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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!

needs macroscopic fluid properties
thermodynamic equation of state p(T, µ)
shear + bulk viscosity η(T, µ), ζ(T, µ)
heat conductivity κ(T, µ), . . .
relaxation times, ...
electrical conductivity σ(T, µ)

fixed by microscopic properties encoded in Lagrangian LQCD

old dream of condensed matter physics: understand the fluid properties!
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Relativistic fluid dynamics

Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p+ πbulk)∆µν + πµν

Nµ = nuµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T, µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply

equation for energy density ε

equation for fluid velocity uµ

equation for particle number density n

Need further evolution equations [e.g Israel & Stewart]

equation for shear stress πµν

equation for bulk viscous pressure πbulk

τbulk u
µ∂µπbulk + . . .+πbulk = −ζ ∇µuµ

equation for diffusion current νµ

non-hydrodynamic degrees of freedom are needed for relativistic causality!
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Remarks

derivation from quantum effective action Γ[φ] wanted
[Floerchinger, JHEP 1205, 021 (2012); JHEP 1609, 099 (2016)]

expectation values and correlation functions of interest

underlying principle: most excitations or modes relax quickly
[Kadanoff & Martin (1963)]

exception: conserved quantities like energy, momentum or particle density
(“hydrodynamic modes”)

but: some non-hydrodynamic modes are needed for causality

how to obtain additional equations of motion for them?
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Covariant energy-momentum conservation

quantum effective action Γ[φ, g] at stationary matter fields

δ

δφ(x)
Γ[φ, g] = 0

diffeomorphism is gauge transformation of metric

gµν(x)→ gµν(x) +∇µεν(x) +∇νεµ(x)

energy-momentum tensor defined by

δΓ[φ, g] =
1

2

∫
ddx
√
g Tµν(x)δgµν(x)

from invariance of Γ[φ, g] under diffeomorphisms

∇µTµν(x) = 0

worked here in Riemann geometry with Levi-Civita connection

δΓ ρ
µ ν =

1

2
gρλ (∇µδgνλ +∇νδgµλ −∇λδgµν)
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Hypermomentum current

[von der Heyde, Kerlick & Hehl (1976)] [Floerchinger & Grossi, arXiv:2102.11098]

connection can be varied independent of the metric

δΓ =

∫
ddx
√
g

{
1

2
U µν(x)δgµν(x)− 1

2
S µ σ

ρ (x)δΓ ρ
µ σ(x)

}
with new symmetric tensor U µν and hypermomentum current S µ σ

ρ

hypermomentum current can be decomposed further

S µ σ
ρ = Qµ σ

ρ +Wµ δ σ
ρ + Sµ σ

ρ + Sσµρ + S µσ
ρ

with
spin current Sµρσ = −Sµσρ
dilatation current Wµ

shear current Qµρσ = Qµσρ, Qµρρ = 0

5 / 12



Equations of motion for dilatation and shear current
[Floerchinger & Grossi, arXiv:2102.11098]

variation of connection contains Levi-Civita part and non-Riemannian part

δΓ ρ
µ σ =

1

2
gρλ (∇µδgσλ +∇σδgµλ −∇λδgµσ) + δC ρ

µ σ + δD ρ
µ σ

variation at δC ρ
µ σ = δD ρ

µ σ = 0 gives energy-momentum tensor

Tµν = U µν +
1

2
∇ρ (Qρµν +W ρgµν)

new equation of motion for dilatation or Weyl current

∇ρW ρ =
2

d
(Tµµ −U µ

µ)

new equation of motion for shear current

∇ρQρµν = 2

[
Tµν −U µν − gµν

d
(Tσσ −U σ

σ)

]

non-conserved Noether currents
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Spin current

[..., Floerchinger & Grossi, arXiv:2102.11098]

tetrad formalism: vary tetrad V A
µ and spin connection Ω AB

µ

δΓ =

∫
ddx
√
g

{
T µ

A(x)δV A
µ (x)− 1

2
SµAB(x)δΩ AB

µ (x)

}
with

canonical energy-momentum tensor T µ
A

spin current SµAB

symmetric energy-momentum tensor in Belinfante-Rosenfeld form

Tµν(x) = T µν(x) +
1

2
∇ρ [Sρµν(x) + Sµνρ(x) + Sνµρ(x)]

equation of motion for spin current

∇µSµρσ = T σρ − T ρσ

non-conserved Noether current

7 / 12



Implications for relativistic fluid dynamics

dilatation current, shear current and spin current provide additional
information about quantum fields out-of-equilibrium

their contribution to energy-momentum tensor vanishes in equilibrium or
for ideal fluids

new equations of motion for “non-hydrodynamic” modes
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Non-Riemannian geometry

[Floerchinger & Grossi, arXiv:2102.11098]

general connection

Γ ρ
µ σ =

1

2
gρλ (∂µgσλ + ∂σgµλ − ∂λgµσ) + C ρ

µ σ

+ B̂ ρ
µ σ + B̂ ρ

σµ − B̂ρµσ +Bµδ
ρ
σ +Bσδ

ρ
µ −Bρgµσ.

contorsion C ρ
µ σ = gauge field for local Lorentz transformations

Weyl gauge field Bµ = gauge field for local dilatations

proper non-metricity B̂ ρ
µ σ = gauge field for local shear transformations

local Lorentz transformations, dilatations and shear transformations
together form the group GL(d) of basis changes in tangent space / the
frame bundle

all these transformations are extended symmetries: they change the
quantum effective action Γ but in a specific way

extended symmetries ⇒ non-conserved Noether currents
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Extended symmetries 1

[Floerchinger & Grossi, arXiv:2102.11098]

consider transformation of fields

φ(x)→ φ(x) + idξj(x)Tjφ(x)

might be non-Abelian with structure constants

[Tk, Tl] = if j
kl Tj

introduce external gauge field and covariant derivative

Dµφ(x) =
(
∇µ − iAjµ(x)Tj

)
φ(x)

gauge field transforms as usual

Ajµ(x)→ Ajµ(x) + f j
kl A

k
µ(x)dξl(x) +∇µdξj(x)
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Extended symmetries 2

[Floerchinger & Grossi, arXiv:2102.11098]

change of effective action Γ[φ,A]

Γ[φ+idξjTjφ,A
j
µ+f j

kl A
k
µdξ

l+∇µdξj ] = Γ[φ]+

∫
ddx
√
g
{
Ij(x) dξj(x)

}

define current through

J µ
j (x) =

1
√
g

δΓ

δAjµ(x)

obtain conservation-type relation (for δΓ/δφ = 0)

DµJ µ
j (x) = ∇µJ µ

j (x) + f l
jk A

k
µ(x)J µ

l (x) = −Ij(x)

global symmetry Ij(x) = 0 ⇒ conserved Noether current

extended symmetry Ij(x) 6= 0 but known at macroscopic level ⇒
non-conserved Noether current
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Conclusions

new divergence-type equations of motion

dilatation current, shear current and spin current

quantum field theory in non-Riemannian geometry

extended symmetries ⇒ non-conserved Noether currents
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Backup



One-particle irreducible or quantum effective action

partition function Z[J ], Schwinger functional W [J ]

Z[J ] =

∫
Dχ eiS[χ]−i

∫
x{J(x)χ(x)}

quantum effective action Γ[φ] defined by Legendre transform

Γ[φ] =

∫
x

J(x)φ(x)−W [J ]

with expectation values φ(x) = δW [J ]/δJ(x)

includes all quantum and statistical fluctuations !

equation of motion for field expectation values

δ

δφ(x)
Γ[φ] = J(x)

functional renormalization group: flow equation for Γ[φ]

can be used in and out of equilibrium
[e. g. Floerchinger, JHEP 1205, 021 (2012); JHEP 1609, 099 (2016)]



Causality

[Floerchinger & Grossi, JHEP 08 (2018) 186]
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inequalities for relativistic causality

dissipative fluid equations can be of hyperbolic type

characteristic velocities depend on fluid fields

need |λ(j)| < c for relativistic causality


