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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!
@ needs macroscopic fluid properties

thermodynamic equation of state p( 7T, )
o shear + bulk viscosity n(T, u), ¢(T, )

o heat conductivity (T, p), ...

o relaxation times, ...

o electrical conductivity o (T, u)

fixed by microscopic properties encoded in Lagrangian £qcp

@ old dream of condensed matter physics: understand the fluid properties!
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High energy nuclear collisions: QCD fluid
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erpanding Unit : cosmological
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Pattern  Dark Ages Development of
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Relativistic fluid dynamics
Energy-momentum tensor and conserved current
" = eu"u” + (p + moun) A" + 7
NH = nu* +#
@ tensor decomposition using fluid velocity u*, A*Y = ¢** + u*u”
e thermodynamic equation of state p = p( 7T, 1)

Covariant conservation laws V,T"” =0 and V,N* = 0 imply

@ equation for energy density €
@ equation for fluid velocity u*
@ equation for particle number density n

Need in addition constitutive relations [e.g Israel & Stewart]

@ equation for shear stress ©#"
@ equation for bulk viscous pressure Ty

Thulk W OpTbuik + « -« - + Touk = —C Vut

@ equation for diffusion current v*
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Particle production at the Large Hadron Collider
[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, JHEP 2020, 44]
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@ data are very precise now - high quality theory development needed!
@ next step: include coherent fields / condensates
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Entropy current, local dissipation and unitarity

o local dissipation = local entropy production

Vust(z) >0

o e. g. from analytically continued quantum effective action
[Floerchinger, JHEP 1609, 099 (2016)]

o fluid dynamics in Navier-Stokes approximation

Vst = lT [2770‘“,0W + C(VPUP)Q] >0

@ unitary time evolution conserves von-Neumann entropy

S=—Tr{plnp} = —Tr{(UpU) In(UpU')} = %S:

quantum information is globally conserved

What is local dissipation in isolated quantum systems ?
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Entropy and information

[Claude Shannon (1948), also Ludwig Boltzmann, Willard Gibbs (~1875)]
@ consider a random variable z with probability distribution p(z)
@ information content or “surprise” associated with outcome z

i(x)
8

i(z) = —Inp(z) i
2

0.0 02 04 06 0.8 1.0

@ entropy is expectation value of information content

S(p) = ZP )In p(z

s=o0 S = In(2) S =2In(2)

p(x)
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Thermodynamics

[..., Antoine Laurent de Lavoisier, Nicolas Léonard Sadi Carnot, Hermann von Helmholtz, Rudolf

Clausius, Ludwig Boltzmann, James Clerk Maxwell, Max Planck, Walter Nernst, Willard Gibbs, ...]

@ micro canonical ensemble: maximum entropy S for given conserved
quantities E, N in given volume V

@ starting point for development of thermodynamics ...

S(E,N, V), dS:%dE—%dN-i—%dV

@ ... grand canonical ensemble with density operator ...

1

p=— — 5 (H—pN)

N

o ... Einsteins probability for classical thermal fluctuations ...

AW ~ 5®) q¢
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Fluid dynamics

@ uses thermodynamics locally

evolution from conservation laws

V,.T"(z) =0, V,N"(z)=0.

@ local dissipation = local entropy production

Vs (z) = 8;s(z) + V - 3(z) > 0

o in Navier-Stokes approximation with shear viscosity 7, bulk viscosity ¢

1
Vs = T [27](7“,,0“" + C(Vpup)Q]

how to understand this in quantum field theory?

10/47



Entropy in quantum theory

[John von Neumann (1932)]
S =-Tr{plnp}

based on the quantum density operator p

o for pure states p = |1)) (1| one has S =0

o for diagonal mixed states p =}, p;[) (J|
S = —ijlnpj >0
J
@ unitary time evolution conserves entropy

~Te{(UpU) In(UpU")} = =Tr{pIn p} — S = const.

@ quantum information is globally conserved
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What is an entropy current?

can not be density of global von-Neumann entropy for closed system

[ 5@ £ ~Triping)

@ kinetic theory for weakly coupled (quasi-) particles [Boltzmann (1890)]

SW@=*/%§@memﬂ%m}

e molecular chaos: keep only single particle distribution f(z, p)

how to go beyond weak coupling / quasiparticles?

12/47



Quantum entanglement

e Can quantum-mechanical description of physical reality be considered
complete? [Einstein, Podolsky, Rosen (1935), Bohm (1951)]

" :;2 (D) al Oz = Dal De)

-5

=— (| =)al <) —|<)al =)5)

S

o Bertlemann'’s socks and the nature of reality [Bell (1980)]
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Bell’s inequalities and Bell tests

[John Stewart Bell (1966)]

@ most popular version [Clauser, Horne, Shimony, Holt (1969)]
S =|E(a,b) — E(a,b") + E(d’, b) + E(d’, ') < 2
holds for local hidden variable theories
@ expectation value of product of two observables
E(a, b) = (A(a) B(b))

with possible values A = +1, B = £1.
@ depending on measurement settings a, a’ and b, b’ respectively
@ quantum mechanical bound is S < 2v/2
@ experimental values 2 < § < 2v/2 rule out local hidden variables
@ entanglement witness

@ one measurement setting but at different times [Leggett, Garg (1985)]
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Entropy and entanglement

e consider a split of a quantum system into two A + B

B

(+)

@ reduced density operator for system A

pa = Tre{p}

@ entropy associated with subsystem A

Sa=—Tra{palnpa}

@ pure product state p = pa ® pp leads to Sy, =0
@ pure entangled state p # pa ® pp leads to Sy > 0

@ S, is called entanglement entropy
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Classical statistics

consider system of two random variables z and y

joint probability p(z,y) , joint entropy

§=—> plz,y)lnp(z,y)

z,y

e reduced or marginal probability p(z) = Zyp(x, )

reduced or marginal entropy

Se = Zp )In p(z

one can prove: joint entropy is greater than or equal to reduced entropy

S > S

globally pure state S = 0 is also locally pure S; =0
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Quantum statistics

e consider system with two subsystems A and B

@ combined state p , combined or full entropy

S =—-Tr{plnp}

o reduced density matrix pa = Trp{p}

o reduced or entanglement entropy

Sa=—Tra{palnpa}

o for quantum systems entanglement makes a difference

S # Sa

e coherent information Iz 4 = S4 — S can be positive!

o globally pure state S = 0 can be locally mixed S4 > 0

17/47



Entanglement entropy in relativistic quantum field theory

B

(+)

@ entanglement entropy of region A is a local notion of entropy

Sa=—tra{palnpa} pa =tr{p}

o for relativistic quantum field theories it is infinite already in vacuum state
const _ . . -
Sa=—= / d25vh + subleading divergences + finite
€ A

o UV divergence proportional to surface area

o relativistic quantum fields are very strongly entangled already in vacuum

Theorem [Helmut Reeh & Siegfried Schlieder (1961)]: local operators in region A
can create all (non-local) particle states
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Entanglement entropy in non-relativistic quantum field theory

[Natalia Sanchez-Kuntz & Stefan Floerchinger, PRA 103, 043327 (2021)]

@ non-relativistic quantum field theory for Bose gas

S = /dtddilx{go* [iat + % + u] ¢ — 202"

Bogoliubov dispersion relation
— [ (ﬁ 4o ) _Jelpl for p < +2MMp (phonons)
M\ 2M g % for p>2MMp (particles)

o low momentum regime like theory of massless relativistic scalar particles

high momentum regime non-relativistic

e what atre the entanglement properties?

for p = 0 the entanglement entropy vanishes
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Entanglement entropy in Bose-Finstein condensates
[Natalia Sanchez-Kuntz & Stefan Floerchinger, PRA 103, 043327 (2021)]

nonrelativistic region

relativistic region
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one-dimensional Bose-Einstein condensate with subregion

reduced density matrix pa = Trz{p}
Rényi entanglement entropy

1 a
Sa = _ﬁln Tr{pA}

A of length L

inverse healing length 1/& = \/2MMp acts like UV regulator
at large L > & we confirm CFT behaviour with b = ¢ %L
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Relative entropy

o classical relative entropy or Kullback-Leibler divergence

S(pllq) = pr In(p;/ ¢)

@ not symmetric distance measure, but a divergence

S(pllg) >0 and S(pllg) =0 < p=gq

@ quantum relative entropy of two density matrices (also a divergence)

S(pllo) = Tr{p(lnp - no)}

@ signals how well state p can be distinguished from a model o
@ Gibbs inequality: S(p|lo) >0
e S(pllo)y=0ifandonlyif p=0
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Significance of Kullback-Leibler divergence

Uncertainty deficit
o true distribution p; and model distribution g;

® uncertainty deficit is expected surprise (—In ¢;) = — >, p;In ¢; minus real
information content — ijj In p;

S(pllg) = Zpyln% <—Zp71npf>
J

Asymptotic frequencies
e true distribution ¢; and frequency after N drawings p; = w

@ probability to find frequencies p; for large N goes like

e~ NSl

@ probability for fluctuation around expectation value (p;) = ¢; tends to zero
for large N and when divergence S(p||q) is large
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Advantages of relative entropy

Continuum limit p; — f(z)dz g — g(z)dz
e not well defined for entropy

S = —ij In p; 4 /dxf(a:) [In f(z) + In dz]

o relative entropy remains well defined

S(plla) %S(fl\g):/dxf(ﬂr) In(f(z)/g(z))

Local quantum field theory
@ entanglement entropy S(p4) for spatial region divergent in relativistic QF T
o relative entanglement entropy S(pallca) well defined

@ rigorous definition in terms of Tomita—Takesaki theory of modular
automorphisms on von-Neumann algebras [Huzihiro Araki (1976)]

B

(4)
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Momnotonicity of relative entropy

[Géran Lindblad (1975)]

@ monotonicity of relative entropy
SN (p)IN(0)) < S(plo)

with A/ completely positive, trace-preserving map

e N unitary time evolution

SN (p)INV(0)) = S(plo)

e N open system evolution with generation of entanglement to environment

SN (p)INV (o)) < S(plo)

@ basis for many proofs in quantum information theory

o leads naturally to second-law type relations
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Thermodynamics from relative entropy

[Stefan Floerchinger & Tobias Haas, PRE 102, 052117 (2020)]

relative entropy has very nice properties

but can thermodynamics be derived from it ?

@ can entropy be replaced by relative entropy ?

first step to understand fluid dynamics
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Principle of maximum entropy

[Edwin Thompson Jaynes (1963)]

@ take macroscopic state characteristics as fixed, e. g.

energy F, particle number N, momentum p,

@ principle of maximum entropy: among all possible microstates o (or
distributions ¢) the one with maximum entropy S is preferred

S(Uthermal) = max

e why? assume S(o) < max, than o would contain additional information
not determined by macroscopic variables, which is not available

@ maximum entropy = minimal information

26/47



Principle of minimum expected relative entropy

[Stefan Floerchinger & Tobias Haas, PRE 102, 052117 (2020)]

o take macroscopic state characteristics as fixed, e. g.

energy E, particle number N, momentum 7,

@ principle of minimum expected relative entropy: preferred is the model o
from which allowed states p are least distinguishable on average

<S(p|lathermal)> = /Dp S(pHUthermal) — min

o similarly for classical probability distributions

(S(lla) = / Dp S(pllq) = min

@ need to define measures Dp and Dp on spaces of probability distributions
p and density matrices p, respectively
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Measure on space of probability distributions

consider set of normalized probability distributions p in agreement with
macroscopic constraints

manifold with local coordinates ¢ = {¢*,... £™}

integration in terms of coordinates

/Dp - / dg" - g™ (e, €7)

want this to be invariant under coordinate changes & — £'(¢)

possible choice is Jeffreys prior as integral measure [Harold Jeffreys (1946)]

u(&) = const x \/det gas(&)

uses Riemannian metric gos(£) on space of probability distributions:
Fisher information metric [Ronald Aylmer Fisher (1925)]

s(©) = 3 pi(e) T2 OS]

J
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Permutation invariance

@ can now integrate functions of p

l/£hf@0:i/dm£u@)ﬂpﬁb

o consider maps {p1,...px} = {pPr@1), - Py } where j — TI(j) is a
permutation, abbreviated p — I1(p)

@ want to show Dp = DII(p) such that

[ owso) = [ Dpsae)

@ convenient to choose coordinates

@ forj=1,...,N —1,
Pl =@ = = (@2 forj=
wich allows to write
/Dp:i/ldfl'“df“ S = [ o
QN -1 a=1
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Minimizing expected relative entropy

o consider now the functional

B(g, ) = /Dp

S(pllg) + A (Z g — 1>]
@ variation with respect to g;

O%JB:Z/Dp{—%+/\]5Qj
J J

leads by permutation invariance to the uniform distribution

1
g = (pj) = G

@ microcanonical distribution has minimum expected relative entropy!

o least distinguishable within the set of allowed distributions
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Measure on space of density matrices

@ measure on space of density matrices Dp can be defined similarly in terms
of coordinates £ but using now quantum Fisher information metric

vt =720 it

o definition uses symmetric logarithmic derivative such that

1 1
5p(dnp) + o (dInp)p = dp

@ appears also as limit of relative entropy for states that approach each other

S(ple + dEIP(E)) = 3gas(€)dE™dE™ + ...
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Unitary transformations as isometries

@ consider unitary map

p(€) — p'(€) = Up(&)U' = p(¢")

@ again normalized density matrix but at coordinate point &’

e induced map on coordinates & — £'(£) is an isometry

9o (€)dE* dEP = gap(€))de'™ de"”

@ can be used to show invariance of measure such that

[ peso)= [ Doscwpr)
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Minimizing expected relative entropy on density matrices

@ consider now the functional

B— / DpS(pllo) = / 4"€ u(€) S(p()l|o)

1
@ minimization 0 = § B leads to microcanonical density matrix

om = —1

N

on space allowed by macroscopic constraints

o anyway only possibility for unique minimum o = Uon U'
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Microcanonical ensemble

@ microcanonical ensemble

S Zié(H — B(om))d(N — N(ow))

m

o relative entropy of arbitrary state p to microcanonical state

~5(p) + S(om) for E(p) = E(ow)
S(pllom) = and N(p) = N(om)
+00 else

o differential for dE(p) = dE(om) and dN(p) = dN(om)

dS(pllom) = — dS(p) + dS(om)
= — dS(p) + B dE(p) — B dN(p)

@ gives an alternative definition of temperature

1
=7
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Canonical and grand-canonical ensemble

@ transition to canonical and grand-canonical ensembles follows the usual
construction
—B(H—pN)

Z

Ogc =

o relative entropy of arbitrary state p to grand-canonical state oy

S(plloge) = = S(p) + S(oge) + B (E(p) — E(oge))
— Bu(N(p) = N(0ge))-

o differential

dS(plloge) = — dS(p) + B dE(p) — B dN(p)
+ (E(p) — E(ogc)) df
— (N(p) = N(oge)) d(Bp),

@ choices for 8 = 1/T and p such that E(p) = E(og) and N(p) = N(og)
extremize relative entropy S(p||ogc)
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Thermal fluctuations and relative entropy

@ “mesoscopic” quantities £ fluctuate in thermal equilibrium, for example
energy in a subvolume

o traditional theory goes back to Einsteins work on critical opalescence
[Albert Einstein (1910)]
AW ~ e5® q¢

@ entropy can be replaced by relative entropy between state p(§) (where £ is
sharp) and thermal state o (where it & is fluctuating)

AW = e S0O1) fet g5 (€) d"¢

N(z))
N

@ resembles closely probability for fluctuations in frequencies p; =

—NS(plla)

~ €

36/ 47



Third law of thermodynamics

[Walter Nernst (1905)]

@ many equivalent formulations available already

[Max Planck (1911)]: entropy S approaches a constant for 7' — 0 that is
independent of other thermodynamic parameters

lim S(o) = Sp = const
T—0

new formulation with relative entropy: relative entropy S(pol/o) between
ground state po and a thermodynamic model state o approaches zero for
T—0

lim S 0)=0

lim 5(pol[o)

second law can also be formulated with relative entropy
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Local thermal equilibrium in a quantum field theory

consider non-equilibrium situation with

e true density matrix p
o local equilibrium approximation

o= %67 J A 1By (2) THY +a () N*}

reduced density matrices p4 = Trp{p} and o4 = Trp{o}

@ o is very good model for p in region A when

SA = TrA{pA(lnpA — 11’10',4)} — 0

does not imply that globally p = o

B

(+)
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Local form of second law for open systems 1

[Neil Dowling, Stefan Floerchinger & Tobias Haas, PRD 102, 105002 (2020)]

|
|

@ local description of quantum field theories in space-time regions bounded
by two light cones [e. g. Rudolf Haag (1992), Huzihiro Araki (1992)]

@ unitary evolution for isolated systems, more generally CPTP map

p(10) = N(p(70)) = p(71)
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Local form of second law for open systems 2
[Neil Dowling, Stefan Floerchinger & Tobias Haas, PRD 102, 105002 (2020)]
@ compare to global equilibrium state

U:lexp 7/ d¥, {8, T"" + aN"}
4 =(r)

with entropy current

st =B, T" —aN" + pp"

o relative entropy
S(pllo) = Tr{p(In(p) —In(0)) }
=—5(p)+In(2) + Tr{p/ dx, (,BV THY 4 aNu)}

== 5+ [ 45, { = (o) + B[ (5) = T ()] +a[N"(p) - N (0]}

@ monotonicity of relative entropy

AS(pllo) = S(p(r1)llo(r1)) = S(p(0)[lo(r0)) <0

@ allows to formulate local forms of the second law for fluids
40/47



Local form of second law for open systems &
[Neil Dowling, Stefan Floerchinger & Tobias Haas, PRD 102, 105002 (2020)]
@ assume now that one can write

AS(p) = S(p(m)) — S(p(r0)) = /Q 42,/ 5(p) ()

o find from monotonicity of relative entropy a local form of the second law

s(p) + BV T" (p) + aV . N*(p) > 0

@ next step: time evolution for isolated fluids

|
|
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Quantum field dynamics

Quantum
field theory

Fluid Information
dynamics theory

@ new hypothesis

local dissipation = quantum entanglement generation ]

quantum information is spread

locally, quantum state approaches mixed state form

o full loss of local quantum information = Jlocal thermalization
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Information geometry

@ explore concepts like relative entropy, Fisher metric, Amari-Chentsov
connections, dual affine structure

o Information geometry can be applied to thermodynamics
o Information geometry for classical statistical field theory

o Information geometry for quantum field theory in real time
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FEzxponential families and the effective action 1

o class of probability distributions
p(X, J)dX = exp(—I(X) + J%pa(X) — W(J))dX

with partition function

2(J) = exp(W(J)) = / 4X exp(—1(X) + J*pa(X)

@ change of variables

p(p, J)d"p = exp(=S(p) + J%pa — W(J))d"¢

@ introduce a measure

du(p) = exp(=S(p))d™¢

@ partition function becomes

2(J) = exp(W(J)) = / dpu(p) exp(J)
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Ezponential families and the effective action 2

@ can do affine transformations

I = J = M%JP 4

o Legendre transform
I(¢) = sgp{J‘”% - W(J)}

with expectation value

da :<‘Pa>: 9

@ can also do affine transformations

ba = b = No'dg + da

ﬁW(J) = ﬁ / du(ep) exp(Jp)pa
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Ezponential families and the effective action 3

o relative entropy between distributions at differnt sources

SMMWﬂb/W@mW%w%WD

xIn (exp(J — W(J)/ exp(J'p — W(J')))
—(J = I Ga — W(I) + W(JT')
—I(¢) = W(J') = I 6

where expectation value ¢ is with respect to the distribution at source J
@ Fisher information metric
o? ’ 0
(e J = 75 J J , = =5
905(]) = 570575 SOOI,y = 57505

= 0 s W) = (e — 6a)(ps — 95))

e inverse Fisher metric )
o

of _

I'(¢)
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Conclusions

@ local thermalization and fluid dynamics can be formulted in terms of
relative entropy

o local dissipation = entanglement generation (?)

@ quantum information theory for non-equilibrium dynamics

o thermodynamics can be developed in terms of relative entropies
@ second law for isolated situations needs further investigations

@ outlook: information geometry for quantum fields in and out of equilibrium
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