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High energy nuclear collisions
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Fluid dynamics

long distances, long times or strong enough interactions
quantum fields form a fluid!
needs macroscopic fluid properties

thermodynamic equation of state p(T , µ)
shear + bulk viscosity η(T , µ), ζ(T , µ)
heat conductivity κ(T , µ), . . .
relaxation times, ...
electrical conductivity σ(T , µ)

fixed by microscopic properties encoded in Lagrangian LQCD
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Particle production at the Large Hadron Collider
[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, JHEP 06(2020)044]
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data are very precise now - high quality theory development needed
largest uncertainty concerns fluid fields in the initial state
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An all-fluid description?

we need an (approximate) description of soft QCD dynamics without
uncontrolled modeling
maybe this can be based on fluid variables, i. e. Tµν(x) and Nµ

j (x)
investigations of different non-equilibrium approximations have shown that
fluid dynamics works also outside the immediate vicinity of equilibrium
(holographic models, effective kinetic theory)
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Relativistic fluid dynamics
Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p + πbulk)∆
µν + πµν

Nµ = n uµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T , µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply
equation for energy density ε
equation for fluid velocity uµ

equation for particle number density n

Need further evolution equations [e.g Israel & Stewart]
equation for shear stress πµν

equation for bulk viscous pressure πbulk

τbulk uµ∂µπbulk + . . .+πbulk = −ζ ∇µuµ

equation for diffusion current νµ
non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Nuclear liquid droplet model

Figure 1. George Gamow (portrait, 1932). At the age
of twenty-four, George Gamow introduced the liquid
drop model that successfully explained the basic
characteristics of the atomic nuclei and predicted
nuclear fission as a result of an instability of large
spherical nuclei with respect to nonspherical
distortions.

ofmass or energy when nucleons come together to bind in
the nucleus as a function of the number of nucleons. Thus,
indirectly, the model also predicted the spherical shape
of most nuclei. The model’s ultimate triumph came from
explaining the phenomenon of nuclear fission in terms
of an instability of large spherical nuclei with respect to
nonspherical distortions (Bohr and Wheeler, 1939). The
model has also been extensively used in astrophysics
to describe exotic phases of nuclear matter at ultrahigh
densities found in neutron stars (Baym, Bethe, and Pethick,
1971).

In the modern rendition of Gamow’s liquid drop model
the attractive short-range nuclear force gives rise to
excess surface energy due to lower nucleon density near
the nucleus boundary, while the presence of positively
charged protons gives rise to a repulsive Coulombic force.
Since the Coulomb energy of a proton in a nucleus is
much smaller than its average kinetic energy determined
by strong nuclear forces, to a good approximation the
spatial distribution of charge in a nucleus is uniform.
Therefore, mathematically the energy of a nucleus within
the model may be written (up to shape-independent bulk
terms and after a suitable nondimensionalization) as

(1) 𝐸(Ω) ∶= Per(Ω) + 18𝜋 ∫Ω∫Ω
1|𝑥 − 𝑦| 𝑑𝑥𝑑𝑦,

where the nucleus Ω ⊂ ℝ3 is a measurable set with fixed
volume |Ω| = 𝑚. We refer to 𝑚 as “mass,” which is a
parameter proportional to the number of nucleons in
a nucleus. Per(Ω) is the perimeter of the set Ω, i.e., a
suitably generalized notion of the surface measure of𝜕Ω.1 The ground state of a nucleus with a given number
of nucleons is then the minimizer of 𝐸, i.e., the set Ω that
achieves the least energy,
(2) 𝑒(𝑚) ∶= inf {𝐸(Ω)∶ |Ω| = 𝑚},
for a given mass 𝑚.

a marriage (or
rather divorce)
of two older
geometric
problems

Ultimately, the purpose of
this liquid drop model is to
predict 1) the shape of nu-
clei, 2) the nonexistence of
arbitrarily large nuclei, and
3) the existence of a nucleus
with the least energy per nu-
cleon (the element having
the greatest nuclear bind-
ing energy). It is precisely
the competition between the
forces which try tominimize

the surface area of the nucleus and those which try to
spread the nuclear charges apart that makes answering
these questions nontrivial.

Gamow’s liquid drop problem is a marriage (or rather
divorce) of two older geometric problems:
(1) the Classical Isoperimetric Problem of minimizing

the perimeter of a body with fixed mass 𝑚; and
(2) the Problem of the Equilibrium Figure of a self-

gravitating fluid body of mass 𝑚.
For the first problem, whose roots go back to antiquity,
Schwarz demonstrated the minimizing property of balls
in 1884 for piecewise-smooth sets in three dimensions.
The complete solution was given in 1958 by De Giorgi,
who showed that the unique minimizer of the perimeter
functional among all measurable sets with fixed mass
is given by a ball. Starting with Newton (1687), the sec-
ond problem attracted the attention of many celebrated
mathematicians. Assuming zero angular momentum, the
total potential energy of a self-gravitating fluid body,
represented by a measurable set Ω ⊂ ℝ3, is given, up to a
constant, by

(3) −∫Ω∫Ω
1|𝑥 − 𝑦| 𝑑𝑥𝑑𝑦, |Ω| = 𝑚,

where −|𝑥−𝑦|−1 is the potential resulting from the gravi-
tational attraction between two point masses at positions𝑥 and 𝑦 in the fluid. Lyapunov (1886) made the first
mathematical breakthrough by establishing that every
regular minimizer of (3) is a ball. Poincaré commented
on Lyapunov’s proof in 1887 and went on to make the
problem famous in his 1902 treatise Figures d’Equilibre
d’une Masse Fluide. Almost twenty years later, Carleman
(1919) showed that balls are indeed minimizers. Yet it
was not until the work of Lieb (1977) that a complete
solution based on strict Riesz rearrangement inequality
1See “WHAT IS…Perimeter?” in the October 2017 Notices.

1276 Notices of the AMS Volume 64, Number 11

G. A. Gamow

Gamov (*1904 Odessa) 1928: nuclei as liquid droplets
basis of Bethe - Weizsäcker mass formula
nuclear matter at the first order liquid-gas transition
in thermal equilibrium with vacuum at T = 0 and µB = µc

energy-momentum tensor Tµν(x) and baryon number current Nµ(x) for
nucleus in vacuum easily obtained

T00 = ε = µcnB, N 0 = nB.
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Superposition and Landau matching

PbPbPb p p p p e- e+ e-

boosts and linear superposition gives initial state before collision

Tµν(x) = Tµν
→ (x) + Tµν

← (x), Nµ(x) = Nµ
→(x) + Nµ

←(x)

resulting sum not a global equilibrium state any more!
Landau matching decomposition

Tµν = ε uµuν + (p + πbulk)∆
µν + πµν

Nµ = n uµ + νµ

uses fluid velocity uµ and orthogonal projector ∆µν = gµν + uµuν

fluid velocity defined to be time-like eigenvector

Tµ
νuν = −εuµ
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Necessary incredients

realistic equation of state in the T -µ plane
second order fluid dynamics
realistic transport properties
fluid evolution through first or second order phase transitions
causal evolution equations also in regions with large gradients
numerical implementation
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Equation of state
for large T and small µ: lattice QCD, e. g. Taylor expansion
[Bazavov et al. PRD 95, 054504 (2017), Borsanyi et al. JHEP 10 (2018) 205, HotQCD
2212.09043, Borsanyi et al. PRD 105, 114504 (2022)]

p(T , µ) = p(T)+
1
2!χ2B(T)µ2T2 +

1
4!χ4B(T)µ4 +

1
6!χ6B(T)µ6/T2 + . . .

for small T and µ: hadron resonance gas
around liquid-gas phase transition: nucleon-meson model
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Figure 3: The thermodynamic equation of state p(T ) as parametrized in equation (5.1). We show energy

density ✏, pressure p and the trace anomaly ✏ � 3 in units of T 4 in the left panel and the squared sound

velocity c2s(T ) in the right panel. Lattice QCD data underlying the fit at high temperatures are taken from

ref. [45] and ref. [46], the hadron resonance gas approximation used at low temperatures was calculated

following ref. [47]. In the transition region both results were smoothly connected.

The parametrization of pressure as a function of temperature is taken as the following combination of

exponential and rational functions,
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(5.1)

Note that for asymptotically large temperatures p(T ) approaches the result for free gluons and Nf free

quarks. Below we take Nf = 3 and Tc = 154 MeV. The best fit results for the fit parameter aj , bj , c

and d are reported in table 1. The exponential terms in the prefactor in eq. (5.1) help in particular

a1 -0.752335 a2 -1.8151 a3 -2.83317 a4 4.20517 c 0.547521

b1 -1.68716 b2 7.83336 b3 -13.3421 b4 9.22752 d 0.0148163

Table 1: Best fit parameter for the thermodynamic equation of state as parametrized in equation (5.1).

to reproduce the hadron resonance gas regime while the rational term parametrizes the crossover to a

quark-guon plasma.

In the left panel of fig. 3 we show the resulting energy density ✏, pressure p and trace anomaly ✏�3p in

units of T 4 as a function of temperature. The right panel shows the square of the thermodynamic velocity of

sound c2s as a function of temperature. The latter is particularly important for the fluid dynamic evolution

and determines for example the characteristic velocities in the absence of dissipative stresses.

To develop the fit (5.1) we have considered the trace anomaly ✏ � 3p. In fig. 4 we show our fit (solid

curve), together with available numerical data from the HotQCD collaboration [46] (for 2+1 quark flavors,

symbols with error bars), an analytic parametrization of lattice QCD data from ref. [45] (for 2 + 1 + 1

– 13 –

Thermodynamic equation of state at µ = 0
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Nucleon-meson model

Effective Lagrangian

L =ψ̄a iγν(∂ν − igων − iµδ0ν) ψa

+ h
√

2
[
ψ̄a

( 1+γ5
2

)
φabψb + ψ̄a

( 1−γ5
2

)
(φ†)abψb

]
+ 1

2φ
∗
ab(−∂µ∂µ)φab + Umic(ρ, σ)

+
1
4 (∂µων − ∂νωµ)(∂

µων − ∂νωµ) +
1
2m2

ω ωµω
µ

nucleons ψa, scalars φab and vectors ων

effective potential for scalars

Umic(ρ, σ) = Ū (ρ)− m2
πfπσ

with the chiral invariant combination

ρ =
1
2φ
∗
abφab =

1
2 (σ

2 + π2).

variant of Walecka model [Walecka (1974), Floerchinger, Wetterich (2012),
Drews, Hell, Klein & Weise (2013), Drews & Weise (2014)]
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First order phase transition in nucleon-meson model

Baryon density and chiral condensate at T > 0

HADES@GSI/FAIR and CBM@FAIR

[Floerchinger & Wetterich (2012), Drews, Hell, Klein & Weise (2013), Drews & Weise (2014)]
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first order phase transition becomes smooth crossover for T > Tc

method also applicable to neutron matter [Drews & Weise (2014)]
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nucleon-meson model has liquid-gas first order phase transition to
saturation density
provides a realistic model for normal nuclear matter and equation of state
in transition region
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Fluid dynamics with several conserved quantum numbers
fluid with conserved quantum number densities cm = (ε,nB,nC,nS, . . .)

equation of state in grand canonical ensemble in terms of Massieu
potential w(β, αj) = βp(β, αj) with β = 1/T , αj = µj/T ,

dw = −εdβ + njdαj

second derivative yields a matrix of susceptibilities with
γm = (β, α1, α2, . . .)

Gmn(γ) =
∂2w

∂γm∂γn

fluid evolution equations from conservation laws

uµ∂µcm + fm = 0

can be written with inverse susceptibility matrix as

uµ∂µγ
n + (G−1(γ))nmfm = 0
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First order transitions
consider some first order transition surface with normal vector nm(γ)

during a first order transition: phase coexistence
bubble nucleation or spinodal decomposition
here: macroscopic description with volume mixing parameter 0 < t < 1
write the Massieu potential density as

w(γ) = [1 − t]w′(γ) + t w′′(γ)

matrix Gmn(γ, t) is the inverse of[
(1 − t)G′mn(γ) + t G′′mn(γ)

]
during the transition no change orthogonal to phase transition surface

nm(γ)dγm = 0

leads to evolution equation for mixing parameter

uµ∂µt = − np(γ)Gpq(γ, t)fq

nr(γ)Grs(γ, t)[c′′s (γ)− c′s(γ)]

leads in turn to full fluid evolution equations in coordinates γm = (β, αj)
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Longitudinal dynamics

at very early times the collision dynamics is longitudinal
transverse expansion starts later
concentrate here on reduced model involving only t, z
neglect gradients with respect to x, y
relevant fluid fields are

vz(t, z), T(t, z), µ(t, z), πzz(t, z), πbulk(t, z)

transverse dynamics can be addressed in next step

PbPbPb p p p p e- e+ e-
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First preliminary results

  

First results

Significant heating up
z-invariant at late times

Emergent Bjorken flow

  

First results

Significant heating up
z-invariant at late times

Emergent Bjorken flow

  

First results

Matter clumps up in collision zone

Huge initial pressure gradient
 → longitudinal expansion

longitudinal fluid velocity temperature baryon density

emergent Bjorken flow v = z/t close to collision point
plateaus in temperature and baryon density
more refined analysis in progress
[together with Federica Capellino, Alaric Erschfeld, Eduardo Grossi and Andreas Kirchner]

15 / 19



Causality

[Floerchinger & Grossi, JHEP 08 (2018) 186]
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dissipative fluid equations can be of hyperbolic type
characteristic velocities depend on fluid fields
need |λ(j)| < c for relativistic causality
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Causality in radial expansion
[Floerchinger & Grossi, JHEP 08 (2018) 186]

for radial expansion the characteristic velocities are

λ(1) =
v + c̃
1 + c̃v , λ(2) =

v − c̃
1 − c̃v , λ(3) = λ(4) = λ(5) = v

effective speed of sound

c̃ =
√

c2
s + d,

with thermal speed of sound

c2
s =

∂p
∂ε

and correction

d =

4η
3τshear

+ ζ
τbulk

ε+ p + πbulk − πφ
φ − πη

η

relaxation times τshear and τbulk must be large enough
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Fluid equations from geometric gauge fields (?)
[Floerchinger & Grossi, PRD 105, 085015 (2022)]

gauge symmetry of diffeomorphisms gµν → gµν +∇µεν +∇νεµ imlies
energy-momentum conservation

∇µTµν = 0

are there more useful geometric gauge fields?
contorsion C ρ

µ σ or spin connection for local Lorentz transformation

∇µSµρσ = T ρσ − T σρ

Weyl gauge field Bµ for local dilatations

∇µWµ =
2
d
[
Tρ

ρ − U ρ
ρ

]
proper non-metricity B̂ ρ

µ σ for local shear transformations

∇µQµρσ = 2
[
Tρσ − U ρσ − gρσ

d (Tν
ν − U ν

ν)

]
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Conclusions

fluid description of entire collision event is under development
towards universal description of soft QCD
not clear how well it will work eventually
many elements must be brought together
fluid evolution in the whole phase diagram
phase transitions
causality
a challenge to theory, but could be worth it
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