu(p3) ū(p1)γ

µv(p2)

Putting together and using s = −k2 = −(p1 + p2)
2 we obtain

|T |2 =
e4

s2
ū(p1)γ

µv(p2) v̄(p2)γ
νu(p1) ū(p3)γνv(p1) v̄(p4)γµu(p3).

Blackboard video

Spin sums and averages

To proceed further, we need to specify also the spins of the incoming and outgoing particles. The
simplest case is the one of unpolarized particles so that we need to average the spins of the incoming
electrons, and to sum over possible spins in the final state. Summing over the spins of the µ+ can
be done as follows (exercise)

2∑
s=1

vs(p4)v̄s(p4) = −i/p4 −mµ,

and similarly for µ−
2∑
s=1

us(p3)ūs(p3) = −i/p3 +mµ.

We can therefore write∑
spins

ū(p3)γνv(p4) v̄(p4)γµu(p3) = tr
{
(−i/p3 +mµ)γν(−i/p4 −mµ)γµ

}
.

Spins of the electron and positron must be averaged instead,

1

2

2∑
s=1

u(p1)ū(p1) =
1

2
(−i/p1 +me),

1

2

2∑
s=1

v(p2)v̄(p2) =
1

2
(−i/p2 −me).

This leads to

1

4

∑
spins
|T |2 =

e4

4s2
tr
{
(−i/p1 +me)γ

µ(−i/p2 −me)γ
ν
}
× tr

{
(−i/p3 +mµ)γν(−i/p4 −mµ)γµ

}
.

In order to proceed further, we need to know how to evaluate traces of up to four gamma matrices.

Blackboard video
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Traces of gamma matrices
We need to understand how to evaluate traces of the form

tr{γµ1 · · · γµn}.

To work them out we can use {γµ, γν} = 2ηµν , γ25 = 1 and {γµ, γ5} = 0. Also, tr{1} = 4. First we
prove that traces of an odd number of gamma matrices must vanish,

tr{γµ1 · · · γµn} = tr{γ25 γµ1γ25 · · · γ25γµn}
= tr{(γ5γµ1γ5) · · · (γ5γµ1γ5)}
= tr{(−γ25γ

µ
1 ) · · · (−γ25γµn)}

= (−1)ntr{γµ1 · · · γµn}.

This implies what we claimed.
Now for even numbers

tr{γµγν} = tr{γνγµ} = 1
2 tr{γµγν + γνγµ} = ηµνtr{1} = 4ηµν .

From this it also follows that
tr{/p/q} = 4p · q.

Now consider tr{γµγνγργσ}. This idea is to commute γµ to the right using {γµ, γν} = 2ηµν . Thus

tr{γµγνγργσ} = −tr{γνγµγργσ}+ 2ηµν tr{γργσ}
= tr{γνγργµγσ} − 2ηρµtr{γνγσ}+ 2ηµν tr{γργσ}
= −tr{γνγργσγµ}+ 2ησµ tr{γνγρ} − 2ηρµ tr{γνγσ}+ 2ηµν tr{γργσ}.

But by the cyclic property of the trace

tr{γνγργσγµ} = tr{γµγνγργσ}

which is also on the left hand side. Bringing it to the left and dividing by 2 gives

tr{γµγνγργσ} = ησµ tr{γνγρ} − ηρµ tr{γνγσ}+ ηµνtr{γργσ}
= 4(ησµηνρ − ηρµηνσ + ηµνηρσ).

This is the result we were looking for. Clearly by using this trick we can in principle evaluate traces
of an arbitrary number of gamma matrices.

Blackboard video

Result so far
Coming back to e−e+ → µ−µ+ we find

1

4

∑
spins
|T |2 =

4e4

s2
[
−pµ1pν2 − pν1p

µ
2 + (p1 · p2 −m2

e)η
µν
]

×
[
−(p3)ν(p4)µ − (p3)µ(p4)ν + (p3 · p4 −m2

µ)η
µν
]

=
8e4

s2
[
(p1 · p4)(p2 · p3) + (p1 · p3)(p2 · p4)−m2

µ(p1 · p2)−m2
e(p3 · p4) + 2m2

em
2
µ

]
.

This looks already quite decent but it can be simplified even further in terms of Mandelstam
variables.

Blackboard video
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Mandelstam Variables
The Mandelstam variables for a 2→ 2 process

p1

p3

p2

p4

are given by

s = −(p1 + p2)
2 = −(p3 + p4)

2,

t = −(p1 − p3)2 = −(p2 − p4)2,
u = −(p1 − p4)2 = −(p2 − p3)2.

Together with the squares p21, p22, p23, p24, the Mandelstam variables can be used to express all
Lorentz invariant bilinears in the momenta. Incoming and outgoing momenta are on-shell such
that p21 +m2

1 = 0 etc. The sum of Mandelstam variables is

s+ t+ u = −(p21 + p22 + p23 + p24) = m2
1 +m2

2 +m2
3 +m2

4.

Using these variables for example through

p1 · p4 = −1

2

[
(p1 − p4)2 − p21 − p24

]
=

1

2

[
u−m2

e +m2
µ

]
,

one finds for e−e+ → µ−µ+

1

4

∑
spins
|T |2 =

2e4

s2
[
t2 + u2 + 4s(m2

e +m2
µ)− 2(m2

e +m2
µ)

2
]
.

Blackboard video

Differential cross section
From the squared matrix element we can calculate the differential cross section in the center of
mass frame. For relativistic kinematics of 2 → 2 scattering and the normalization conventions we
employ here one has in the center of mass frame

dσ

dΩ
=

1

64π2s

|p3|
|p1|

1

4

∑
spins
|T |2.

Let us express everything in terms of the energy E of the incoming particles and the angle θ between
the incoming e− electron momenta and outgoing µ− muon.

|p1| =
√
E2 −m2

e, s = 4E2,

|p3| =
√
E2 −m2

µ, t = m2
e +m2

µ − 2E2 + 2p1 · p3,

p1 · p3 = |p1||p3| cos θ, u = m2
e +m2

µ − 2E2 − 2p1 · p3.

With these relations we can express dσ/dΩ in terms of E and θ only.

Blackboard video
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Ultrarelativistic limit

Let us concentrate on the ultrarelativistic limit E � me,mµ so that we can set me = mµ = 0. One
has then |p1| = |p3| and

t2 + u2 = 8E4(1 + cos2 θ),
2(t2 + u2)

s2
= 1 + cos2 θ,

which leads to
dσ

dΩ
=

e4

64π2s
(1 + cos2 θ) =

α2

4s
(1 + cos2 θ).

In the last equation we used α = e2/(4π).

Blackboard video

Electron-Muon Scattering

We can also consider the scattering process e−µ− → e−µ−,

e−

µ ν

e−

µ−

µ−

q1

k

q3

q2

q4

iT = ū(q3)(−eγµ)u(q1)

(
−i
ηµν − kµkν

k2

k2

)
ū(q4)(−eγν)u(q2).

By a similar argument as before the term ∼ kµkν drops out,

T = − e2

(q1 − q3)2
ū(q3)γ

µu(q1)ū(q4)γµu(q2) (e−µ− → e−µ−).

Blackboard video

Comparison to electron to muon scattering

Compare this to what we have found for e−e+ → µ−µ+

T = − e2

(p1 + p2)2
v̄(p2)γ

µu(p1)ū(p3)γµv(p4),
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where the conventions were according to

e−

µ

ν

e+

µ− µ+

p1

p1 + p2 = k

p2

p3 p4

There is a close relation and the expressions agree if we put

q1 = +p1, u(q1) = u(p1),

q2 = −p4, u(q2) = u(−p4)→ v(p4),

q3 = −p2, ū(q3) = ū(−p2)→ v̄(p2),

q4 = +p3, ū(q4) = ū(p3).

Crossing symmetry

Recall that
(i/p+m) u(p) = 0 but (−i/p+m) v(p) = 0.

However one sign arises from the spin sums

2∑
s=1

us(p)ūs(p) = −i/p+m,

2∑
s=1

vs(p) v̄s(p) = −i/p−m = −
∑
s

us(−p) ūs(−p).

Because it appears twice, the additional sign cancels for |T |2 after spin averaging and one finds
indeed the same result as for e−e+ → µ−µ+ but with

sq =− (q1 + q2)
2 = −(p1 − p4)2 = up,

tq =− (q1 − q3)2 = −(p1 + p2)
2 = sp,

uq =− (q1 − q4)2 = −(p1 − p3)2 = tp.

We can take what we had calculated but must change the role of s, tand u ! This is an example of
crossing symmetries.

Blackboard video

Electron-muon scattering in the massless limit

Recall that we found for e−e+ → µ−µ+ in the massless limit me = mµ = 0 simply

1

4

∑
spins
|T |2 =

2e4

s2
[
t2 + u2

]
.
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For e−µ− → e−µ− we find after the replacements u→ s, s→ t, t→ u,

1

4

∑
spins
|T |2 =

2e4

t2
[
u2 + s2

]
.

Blackboard video

More on Mandelstam variables

To get a better feeling for s, t and u, let us evaluate them in the center of mass frame for a situation
where all particles have mass m.

p1
p2

p3

p4

θ

pµ1 = (E,p), pµ2 = (E,−p),
pµ3 = (E,p′), pµ4 = (E,−p′).

While
s = −(p1 + p2)

2 = (2E)2

measures the center of mass energy,

t = −(p1 − p3) = −2p2[1− cos(θ)]

is a momentum transfer that vanishes in the soft limit p2 → 0 and in the colinear limit θ → 0.

Similarly,
u = −(p1 − p4)2 = −2p2[1 + cos(θ)]

vanishes for p2 → 0 and for backward scattering θ → π.
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s-, t- and u-channels

One speaks of interactions in different channels for tree diagrams of the following generic types,

p1 p2

p3 p4

∝ 1

−s+m2
s-channel

p1

p3 p4

p2

∝ 1

−t+m2
t-channel

p1

p4

p2

p3

∝ 1

−u+m2
u-channel

Electron-muon scattering

For the cross section we find for e−µ− → e−µ− in the massless limit

dσ

dΩ
=

1

64π2s

1

4

∑
spins

|T |2 =
α2[4 + (1 + cos θ)2]

2s(1− cos θ)2

This diverges in the colinear limit θ → 0 as we had already seen for Yukawa theory in the limit
where the exchange particle becomes massless.

Note that by the definition s ≥ 0 while u and t can have either sign. Replacements of the type
used for crossing symmetry are in this sense always to be understood as analytic continuation.

LECTURE 26

12.2 Higgs/Yukawa theory

In the following two lectures we will discuss a quantum field theoretic model that extends somewhat
beyond quantum electrodynamics. We add to the theory a neutral massive scalar field that couples
to the fermions through a Yukawa interaction. One may see that additional massive scalar particle
as an analog of the Higgs boson, even though our model reflects only a few of the properties of the
real electroweak standard model.

We discuss the model as a further example for an interesting quantum field theory and because
we can nicely study there decay processes.

• A massive Higgs boson can decay into two fermions through the Yukawa interaction. This is
a tree level process and rather easy to calculate.
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• Interestingly a neutral and massive Higgs boson can also decay into two photons. This process
is not allowed at tree level (because the Higgs boson is neutral), but it is induced by loop
diagrams. This will be the first loop diagram we will calculate in detail.

In the second part of the lecture course loop diagrams and their physical consequences will be
studied in much more detail. For the Higgs decay into photons we do not need renormalization yet,
which simplifies the discussion. Nevertheless there will be some new elements to be discussed.

Action for Higgs/Yukawa theory and fermion mass

Let us consider the following extension of QED by a neutral scalar field (with m = gv)

S[ψ̄, ψ,A, φ] =

∫
x

{
−ψ̄γµ (∂µ − ieAµ)ψ −mψ̄ψ −

1

4
FµνFµν −

1

2
φ
(
−∂µ∂µ +M2

)
φ− gφψ̄ψ

}
.

Note that a constant (homogeneous) scalar field φ modifies the fermion mass according to

meff = m+ gφ = g(v + φ)

In fact, one can understand the massses of elementary fermions (leptons and quarks) in the standard
model of elementary particle physics as being due to such a scalar field expectation value for the
Higgs field.

Blackboard video

Propagators and vertices

In the theory above we have now different propagators

1

i
∆µν(x− y)

1

i
Sαβ(x− y)

1

i
∆(x− y)

with scalar propagator
∆(x− y) =

∫
p

eip(x−y)
1

p2 +M2
.

The vertices are

(−eγµ) −ig

Blackboard video
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12.3 Higgs decay into fermions

Higgs decay to fermions
Let us discuss first the process φ→ f−f+. The fermions could be leptons (e, µ, τ) or quarks (u, d,
s, c, b, t). The Feynman diagram for the decay is simply

s2, f
+s1, f

−

p

q1 q2

According to the Feynman rules we obtain

T = g ūs1(q1)vs2(q2).

For the absolute square one finds

|T |2 = g2 ūs1(q1)vs2(q2) v̄s2(q2)us1(q1).

Blackboard video

Spin sums and Dirac traces
We will assume that the final spins are not observed and sum them∑

spins
|T |2 = g2 tr

{
(−i/q2 −m)(−i/q1 +m)

}
We used here again the spin sum formula∑

s

vs(p)v̄s(p) = −i/p−m,
∑
s

us(p)ūs(p) = −i/p+m.

Performing also the Dirac traces gives∑
spins
|T |2 = g2

(
−4q1 · q2 − 4m2

)
.

Kinematics in the Higgs boson rest frame
Let us now go into the rest frame of the decaying particle where

p = (M, 0, 0, 0), q1 =
(
M
2 ,q

)
, q2 =

(
M
2 ,−q

)
,

with
q2 = −m2 + M2

4 , q1 · q2 = −M
2

4
− q2 = −M

2

2
+m2,

and ∑
spins
|T |2 = 2 g2M2

(
1− 4

m2

M2

)
.

Note that the decay is kinematically possible only for M > 2m so that the bracket is always positive.

Blackboard video
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Decay rate
For the particle decay rate we get

dΓ

dΩ
=

|q1|
32π2M2

∑
spins
|T |2 =

g2M

32π2

(
1− 4

m2

M2

)3/2

.

Because this is independent of the solid angle Ω one can easily integrate to obtain the decay rate

Γ =
g2M

8π

(
1− 4

m2

M2

)3/2

.

Blackboard video

Dependence on fermion mass
If the scalar boson φ is the Higgs boson, the Yukawa coupling is in fact proportional to the fermion
mass m,

g =
m

v
.

One has then
Γ =

M3

32πv2
f

(
2m

M

)
where

f(x) = x2(1− x2)3/2

Decay into light fermions is suppressed because of small coupling while decay into very heavy
fermions is suppressed by small phase space or even kinematically excluded for 2m > M .

For Higgs boson mass of M = 125 GeV the largest decay rate to fermions is to bb̄ (bottom quark
and anti-quark). This corresponds to m = 4.18 GeV. The top quark would have larger coupling but
is in fact too massive (m = 172 GeV). (The lepton with largest mass is the tauon τ with m = 1.78

GeV.)

LECTURE 27

12.4 Higgs decay into photons

Higgs decay into photons
A Higgs particle can also decay into photons and this is in fact how it was discovered. How is this
possible? If we try to write down a diagram in the theory introduced above we realize that there is
no tree diagram. However, there are loop diagrams!

Consider the diagrams

q2q1 q2q1
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These terms arise from the expansion of the partition function if the fermion propagator appears 3

times and there are 2 fermion-photon and one fermion-scalar vertices.

Signs in fermion loops
Schematically, the vertices are derivatives[

(−eγµ)
(
1

i

δ

δJµ

)(
i
δ

δη

)(
1

i

δ

δη̄

)]
or

[
(−ig)

(
1

i

δ

δJ

)(
i
δ

δη

)(
1

i

δ

η̄

)]
and they act here on a chain like[

(iη̄)

(
1

i
S

)
(iη)

] [
(iη̄)

(
1

i
S

)
(iη)

] [
(iη̄)

(
1

i
S

)
(iη)

]
.

Note that the derivative with respect to η̄ can be commuted through the square brackets and acts
on η̄ from the left. Factors 1/i and i cancel. The derivative with respect to η receives an additional
minus sign from commuting and this cancels against i2. In this way the vertices can connect the
elements of the chain. However, for a closed loop also the beginning and end of the chain must
be connected. To make this work, one can first bring the (iη) from the end of the chain to its
beginning. This leads to one additional minus sign from anti-commuting Grassmann fields. This
shows that closed fermion lines have one more minus sign.

Position space representation
In position space and including sources, the first diagram is

x

yz

s µ

(−1)(−ig)
∫
x,y,z

tr
{[

1

i
S(x− y)

]
(−eγµ)

[
1

i
S(y − z)

]
(−eγν)

[
1

i
S(z − x)

]}
×
∫
u,v,w

[
1

i
∆µα(y − u)

]
(iJα(u)

[
1

i
∆νβ(z − v)

]
(iJβ(v)

[
1

i
∆(x− w)

]
(iJ(w))

The trace is for the Dirac matrix indices.

Momentum space representation for first diagram
If one translates this now to momentum space and considers the amputated diagram for an S-matrix
element, one finds that momentum conservation constrains momenta only up to one free integration
momentum or loop momentum. In fact, more generally, there is one integration momentum for every
closed loop. The first diagram is then (taking a factor (−1) from the closed fermion loop, −ig from
the Yukawa vertex and i3 from the LSZ reduction into account)

p

l + q1 l − q2

lq1

µ
q2

ν
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ge2 ε∗µ(q1)ε
∗
ν(q2)

∫
l

1

[l + q1)2 +m2 − iε][l2 +m2 − iε][l − q2)2 +m2 + iε]

× tr
{[
−i(/l + /q1) +m

]
γµ
[
−i/l +m

]
γnu

[
−i(/l − /q2) +m

]}
Here we use here the abbreviation ∫

l

=

∫
d4l

(2π)4
.

Momentum space representation for second diagram

For the second diagram we can write

µν

p

l + q2 l − q1
l

q2q1

ge2 ε∗µ(q1) ε
∗
ν(q2)

∫
l

. . .

where the integrand is the same up to the interchange q1 ↔ q2 and µ ↔ ν. We can therefore
concentrate on evaluating the first diagram.

Analytic continuation and Dirac traces

The Feynman iε terms allow to perform a Wick rotation to Euclidean space l0 = il̃0E so that l2 is
then positive. First, in the Dirac trace we have terms with up to 5 gamma matrices. However, only
traces of an even number of gamma matrices are non-zero. With a bit of algebra one finds for the
Dirac trace

tr
{[
−i(/l + /q1) +m

]
γµ
[
−i/l +m

]
γν
[
−i(/l − /q2) +m

]}
= −m tr

{
(/l + /q1)γ

µ/lγν + (/l + /q1)γ
µγν(/l − /q2) + γµ/lγν(/l − /q2)

}
+m3 tr {γµγν}

= −4m
[
(l + q1)

µlν + (l + q1)
ν lµ − (l + q1) · l ηµν

+ (l + q1)
µ(l − q2)ν + (l + q1) · (l − q2)ηµν − (l + q1)

ν(l − q2)µ

+ lµ(l − q2)ν + (l − q2)µlν − ηµν l · (l − q2)
]
+ 4ηµνm3

= −4m
[
4lµlν − l2ηµν + 2qµ1 l

ν − 2qν2 l
µ − qµ1 qν2 + qν1 q

µ
2 − (q1 · q2)ηµν

]
+ 4ηµνm3.

Feynman parameters

Let us now consider the denominator. One can introduce so-called Feynman parameters to write

1

[(l + q1)2 +m2][l2 +m2][(l − q2)2 +m2]

= 2!

∫ 1

0

du1 · · · du3 δ(u1 + u2 + u3 − 1)
1

[u1[(l + q1)2 +m2] + u2[l2 +m2] + u3[(l − q2)2 +m2]]
3

= 2

∫ 1

0

du1 · · · du3
δ(u1 + u2 + u3 − 1)

[l2 + 2l(u1q1 − u3q2) + u1q21 + u3q22 +m2]
3 .
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We have used here the identity (will be proven in the exercise classes)

1

p1 · · · pn
= (n− 1)!

∫ 1

0

du1 . . . dun
δ(u1 + . . .+ un − 1)

[u1A1 + . . .+ unAn]
n .

In a next step one commutes the integral over u1 . . . u3 with the integral over l.

Shifting momenta

It is useful to change integration variables according to

l + u1q1 − u3q2 → k,

l = k − u1q1 + u3q2.

Collecting terms we find for the first diagram

ge2 ε∗µ(q1) ε
∗(q2) 2

∫ 1

0

du1 · · · du3 δ(u1+u2+u3−1)
∫

d4k

(2π)4
Aµν

[k2 + u1q21 + u3q22 − (u1q1 − u3q2)2 +m2]
3 ,

where the numerator contains the combination

Aµν = −4m
[
4kµkν − k2ηµν + terms linear in k

+ 4(u1q1 − u3q2)µ(u1q1 − u3q2)ν − (u1q1 − u3q2)2ηµν

− qµ1 qν2 + qν1 q
µ
2 − (q1 · q2)ηµν − ηµνm2

]
.

The integral over k is now symmetric around the origin. Accordingly, there is no contribution from
linear terms in k ∫

ddk

(2π)d
kµf(k2) = 0.

Some simplifications are also possible due to ε∗µ(q1)q
µ
1 = ε∗ν(q2)q

ν
2 = 0 and q21 = q22 = 0, and we can

replace

Aµν = −4m
[
4kµkν − k2ηµν + (1− 4u1u3)q

µ
2 q
ν
1 + (2u1u3 − 1)q1 · q2ηµν − ηµνm2

]
.

Dimensional regularization

In manipulating the remaining integral over k we need to be careful because a first analysis based
on power counting suggests that the integral of the terms quadratic in k in the numerator might
not converge (in the numerator we have d4k × k2 and in the denominator (k2 + A)3 which allows
a logarithmic divergence in the UV regime). We need to first introduce some regularization and
then do the analysis carefully. An often used method is to extend the integrals from four spacetime
dimensions to d spacetime dimensions, where d can actually be taken a complex number, see below.
For d slightly different from 4 one finds convergent expressions and one can take the limit d→ 4 at
the end. Let us now proceed using this dimensional regularization.

For the quadratic terms we use the identity∫
ddk

(2π)d
kµkνf(k2) =

1

d
ηµν

∫
ddk

(2π)d
k2f(k2). (12.2)

The overall structure follows from Lorentz invariance and the prefactor from taking the trace on
both sides.

With this, all remaining integrals are of the form∫
ddp

(2π)d
p2a

(p2 +A)b
=

Ωd
(2π)d

∫ ∞
0

dp
p2a+d−1

(p2 +A)b
. (12.3)
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Here we have used the surface of the unit sphere in d dimensions Ωd. To derive a formula for
the latter we perform a d-dimensional Gaussian integral twice, first in cartesian then in polar
coordinates,∫

ddx e−x
2

= πd/2 = Ωd

∫ ∞
0

dxxd−1e−x
2

=
Ωd
2

∫ ∞
0

dt t
d
2−1e−t =

Ωd
2
Γ(d/2).

This yields the formula

Ωd =
2πd/2

Γ(d/2)
.

We used here the Euler Gamma function Γ(z) with the notable properties Γ(z + 1) = zΓ(z) for
Re(z) > 0 and

Γ(n+ 1) = n!, Γ(n+ 1/2) =
(2n)!

n!4n
√
π,

for non-negative integers n. Indeed one finds with this the known special cases

Ω1 = 2, Ω2 = 2π, Ω3 = 4π, Ω4 = 2π2.

The remaining integral over the magnitude of momentum can actually also be evaluated in terms
of Gamma functions,∫ ∞

0

dp
p2a+d−1

(p2 +A)b
=

Γ(b− a− d/2)Γ(a+ d/2)

2Γ(b)
A−(b−a−d/2).

Taken together, this leads to the useful result∫
ddp

(2π)d
p2a

(p2 +A)b
=

Γ(b− a− d/2)Γ(a+ d/2)

(4π)d/2Γ(b)Γ(d/2)
A−(b−a−d/2). (12.4)

In this context, the following properties of the gamma function is very useful for integer n ≥ 0 and
small x,

Γ(−n+ x) =
(−1)n

n!

[
1

x
− γ +

n∑
k=1

1

k
+O(x)

]
,

where γ ≈ 0.5772 is the Euler-Mascheroni constant. In particular Γ(z) has a simple pole at the
origin.

Result so far

Using dimensional regularization as outlined above, it is now a straight-forward excercise to prove
that

lim
d→4

∫
ddk

(2π)d
4kµkν − (k2 +A)ηµν

(k2 +A)3
= 0.

Taking this into account leads to

Aµν = −4m [1− 4u1u2] [q
ν
1 q
µ
2 − (q1 · q2)ηµν ] .

Note that this is symmetric with respect to (q1, µ)↔ (q2, ν), so we can add the second diagram by
multiplying with 2. We obtain

T =− 8ge2mε∗µ(q1)ε
∗
ν(q2) [q

ν
1 q
µ
2 − (q1 · q2)ηµν ]

× 2

∫ 1

0

du1 · · · du3 δ(u1 + u2 + u3 − 1)[1− 4u1u3]

∫
d4k

(2π)4
1

[k2 + 2u1u3q1 · q2 +m2]
3
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Momentum integral
To evaluate the integral over k we note that in the rest frame of the decaying scalar boson p =

q1 + q2 = (M, 0, 0, 0) such that p2 = 2q1 · q2 = −M2. If we concentrate on fermions that are very
heavy such that m�M we can expand in the term u1u3q1 · q2 in the integral over k. One finds to
lowest order ∫

d4k

(2π)4
1

[k2 +m2]3
= i

1

(4π)2
1

2m2
.

This i is due to the Wick rotation k0 = ik0E .

Integral over Feynman parameters
Also the integral over Feynman parameters can now easily be performed

2

∫ 1

0

du1 . . . du3 δ(u1 + u2 + u3 − 1)[1− 4u1u3]

= 2

∫ 1

0

du1du3 θ(1− u1 − u3) [1− 4u1u3]

= 2

∫ 1

0

du1

∫ 1−u1

0

du3 [1− 4u1u3]

= 2

∫ 1

0

du1[(1− u1)− 4u1
1
2 (1− u1)

2]

= 2− 3 +
8

3
− 1 =

2

3
.

Collecting terms we find

iT = i
8ge2

3(4π)2m
ε∗µ(q1) ε

∗
ν(q2) [q

ν
1 q
µ
2 − (q1 · q2)ηµν ] .

Photon polarization sums and Ward identity
Before we continue we need to develop a method to perform the spin sums for photons. In the
squared amplitude expressions like the following appear∑

polarizations

|T |2 =
∑

polarizations

ε∗µ(q)εν(q)Mµ(q)Mν∗(q).

We have extended here the polarization vector of a photon from the amplitude by decomposing

T = ε∗µ(q)Mµ(q).

Let us choose without loss of generality qµ = (E, 0, 0, E) and use the polarization vector introduced
previously,

ε(1)µ =

(
0,

1√
2
,− i√

2
, 0

)
,

ε(2)µ =

(
0,

1√
2
,
i√
2
, 0

)
,

such that

ε∗(1)µ ε(1)ν + ε∗(2)µ ε(2)ν =


0

1

1

0

 .

This would give
2∑
j=1

ε∗(j)µ ε(j)ν MµM∗ν = |M1|2 + |M2|2.
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Ward identity

To simplify this one can use an identity known as the Ward identity,

qµMµ(q) = 0.

This is a direct consequence of gauge symmetry. For the above choice of qµ it follows

−M0 +M3 = 0.

Accordingly, one can add 0 = −|M0|2 + |M3|2 to the spin sum

2∑
j=1

ε∗(j)µ ε(j)ν MµM∗ν = −|M0|2 + |M1|2 + |M2|2 + |M3|2 = ηµνMµM∗ν .

In this sense we can use for external photons

2∑
j=1

ε∗(j)µ ε(j)ν → ηµν .

Squared amplitude

With this we can now calculate the sums over final state photon polarizations

∑
pol.

|T |2 =

(
8ge2

3 (4π)2m

)2 [
qν1 q

µ
2 − (q1 · q2)ηµν

][
qβ1 q

α
2 − (q1 · q2)ηαβ

]
×
∑
pol.

ε∗µ(q1) εα(q1)
∑
pol.

ε∗ν(q2) εβ(q2)

=

(
8ge2

3 (4π)2m

)2

2(q1 · q2)2 =
2g2α2

9π2m2
M4.

In the last step we have used that the momentum of the incoming Higgs particle is p = q1 + q2.
The square is given by the rest mass, p2 = −M2 = 2(q1 · q2). Here we also used that the photons
are massless, q21 = q22 = 0. We also used the fine structure constant α = e2/(4π).

Decay rate

For the differential particle decay rate ϕ → γγ this gives in the rest frame of the Higgs particle
with |q1| =M/2,

dΓ

dΩ
=

|q1|
32π2M2

∑
pol.

|T |2 =
g2α2

9× 32π4m2
M3.

Finally, we integrate over solid angle Ω = (1/2)4π where the factor (1/2) is due to the fact that
the photons in the final state are indistinguishable. The decay rate for ϕ → γγ through a heavy
fermion loop is finally

Γ =
g2α2

144π3m2
M3

Note that because of g = m/v this is in fact independant of the heavy fermion mass m.

LECTURE 28
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12.5 One-loop corrections in quantum electrodynamics

In this section we consider systematically one loop corrections in perturbative quantum electrody-
namics. We have calculated previously a one-loop expression for a process that has no tree-level
contribution and found a finite result. In contrast to this, if one finds one-loop corrections to pro-
cesses that actually do have a tree-level contribution, one finds formally infinite results. To deal
with these we need to first carefully introduce a regularization of the theory (we can use dimen-
sional regularization), and in a second step we have to reinterpret what we are doing from a different
persepctive. This leads to renormalisation. Specifically, it turns out that the terms appearing in
the Lagrangian are in fact themselves subject to corrections from quantum fluctuations from loop
diagrams.

Corrected propagators and vertices

Consider again the Lagrangian of QED as written before

L = −Ψ̄γµ(∂µ − ieAµ)Ψ−mΨ̄Ψ− 1

4
FµνF

µν .

This Lagrangian enters the functional integral but it is in fact not directly observable. Corrections
from quantum fluctuations are always present and one can in fact only observe asymptotic particles
described by the full propagators with fluctuation corrections taken into account, and similarly
vertices with corrections taken into account. Specifically, at one loop order we have for the effective
photon propagator the tree-level term plus a one-loop term,

+

and only the sum (including in fact further loop corrections at higher order) can actually describe
a propagating photon.

Similarly, the fermion propagator at on-lopp order contains the tree-level term plus a one loop
term,

+

and more terms at higher order. Finally, the vertex is a combination of the tree-level expression
and a loop expression,

+

and more terms would contribute at higher orders.

Modified Lagrangian

Motivated by these considerations we modify the Lagrangian by introducing wave function renor-
malization factors ZΨ and ZA for the fields through the replacements

Ψ→
√
ZΨΨ, Ψ̄→

√
ZΨΨ̄, Aµ →

√
ZAAµ,

and we replace the fermion mass by
m→ m+∆m,
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and the electric charge by
e→ e+∆e.

The Lagrangian becomes thus

L = −ZΨΨ̄γ
µ(∂µ − i(e+∆e)

√
ZAAµ)Ψ− (m+∆m)ZΨΨ̄Ψ− 1

4
ZAFµνF

µν .

This is supposed to enter the functional integral of the quantum field theory which has been reg-
ularized, for example by putting it on a spacetime lattice, by introducing a UV cutoff, or through
dimensional regularization.

The idea is now to determine the parameters ZΨ, ZA and ∆m through physics conditions on
the full theory (or some approximation at a given order of perturbation theory to it). For example,
ZA will be chose such that the corrected photon propagator has the standard residue at the points
with

p2 = −(p0)2 + p2 = 0.

Similarly, ZΨ and ∆m can be determined such that the fermion propagator including quantum
corrections has poles at the frequencies p0 such that

p2 +m2 = −(p0)2 + p2 +m2 = 0,

and that these poles have the standard residue. This is in fact a bit intricate because of infrared
divergences and the fact that a charged particle can experimentally not distinguished from a charged
particle plus a very soft photon. (These two issues are closely connected and need to be dealt with
simultaneously.)

Finally, the correction to the charge ∆e will be determined such that the corrected vertex
function represents the physical charge e.

Perturbative expansion

So far we have worked at leading order or tree-level and saw there how the QED Lagrangian lead
to consistent physics results when loop diagrams could be neglected. In the spirit of perturbation
theory we therefore expect that to the leading order in the coupling constant, or in the fine structure
constant

α =
e2

4π

we have simply ZΨ = ZA = 1 and ∆m = ∆e = 0. In fact, from inspection of the diagrams we infer

ZA − 1 = O(α), ZΨ − 1 = O(α), ∆m = O(α), ∆e/e = O(α).

The idea is now to allow so-called counterterms for these additional contributions to the QED
Lagrangian and to determine them through the physics conditions mentioned above. This must
be done consistently in perturbation theory, i. e. when one wants to calculate including the O(α)
corrections one must take counterterms at that order into account.

Photon self energy

We start with the effective photon propagator. Quantum corrections as the one-loop fermion
diagram introduced above can be taken into account through a geometric series by writing the
corrected photon propagator in momentum space as (known as Dyson equation)

Gµν(p) =∆µν(p) + ∆µρ(p)Π
ρσ(p)∆σν(p) + . . .
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Here we use the free photon propagator (in Lorenz or Landau gauge)

∆µν(p) =
Pµν(p)

p2 − iε
=
ηµν − pµpν/p2

p2 − iε
,

and Πρσ(p) is known as the photon self-energy. The Dyson equation can be better understood in
terms of the inverse corrected propagator obtained by suming the geometric series,

p2ηµν − pµpν −Πµν(p) = p2Pµν(p)−Πµν(p)

In other words, −Πµν(p) is the quantum correction to the inverse photon propagator! The first
term is the microscopic or bare inverse propagator with which we have started our discussion of
QED. For the corrected inverse propagator to be gauge invariant, we expect the structure

Πµν(p) = Π(p2)
(
p2ηµν − pµpν

)
,

where Π(p2) is now a scalar function of momentum. In perturbation theory at one-loop order, the
photon self-energy, and therefore Π(p) has contributions from the fermion loop diagram, as well as
from the counter term ZA − 1. The latter is in fact easy to determine and

Π(p2) = Π1-loop(p
2)− (ZA − 1).

It remains to determine the loop contribution. Using the Feynman rules and dropping terms of
higher order in α, we find

Πµν1-loop(p) = (−1)ie2
∫

d4l

(2π)4
Tr
{
[−i(/l + /p) +m]γµ[−i/l +m]γν

}
[(p+ l)2 +m2 − iε][l2 +m2 − iε]

.

The minus sign comes from the closed fermion loop.

Evaluation of loop integral
To perform the Dirac trace one decomposes it into one term with four gamma matrices,

Tr
{
−(/l + /p)γ

µ/lγν
}
= 4 [−(l + p)ν lµ + (l + p) · l ηµν − (l + p)µlν ] ,

and a term with two gamma matrices,

Tr
{
m2γµγν

}
= 4m2ηµν .

For the denominator we introduce an integral over a Feynman propagator,

1

[(p+ l)2 +m2 − iε][l2 +m2 − iε]
=

∫ 1

0

du
1

[l2 + 2ul · p+ up2 +m2 − iε]2

Now we can shift the integration variable setting k = l + up. We obtain, dropping linear terms in
k and going to d dimensions,

Πµν1-loop(p) = −i4e
2

∫
ddk

(2π)d

∫ 1

0

du
k2ηµν − 2kµkν − u(1− u)p2ηµν + 2u(1− u)pµpν +m2

[k2 + u(1− u)p2 +m2 − iε]2
.

In the next step we replace 2kµkν → (2/d)k2ηµν and use the following identity valid in dimensional
regularization (exercise) ∫

ddk

(2π)d

(
2
d − 1

)
k2 −A

[k2 +A]2
= 0.

This yields

Πµν1-loop(p) =
(
p2ηµν − pµpν

)
ie2
∫ 1

0

du

∫
ddk

(2π)d
8u(1− u)

[k2 + u(1− u)p2 +m2 − iε]2
.

Note that this has indeed the tensor structure of the classical inverse propagator for photons, as
expected.
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Scalar integral
We continue to evaluate the integral over k. We do the Wick rotation to Euclidean frequency,
k0 = ik0E which gives a factor i, and yields thus

Π1-loop(p) = −8e2
∫ 1

0

duu(1− u)
∫

ddkE

(2π)d
1

[k2E + u(1− u)p2 +m2]2
.

For the remaining integral we can now use the formula in (12.4). This gives∫
ddkE

(2π)d
1

[k2E +A]2
=

Γ(2− d/2)
(4π)d/2

A−(2−d/2).

We need to evaluate this in the vicinity of d = 4 and set d = 4− ε. We use

Γ(2− d/2) = Γ(ε/2) =
2

ε
− γ +O(ε),

and
(4π)d/2 = (4π)2−ε/2 = 16π2e−

ε
2 ln(4π) = 16π2

[
1− ε

2
ln(4π) + . . .

]
,

as well as
A−(2−d/2) = A−ε/2 = 1− ε

2
ln(A).

Finally we need to take into account that electric charge is not dimensionless away from d = 4. We
replace therefore e2 with

e2µε = e2
[
1 +

ε

2
ln(µ2) + . . .

]
,

where µ is some parameter with dimension of mass and e remains dimensionless.

Fixing the counterterm
Combining everything and expanding to leading order in ε gives

Π(p) = − e
2

π2

∫ 1

0

duu(1− u)
[
1

ε
− 1

2
ln

(
u(1− u)p2 +m2

4πe−γµ2

)]
− (ZA − 1).

One now fixes the counterterm ZA − 1 such that Π(0) = 0, such that for on-shell photons the
propagator is not modified. This leads to

ZA − 1 = − e
2

π2

∫ 1

0

duu(1− u)
[
1

ε
− 1

2
ln

(
m2

4πe−γµ2

)]
.

The integral over u can easily be performed here and gives a finite result. The important thing
is that the counterterm is formally infinite due to the UV divergence of the involved momentum
integrals.

Result for photon self-energy at one loop
Once the counterterm is subtracted from the self energy, we are actually left with a finite photon
self-energy

Π(p) =
e2

2π2

∫ 1

0

duu(1− u) ln
(
u(1− u)p2 +m2

m2

)
.

Indeed this satisfies Π(0) and is also independent of the arbitrary scale µ we had to intrduce in an
intermediate step. For negative p2 = −(p0)2+p2 one finds that Π(p) has a brach cut starting from
the point where

(p0)2 − p2 > 4m2.

This corresponds to the physical process where a virtual photon dissociates into an electron-positron
pair. Energetically this is only possible when the virtual photon has an energy of at least twice the
electron mass.
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Final remark

One can now go on and analyse other loop diagrams in this spirit. The story is in principle similar
to what we have seen for the photon self-energy. Counterterms in the form of the terms in the
Lagrangian are needed to counterbalace UV divergences, and they can be fixed through physical
renormalization conditions. Within perturbation theory one obtains then finite results, except
when additional infrared divergences appear. These need a somewhat differnt treatment and have
a different physical significance. After proper renormalization one can calculate finite terms, such
as the electron magnetic moment. We leave a more detailed discussion of renormalization for a
continuation of this lecture course in the next term.
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