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Understanding quantum field dynamics

By e
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@ microscopic Lagrangian for many phenomena is known
@ quantum field theories change with scale!
@ need to understand quantum field dynamics away from simple limits

@ important for condensed matter, optics, atomic physics, astrophysics,
nuclear physics, cosmology, ...

[ What are the macroscopic evolution equations for quantum fields ? ]
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One-particle irreducible or quantum effective action

@ partition function Z[J], Schwinger functional W[J]

21] :/Dx iSI =i [, {7 @)x (@)}

o quantum effective action I'[¢] defined by Legendre transform

Mol = [ J(@)o(e) ~ Wi,

with expectation values ¢(z) = dW[J]/dJ(x)
@ includes all quantum and statistical fluctuations !

@ equation of motion for field expectation values

6 —
WFW] = J(z)

o functional renormalization group: flow equation for I'[¢]

@ can be used in and out of equilibrium
[e. g. Floerchinger, JHEP 1205, 021 (2012); JHEP 1609, 099 (2016)]
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High energy nuclear collisions: QCD fluid
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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!
needs macroscopic fluid properties

thermodynamic equation of state p(T, u)
shear + bulk viscosity n(T, ), ¢(T, 1)
heat conductivity (T, u), ...

relaxation times, ...

electrical conductivity o (T, 1)

fixed by microscopic properties encoded in Lagrangian Zqcp

old dream of condensed matter physics: understand the fluid properties!
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Flow and fluctuations in heavy ion collisions

FluiduM: Fluid dynamics of heavy ion collisions with Mode expansion
[Floerchinger & Wiedemann, PLB 728, 407 (2014), PRC 88, 044906 (2013), 89, 034914 (2014)]
[Floerchinger, Grossi & Lion, PRC 100, 014905 (2019)]
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@ background-fluctuation splitting + mode expansion
@ analogous to cosmological perturbation theory
@ substantially improved numerical performance (pseudospectral method)

@ resonance decays included
[Mazeliauskas, Floerchinger, Grossi & Teaney, EPJC 79, 284 (2019)]

o allows fast and precise comparison between theory and experiment
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Particle production at the Large Hadron Collider

[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, JHEP 06 (2020)
044]
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o data are very precise now - high quality theory development needed!
@ next step: include coherent fields / condensates
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Relativistic fluid dynamics

Energy-momentum tensor and conserved current
T = eutu” + (p + moun) A" + 77
N¥ =nut +0"
o tensor decomposition using fluid velocity u*, A*” = ¢g"* 4+ uFu”
e thermodynamic equation of state p = p(T, p1)

Covariant conservation laws V,T"" =0 and V,N* = 0 imply
@ equation for energy density €
@ equation for fluid velocity u*
@ equation for particle number density n

Need further evolution equations [e.g Isracl & Stewart]
@ equation for shear stress w#”
@ equation for bulk viscous pressure Tpuik

Thulk U Ok + - - - 4 Tpuik = —¢ Vu”

@ equation for diffusion current v*

@ non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Causality

[Floerchinger & Grossi, JHEP 08 (2018) 186]
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@ inequalities for relativistic causality
o dissipative fluid equations can be of hyperbolic type
@ characteristic velocities depend on fluid fields

o need |\ 9| < ¢ for relativistic causality



Remarks

o fluid dynamics rather successful as non-equilibrium approximation in the
macroscopic regime

o derivation from quantum effective action I'[¢] wanted
[Floerchinger, JHEP 1205, 021 (2012); JHEP 1609, 099 (2016)]

@ expectation values and correlation functions of interest

@ underlying principle: most excitations or modes relax quickly
[Kadanoff & Martin (1963)]

@ exception: conserved quantities like energy, momentum or particle density
("hydrodynamic modes”)

@ but: some non-hydrodynamic modes are needed for causality

@ how to obtain additional equations of motion for them?
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Covariant energy-momentum conservation

e quantum effective action I'[¢, g] at stationary matter fields

)
WFW gl=0

o diffeomorphism is gauge transformation of metric

G () = guw () + Ve () + Ve ()

@ energy-momentum tensor defined by

5T, g] = % / /G T (2)5g (x)

e from invariance of I'[¢, g] under diffeomorphisms

VT (z) =0

o worked here in Riemann geometry with Levi-Civita connection

1
5FMPU = EQM (Vudgus + Vudgux — VAdguv)
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Hypermomentum current

[von der Heyde, Kerlick & Hehl (1976)] [Floerchinger & Grossi, arXiv:2102.11098]

@ connection can be varied independent of the metric

5T = / e /g { U (@)0gu (@) — LS, ()T, (x)}

with new symmetric tensor %" and hypermomentum current /%, °

@ hypermomentum current can be decomposed further

ST = QM WS, + ST+ ST 5,

with
e spin current SHPT = —SHoP
o dilatation current WH
_ wp
o shear current QHPT = QHoP, Q", =0
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FEquations of motion for dilatation and shear current
[Floerchinger & Grossi, arXiv:2102.11098]

@ variation of connection contains Levi-Civita part and non-Riemannian part

1
6T, y = 5gfM (Vubgor + Vadgur — Vadgus) + 6C,°5 +6D,*,

@ variation at 6C,”, = 6D,”, = 0 gives energy-momentum tensor

“w

v v 1 1% LV
™ = Y+ +§VP(Q”" + W?g")

@ new equation of motion for dilatation or Weyl current

2
VWP = a(THu —u')

@ new equation of motion for shear current

nv
v,QM =2 | —a — (17, — w7,

@ non-conserved Noether currents
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Spin current

[Floerchinger & Grossi, arXiv:2102.11098]

o tetrad formalism: vary tetrad VHA and spin connection QHAB

5T = / &'z /G {yf;(x)avf(x) - %S“AB(x)éQHAB(x)}
with

e canonical energy-momentum tensor 9“A

o spin current S*, o

@ symmetric energy-momentum tensor in Belinfante-Rosenfeld form

T (@) = T (@) + 3V, (57 (@) + 57 (@) + 5 (o)

@ equation of motion for spin current

V#SMPU — yO'P _ ,7’?0-

@ non-conserved Noether current
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Implications for relativistic fluid dynamics

o dilatation current, shear current and spin current provide additional
information about quantum field theory out-of-equilibrium and relativistic
fluids

@ their contribution to energy-momentum tensor vanishes in equilibrium or
for ideal fluids

@ new equations of motion could allow formulation of extended and causal
relativistic fluid dynamics with “non-hydrodynamic” modes

@ expectation values and correlation functions obtained from coupling
quantum fields to non-Riemannian geometry
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Non-Riemannian geometry

[Floerchinger & Grossi, arXiv:2102.11098]

@ general connection

1
F;Lpa :igp)\ (augdk + aagp)\ - 8}9#0) + Cupa

+B,", + B,," — B’y + B’y + Bo6,” — B g

@ contorsion C,”, = gauge field for local Lorentz transformations
o Weyl gauge field B,, = gauge field for local dilatations
@ proper non-metricity EHPU = gauge field for local shear transformations

o local Lorentz transformations, dilatations and shear transformations
together form the group GL(d) of basis changes in tangent space / the
frame bundle

@ all these transformations are extended symmetries: they change the
quantum effective action I' but in a specific way

o extended symmetries = non-conserved Noether currents
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FEaxtended symmetries 1

[Floerchinger & Grossi, arXiv:2102.11098]

@ consider transformation of fields

$(@) = d(x) + ide (x) Tjg()

@ might be non-Abelian with structure constants

[Te, 1) = ify, " T

@ introduce external gauge field and covariant derivative

Dud(e) = (Vi = iAL(@)T;) 6(a)

gauge field transforms as usual

Al (z) — Al (x) + f,,” AL (2)de (z) 4+ V ,.d€7 (x)
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Extended symmetries 2

[Floerchinger & Grossi, arXiv:2102.11098]

o change of effective action I'[¢, A]

D[¢+ide Ty, A+ £, ARdE' +V,,de7) = T[]+ / dd:vf{I )de’ ( )}

o define current through

w1 4T
SO = Al

@ obtain conservation-type relation (for 6I'/d¢ = 0)

Dy ff (@) = Vo 7} (2) + [ Au(e) Fl' (2) = —Z;(x)

@ global symmetry Z;(x) = 0 = conserved Noether current

o extended symmetry Z;(z) # 0 but known at macroscopic level =
non-conserved Noether current
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Entropy current, local dissipation and unitarity

@ local dissipation = local entropy production

Vust(x) >0

@ e. g. from analytically continued quantum effective action
[Floerchinger, JHEP 1609, 099 (2016)]

@ fluid dynamics in Navier-Stokes approximation

1
Vst = T [2no o™ + C(Vpup)z] >0

@ unitary time evolution conserves von-Neumann entropy

S =—Tr{plnp} = —Tr{({UpU") In(UpU")} = %S =0

quantum information is globally conserved

What is local dissipation in isolated quantum systems ?
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Quantum entanglement

o Can quantum-mechanical description of physical reality be considered
complete? [Einstein, Podolsky, Rosen (1935), Bohm (1951)]

1
P :ﬁ (IMaldys—=14alMs)
z% (| =)al )5 = | <al =)5)

@ Bertlemann's socks and the nature of reality [Bell (1980)]
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Classical statistics

consider system of two random variables x and y

joint probability p(z,y) , joint entropy

S=- plz,y)np(z,y)

z,y

reduced or marginal probability p(z) =3, p(,y)

reduced or marginal entropy

@ one can prove: joint entropy is greater than or equal to reduced entropy

S>8:

globally pure state S = 0 is also locally pure S; =0
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Quantum statistics

consider system with two subsystems A and B

combined state p , combined or full entropy

S =—-Tr{pnp}

reduced density matrix pa = Tre{p}

reduced or entanglement entropy

Sa=—-Tra{palnpa}

pure product state p = pa ® pp leads to S4 =0
pure entangled state p # pa ® pp leads to S4 >0

for quantum systems entanglement makes a difference

S# Sa

coherent information Izy4 = S4 — S can be positive!

globally pure state S = 0 can be locally mixed S4 > 0
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Quantum field dynamics

Quantum
field theory

FIuid. Information
dynamics theory

new hypothesis

local dissipation = quantum entanglement generation

@ quantum information is spread

locally, quantum state approaches mixed state form

o full loss of local quantum information = local thermalization
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Entanglement entropy in quantum field theory

B

(+)

@ entanglement entropy of region A is a local notion of entropy

Sa=—tra{palnpa} pa = trz {p}

@ however, it is infinite already in vacuum state

const

Sa = i3 / d*2ovh + subleading divergences + finite
dA

@ UV divergence proportional to entangling surface

quantum fields are very strongly entangled already in vacuum

Theorem [Reeh & Schlieder (1961)]: local operators in region A can create all
particle states
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Relative entropy

o relative entropy of two density matrices

S(plo) =tr{p(Inp—Ino)}

@ measures how well state p can be distinguished from a model o
o Gibbs inequality: S(plo) >0
S(plo) =0ifand only if p =0

@ quantum generalization of Kullback-Leibler divergence
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Relative entanglement entropy

(+)

@ consider now reduced density matrices

pa = Tre{p}, o4 =Trg{o}

o define relative entanglement entropy
Sa(plo) =Tr{pa(lnpa —Inoa)} = -Tr{paln A4}

with relative modular operator A 4
o measures how well p is represented by o locally in region A
o UV divergences cancel: contains real physics information

o well defined in algebraic quantum field theory [Araki (1977)]
[see also works by Casini, Myers, Lashkari, Witten, Liu, ...]
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An approximate local description
[Dowling, Floerchinger & Haas, PRD 102 (2020) 10, 105002]

@ consider non-equilibrium situation with

o true density matrix p
o local equilibrium approximation

o= L= [ a5 {Bu (@) T +a(a)N"}

o reduced density matrices pa = Trg{p} and 04 = Tre{c}

@ o is very good model for p in region A when

Sa=Tra{pa(lnpa —Inoa)} =0

o does not imply that globally p = ¢

B

()
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Momnotonicity of relative entropy

@ monotonicity of relative entropy [Lindblad (1975)]
SN (p)IN(9)) < S(plo)

with A/ completely positive, trace-preserving map

o N unitary evolution

SWN(p)IN(e)) = S(plo)

o N open system evolution with generation of entanglement to environment

S(N(p)IN (o)) < S(plo)

@ leads to local, second law type relation
[Dowling, Floerchinger & Haas, PRD 102 (2020) 10, 105002]

B

(+)
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Conclusions

@ new divergence-type equations of motion

o dilatation current, shear current and spin current

@ quantum field theory in non-Riemannian geometry

o extended symmetries = non-conserved Noether currents

o relativistic fluid dynamics has a foundation in quantum information theory

@ description of local thermalization in terms of relative entropy
@ quantum field theoretic description with two density matrices:

o true density matrix p evolves unitary
o fluid model o agrees locally but evolves non-unitary
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