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High energy nuclear collisions
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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!
@ needs macroscopic fluid properties

e thermodynamic equation of state p( 7T, u)
shear + bulk viscosity (T, 1), ¢(T, u)
heat conductivity (T, u), ...

relaxation times, ...

°
o
°
o electrical conductivity o (T, u)

fixed by microscopic properties encoded in Lagrangian Zqcp
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Particle production at the Large Hadron Collider

[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, JHEP 06(2020)044]
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o data are very precise now - high quality theory development needed

o largest uncertainty concerns fluid fields in the initial state
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An all-fluid description?

e we need an (approximate) description of soft QCD dynamics without
uncontrolled modeling

o maybe this can be based on fluid variables, i. e. 7%"(z) and NJ(z)

@ investigations of different non-equilibrium approximations have shown that
fluid dynamics works also outside the immediate vicinity of equilibrium
(holographic models, effective kinetic theory)
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Relativistic fluid dynamics
Energy-momentum tensor and conserved current
™ = euu” + (p + moun) A" 4 7
NH = nu* + ¥
@ tensor decomposition using fluid velocity u*, A*” = ¢*” + v u
@ thermodynamic equation of state p = p(T', i)

v

Covariant conservation laws V,T"” =0 and V,N* = 0 imply
@ equation for energy density €
@ equation for fluid velocity u*
@ equation for particle number density n

Need further evolution equations [e.g Israel & Stewart]
@ equation for shear stress "
@ equation for bulk viscous pressure Ty

w _ I
Toulk U OpToulk + . + Touk = —C Vyu

@ equation for diffusion current v*

@ non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Nuclear liquid droplet model
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G. A. Gamow

o Gamov (*1904 Odessa) 1928: nuclei as liquid droplets

@ basis of Bethe - Weizsiacker mass formula

@ nuclear matter at the first order liquid-gas transition

@ in thermal equilibrium with vacuum at 7= 0 and ug = .

@ energy-momentum tensor 7" (z) and baryon number current N*(z) for

nucleus in vacuum easily obtained

00 0
T =€ = pceng, N~ = ng.
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Superposition and Landau matching

> -—
Pb Pb

boosts and linear superposition gives initial state before collision

T" () = TH () + T (=), N¥(z) = N¥(z) + N (z)

resulting sum not a global equilibrium state any more!

Landau matching decomposition

™ = evw"u” + (p 4 mpuk) A" + 7

N =nut +0*

uses fluid velocity u* and orthogonal projector A*” = ¢** + v u”

fluid velocity defined to be time-like eigenvector

™ v’ = —eu”

7/19



Necessary incredients

o realistic equation of state in the T-u plane

@ second order fluid dynamics

@ realistic transport properties

o fluid evolution through first or second order phase transitions
@ causal evolution equations also in regions with large gradients

@ numerical implementation
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FEquation of state

o for large T and small p: lattice QCD, e. g. Taylor expansion

[Bazavov et al. PRD 95, 054504 (2017), Borsanyi et al. JHEP 10 (2018) 205, HotQCD
2212.09043, Borsanyi et al. PRD 105, 114504 (2022)]

1 1 1
(T, ) = p(T) + gpxen(T)* T* 4 Jpxan(T)u* + gxen( T’/ T2+ ..

o for small T and p: hadron resonance gas

e around liquid-gas phase transition: nucleon-meson model
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Thermodynamic equation of state at =0
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Nucleon-meson model

Effective Lagrangian
L =, i (8y — igw, — iudoy) Pa
+ V2 [ (552) Gustf + 00 (152) (6Dt
+ 10ar(—0.0")bas + Unic(p, o)

1 1
+ Z(ELUJV — Opwy)(OHw” — 0¥ wH) + imi wpw!

@ nucleons v, scalars ¢4, and vectors w,,

o effective potential for scalars
Unic(p,0) = U(p) — mzfro
with the chiral invariant combination

_ 1. _1l s o
p_2¢ab¢ab—2(0' +7T)

@ variant of Walecka model [Walecka (1974), Floerchinger, Wetterich (2012),
Drews, Hell, Klein & Weise (2013), Drews & Weise (2014)]
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First order phase transition in nucleon-meson model
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different curves: T'=0...80 MeV

@ nucleon-meson model has liquid-gas first order phase transition to
saturation density

@ provides a realistic model for normal nuclear matter and equation of state
in transition region
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Fluid dynamics with several conserved quantum numbers

fluid with conserved quantum number densities ¢, = (e, ng, nc, ns, . . .)

equation of state in grand canonical ensemble in terms of Massieu
potential w(B, a;) = Bp(B, ;) with 8 =1/T, a; = p;/ T,

dw = —edf + njdoy

second derivative yields a matrix of susceptibilities with

m

" = (B, a1, az,...)
9% w

Cnn0) = Gymyn

fluid evolution equations from conservation laws

uOucm + fm =0

can be written with inverse susceptibility matrix as

w9+ (GTH() " fm = 0

12/19



First order transitions

o consider some first order transition surface with normal vector n,(7)

@ during a first order transition: phase coexistence

bubble nucleation or spinodal decomposition

here: macroscopic description with volume mixing parameter 0 < ¢t < 1
write the Massieu potential density as

w(y) = [1 =t w'(y) + tw'(7)

e matrix G™"(, t) is the inverse of

[(1—1) Grn(7) + t Grn(7)]

@ during the transition no change orthogonal to phase transition surface

() dy™ =0

o leads to evolution equation for mixing parameter

np(7) GP (v, ) f
() G7* (v, 8)[ed (7) — ¢&(7)]

u' ot = —

@ leads in turn to full fluid evolution equations in coordinates v, = (8, «;)
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Longitudinal dynamics

@ at very early times the collision dynamics is longitudinal
@ transverse expansion starts later

@ concentrate here on reduced model involving only ¢, z
@ neglect gradients with respect to z, y

o relevant fluid fields are

Uz(t7 Z)7 T(t7 Z)7 M(tv Z)7 sz(t, Z): 71'hulk(t7 Z)

@ transverse dynamics can be addressed in next step
5 -—
Pb Pb
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First preliminary results

2 2 0
2 [fm] 2 [fm]

longitudinal fluid velocity temperature baryon density

@ emergent Bjorken flow v = 2/t close to collision point
o plateaus in temperature and baryon density

o more refined analysis in progress
[together with Federica Capellino, Alaric Erschfeld, Eduardo Grossi and Andreas Kirchner]
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Causality

[Floerchinger & Grossi, JHEP 08 (2018) 186]

r [fm]

o dissipative fluid equations can be of hyperbolic type
@ characteristic velocities depend on fluid fields

@ need |)\(7)| < c for relativistic causality
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Causality in radial expansion
[Floerchinger & Grossi, JHEP 08 (2018) 186]

o for radial expansion the characteristic velocities are
N _vte \@_ v—¢ A\ @ 6y
14+ ¢cv’ 1—c¢cv’

effective speed of sound

@ with thermal speed of sound
2o
S
Oe
@ and correction
4n <
d = 3Tshear Thulk

E+p+7Tbu|k—7T$—ﬂ’7;

o relaxation times Tehear and Thuk Must be large enough
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Fluid equations from geometric gauge fields (?)
[Floerchinger & Grossi, PRD 105, 085015 (2022)]

e gauge symmetry of diffeomorphisms g, — guv + Ve, + Vye, imlies
energy-momentum conservation

YV, T" =0

@ are there more useful geometric gauge fields?
e contorsion C,°, or spin connection for local Lorentz transformation

V807 = g7 gor

o Weyl gauge field B, for local dilatations

S =2 -

@ proper non-metricity B,/ for local shear transformations

po

YV, QU =2 | TP — P — QT(T”U —uv)
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Conclusions

fluid description of entire collision event is under development

towards universal description of soft QCD
@ not clear how well it will work eventually

@ many elements must be brought together

fluid evolution in the whole phase diagram

@ phase transitions

causality

a challenge to theory, but could be worth it
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