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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!
needs macroscopic fluid properties

thermodynamic equation of state p(T, u)
shear + bulk viscosity n(T, ), ¢(T, 1)
heat conductivity (T, u), ...

relaxation times, ...

electrical conductivity o (T, 1)

fixed by microscopic properties encoded in Lagrangian Zqcp

old dream of condensed matter physics: understand the fluid properties!
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Relativistic fluid dynamics

Energy-momentum tensor and conserved current
T = eutu” + (p + moun) A" + 77
N¥ =nut +0"
o tensor decomposition using fluid velocity u*, A*” = ¢g"* 4+ uFu”
e thermodynamic equation of state p = p(T, p1)

Covariant conservation laws V,T"" =0 and V,N* = 0 imply
@ equation for energy density €
@ equation for fluid velocity u*
@ equation for particle number density n

Need further evolution equations [e.g Isracl & Stewart]
@ equation for shear stress w#”
@ equation for bulk viscous pressure Tpuik

Thulk U Ok + - - - 4 Tpuik = —¢ Vu”

@ equation for diffusion current v*

@ non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Remarks

o derivation from quantum effective action I'[¢] wanted
[Floerchinger, JHEP 1205, 021 (2012); JHEP 1609, 099 (2016)]

@ expectation values and correlation functions of interest

@ underlying principle: most excitations or modes relax quickly
[Kadanoff & Martin (1963)]

@ exception: conserved quantities like energy, momentum or particle density
("hydrodynamic modes”)

@ but: some non-hydrodynamic modes are needed for causality

@ how to obtain additional equations of motion for them?
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Covariant energy-momentum conservation

e quantum effective action I'[¢, g] at stationary matter fields

)
WFW gl=0

o diffeomorphism is gauge transformation of metric

G () = guw () + Ve () + Ve ()

@ energy-momentum tensor defined by

5T, g] = % / /G T (2)5g (x)

e from invariance of I'[¢, g] under diffeomorphisms

VT (z) =0

o worked here in Riemann geometry with Levi-Civita connection

1
5FMPU = EQM (Vudgus + Vudgux — VAdguv)
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Hypermomentum current

[von der Heyde, Kerlick & Hehl (1976)] [Floerchinger & Grossi, arXiv:2102.11098]

@ connection can be varied independent of the metric

5T = / e /g { U (@)0gu (@) — LS, ()T, (x)}

with new symmetric tensor %" and hypermomentum current /%, °

@ hypermomentum current can be decomposed further

ST = QM WS, + ST+ ST 5,

with
e spin current SHPT = —SHoP
o dilatation current WH
_ wp
o shear current QHPT = QHoP, Q", =0
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FEquations of motion for dilatation and shear current
[Floerchinger & Grossi, arXiv:2102.11098]

@ variation of connection contains Levi-Civita part and non-Riemannian part

1
6T, y = 5gfM (Vubgor + Vadgur — Vadgus) + 6C,°5 +6D,*,

@ variation at 6C,”, = 6D,”, = 0 gives energy-momentum tensor

“w

v v 1 1% LV
™ = Y+ +§VP(Q”" + W?g")

@ new equation of motion for dilatation or Weyl current

2
VWP = a(THu —u')

@ new equation of motion for shear current

nv
v,QM =2 | —a — (17, — w7,

@ non-conserved Noether currents
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Spin current

[..., Floerchinger & Grossi, arXiv:2102.11098]

o tetrad formalism: vary tetrad VHA and spin connection QHAB

5T = / &'z /G {yf;(x)avf(x) - %S“AB(x)éQHAB(x)}
with

e canonical energy-momentum tensor 9“A

o spin current S*, o

@ symmetric energy-momentum tensor in Belinfante-Rosenfeld form

T (@) = T (@) + 3V, (57 (@) + 57 (@) + 5 (o)

@ equation of motion for spin current

V#SMPU — yO'P _ ,7’?0-

@ non-conserved Noether current
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Implications for relativistic fluid dynamics

o dilatation current, shear current and spin current provide additional
information about quantum fields out-of-equilibrium

@ their contribution to energy-momentum tensor vanishes in equilibrium or
for ideal fluids

@ new equations of motion for “non-hydrodynamic” modes
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Non-Riemannian geometry

[Floerchinger & Grossi, arXiv:2102.11098]

@ general connection

1
F;Lpa :igp)\ (augdk + aagp)\ - 8}9#0) + Cupa

+B,", + B,," — B’y + B’y + Bo6,” — B g

@ contorsion C,”, = gauge field for local Lorentz transformations
o Weyl gauge field B,, = gauge field for local dilatations
@ proper non-metricity EHPU = gauge field for local shear transformations

o local Lorentz transformations, dilatations and shear transformations
together form the group GL(d) of basis changes in tangent space / the
frame bundle

@ all these transformations are extended symmetries: they change the
quantum effective action I' but in a specific way

o extended symmetries = non-conserved Noether currents
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FEaxtended symmetries 1

[Floerchinger & Grossi, arXiv:2102.11098]

@ consider transformation of fields

$(@) = d(x) + ide (x) Tjg()

@ might be non-Abelian with structure constants

[Te, 1) = ify, " T

@ introduce external gauge field and covariant derivative

Dud(e) = (Vi = iAL(@)T;) 6(a)

gauge field transforms as usual

Al (z) — Al (x) + f,,” AL (2)de (z) 4+ V ,.d€7 (x)
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Extended symmetries 2

[Floerchinger & Grossi, arXiv:2102.11098]

o change of effective action I'[¢, A]

D[¢+ide Ty, A+ £, ARdE' +V,,de7) = T[]+ / dd:vf{I )de’ ( )}

o define current through

w1 4T
SO = Al

@ obtain conservation-type relation (for 6I'/d¢ = 0)

Dy ff (@) = Vo 7} (2) + [ Au(e) Fl' (2) = —Z;(x)

@ global symmetry Z;(x) = 0 = conserved Noether current

o extended symmetry Z;(z) # 0 but known at macroscopic level =
non-conserved Noether current

11/12



Conclusions

o new divergence-type equations of motion

dilatation current, shear current and spin current

@ quantum field theory in non-Riemannian geometry

extended symmetries = non-conserved Noether currents
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Backup



One-particle irreducible or quantum effective action
e partition function Z[.J], Schwinger functional W[.J]

21] =/D>< (i8Sl =i [, {I(@)x(2)}

e quantum effective action I'[¢] defined by Legendre transform

rlg] = / J(@)é(x) — W]

with expectation values ¢(z) = dW[J]/6J(x)
@ includes all quantum and statistical fluctuations !

@ equation of motion for field expectation values

1)
WFM =J(z)

o functional renormalization group: flow equation for I'[¢]

@ can be used in and out of equilibrium
[e. g. Floerchinger, JHEP 1205, 021 (2012); JHEP 1609, 099 (2016)]



Causality

[Floerchinger & Grossi, JHEP 08 (2018) 186]
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@ inequalities for relativistic causality
o dissipative fluid equations can be of hyperbolic type
@ characteristic velocities depend on fluid fields

o need |\ 9| < ¢ for relativistic causality



