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Understanding quantum field dynamics

By e
t ‘ﬁtjfj¢*““
*Ref-v@

@ microscopic Lagrangian for many phenomena is known
@ quantum field theories change with scale!
@ need to understand quantum field dynamics away from simple limits

@ important for condensed matter, optics, atomic physics, astrophysics,
nuclear physics, cosmology, ...

[ What are the macroscopic evolution equations for quantum fields ? ]
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Local equilibrium € partition function

(a) Global thermal equilibrium (b) Local thermal equilibrium
dr Bo dr "la.'
T T

@ partition function Z[J], Schwinger functional W[J]

Z[J) =" = /D¢e*5["’“fw e

@ local equilibrium with T'(z) and u*(x)
[Floerchinger, JHEP 1609, 099 (2016)]

B(p) — ub(z)
B (x) = T(x)

@ includes global equilibrium and vacuum as special cases

2/40



One-particle irreducible or quantum effective action

o quantum effective action I'[¢] defined by Legendre transform

T[®] = / Jo(@)®a(x) — W]

with expectation values

0
q)a(.l‘) 5Ja($)W[J}
o Euclidean field equation
*_rie] = J()
0D, (z) o

@ use analytic continuation to obtain macroscopic evolution equations
[Floerchinger, JHEP 1205, 021 (2012); JHEP 1609, 099 (2016)]

@ includes quantum and statistical fluctuations !
@ imaginary terms lead to effective dissipation

o functional renormalization group: flow equation for I'[®]
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High energy nuclear collisions: QCD fluid
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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!
needs macroscopic fluid properties

thermodynamic equation of state p(T, u)
shear + bulk viscosity n(T, ), ¢(T, 1)
heat conductivity (T, u), ...

relaxation times, ...

electrical conductivity o (T, 1)

fixed by microscopic properties encoded in Lagrangian Zqcp

old dream of condensed matter physics: understand the fluid properties!
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Relativistic fluid dynamics

Energy-momentum tensor and conserved current

T = eutu” + (p + Toux) A*Y + 7
N* =nut +0*

@ tensor decomposition using fluid velocity u*, A*” = g* 4+ v u
o thermodynamic equation of state p = p(T, )

Covariant conservation laws V,T"” =0 and V,N* = 0 imply
@ equation for energy density €
@ equation for fluid velocity u*
@ equation for particle number density n

Need in addition constitutive relations [e.g Israel & Stewart]
@ equation for shear stress 7+
@ equation for bulk viscous pressure Ty

Thulk W OpTbuik + « -« - + Touk = —C Vut

@ equation for diffusion current v*
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Flow and fluctuations in heavy ion collisions

FluiduM: Fluid dynamics of heavy ion collisions with Mode expansion
[Floerchinger & Wiedemann, PLB 728, 407 (2014), PRC 88, 044906 (2013), 89, 034914 (2014)]
[Floerchinger, Grossi & Lion, PRC 100, 014905 (2019)]
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@ background-fluctuation splitting + mode expansion
@ analogous to cosmological perturbation theory
@ substantially improved numerical performance (pseudospectral method)

@ resonance decays included
[Mazeliauskas, Floerchinger, Grossi & Teaney, EPJC 79, 284 (2019)]

o allows fast and precise comparison between theory and experiment
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Particle production at the Large Hadron Collider
[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, 1909.10485]
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o data are very precise now - high quality theory development needed!

@ next step: include coherent fields / condensates
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Causality

[Floerchinger & Grossi, JHEP 08 (2018) 186]
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@ inequalities for relativistic causality
o dissipative fluid equations can be of hyperbolic type
@ characteristic velocities depend on fluid fields

o need |\ 9| < ¢ for relativistic causality
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Entropy current, local dissipation and unitarity

@ local dissipation = local entropy production

Vust(x) >0

@ e. g. from analytically continued quantum effective action
[Floerchinger, JHEP 1609, 099 (2016)]

@ fluid dynamics in Navier-Stokes approximation

1
Vst = T [2no o™ + C(Vpup)z] >0

@ unitary time evolution conserves von-Neumann entropy

S =—Tr{plnp} = —Tr{({UpU") In(UpU")} = %S =0

quantum information is globally conserved

What is local dissipation in isolated quantum systems ?
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Quantum entanglement

o Can quantum-mechanical description of physical reality be considered
complete? [Einstein, Podolsky, Rosen (1935), Bohm (1951)]

1
P :ﬁ (IMaldys—=14alMs)
z% (| =)al )5 = | <al =)5)

@ Bertlemann's socks and the nature of reality [Bell (1980)]
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Bell’s inequalities and Bell tests

[John Stewart Bell (1966)]

@ most popular version [Clauser, Horne, Shimony, Holt (1969)]
S =|E(a,b) — E(a,b') + E(a’,b) + E(a’,b")| <2

holds for local hidden variable theories

@ expectation value of product of two observables
E(a,b) = (A(a)B(b))

with possible values A = +1, B = +1.
o depending on measurement settings a, a’ and b, b’ respectively
e quantum mechanical bound is S < 2v/2
o experimental values 2 < S < 21/2 rule out local hidden variables

@ one measurement setting but at different times [Leggett, Garg (1985)]
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Entanglement in high energy (QCD) physics

@ entanglement of quantum fields instead of particles

@ entanglement on sub-nucleonic scales

@ entanglement in non-Abelian gauge theory / color / confinement
o discussions in mathematical physics [e. g. Witten (2018)]

@ connections to black holes and holography [Ryu & Takayanagi (2006)]

@ thermalization in closed quantum systems
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Classical statistics

consider system of two random variables x and y

joint probability p(z,y) , joint entropy

S=- plz,y)np(z,y)

z,y

reduced or marginal probability p(z) =3, p(,y)

reduced or marginal entropy

@ one can prove: joint entropy is greater than or equal to reduced entropy

S>8:

globally pure state S = 0 is also locally pure S; =0
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Quantum statistics

consider system with two subsystems A and B

combined state p , combined or full entropy

S =—-Tr{pnp}

reduced density matrix pa = Tre{p}

reduced or entanglement entropy

Sa=—-Tra{palnpa}

pure product state p = pa ® pp leads to S4 =0
pure entangled state p # pa ® pp leads to S4 >0

for quantum systems entanglement makes a difference

S# Sa

coherent information Izy4 = S4 — S can be positive!

globally pure state S = 0 can be locally mixed S4 > 0
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Entanglement, QCD strings and thermalization

==
A —

B A B

@ hadronization in Lund string model (e. g. PYTHIA)

o reduced density matrix for region A

pa = Tre{p}

has entanglement entropy

Sa=-Tra{palnpa} >0

@ could this lead to thermal-like effects?
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The thermal model puzzle

@ elementary particle collision experiments such as e

+ o

collisions show

some thermal-like features [see also Fischer & Sjéstrand (2017)]

@ particle multiplicities well described by thermal model
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely

@ alternative explanations needed
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Microscopic model

QCD in 141 dimensions described by 't Hooft model

) , _ 1 )
¥ = —d)i’yu(au — ZgAu)wi — mﬂ/}z’lﬁl — §trF,“,FH

o fermionic fields ¢; with sums over flavor species i = 1,..., Ny
o SU(N.) gauge fields A, with field strength tensor F,,,

@ gluons are not dynamical in two dimensions

@ gauge coupling g has dimension of mass

@ non-trivial, interacting theory, cannot be solved exactly

@ spectrum of excitations known for N. — oo with g2 N, fixed
['t Hooft (1974)]
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Schwinger model
e QED in 141 dimension
_ , _ 1 5
¥ = —’(/)i’)/ﬂ(au — quH)z/)i — mz’i/)ﬂ/h — 1 FHVF”
@ geometric confinement

o U(1) charge related to string tension ¢ = v/20

o for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

1 1
S = /d%\/g{ - §g“ DDy — §M2¢2

maqe”
I s (2\/E¢+9)}

@ Schwinger bosons are dipoles ¢ ~ )

@ scalar mass related to U(1) charge by M = q/\/7 = /20 /7
@ massless Schwinger model m = 0 leads to free bosonic theory
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FEzxpanding string solution

external quark-anti-quark pair on trajectories z = +t¢
e coordinates: Bjorken time 7 = v/t? — 22, rapidity = arctanh(z/t)
o metric ds? = —dr? + 7%dn?

@ symmetry with respect to longitudinal boosts n — 1 + An
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Ezpanding string solution 2
@ Schwinger boson field depends only on 7
¢ =o(7)
@ equation of motion

1. - _
2p + ~0rd+ M?¢ =0.

o Gauss law: electric field £ = q¢//7 must approach the U(1) charge of
the external quarks £ — ¢ for 7 — 04

- ™
O
@ solution of equation of motion [Loshaj, Kharzeev (2011)]

3(r) = Y8 gy a7)
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Gaussian states

o theories with quadratic action often have Gaussian density matrix

o fully characterized by field expectation values

d(x) = ($()), 7(x) = (r(x))

and connected two-point correlation functions, e. g.

(B(2)8®))e = ($(2)(y)) — d(2)$(y)

o if p is Gaussian, also reduced density matrix pa is Gaussian
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Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

SA = %TI’A {Dln(DQ)}

@ operator trace over region A only
@ matrix of correlation functions

C(—ib@r@))e  iB@)d))e
Di@,y) = (—i<w<x>w<y>>c i<w<x>¢<y>>c)

@ involves connected correlation functions of field ¢(x) and canonically
conjugate momentum field 7(x)

@ expectation value ¢ does not appear explicitly

@ coherent states and vacuum have equal entanglement entropy S
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Rapidity interval

T = const
n = const
————— region A
region B

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time 7

@ entanglement entropy does not change by unitary time evolution with
endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27 sinh(An/2) at fixed
time ¢t = 7 cosh(An/2)

@ need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless

Schwinger model

@ entanglement entropy understood numerically for free massive scalars
[Casini, Huerta (2009)]

e entanglement entropy density dS/dAn for bosonized massless Schwinger

model (M =

%)
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Conformal limit

o For M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(Az) = gln (Az/€) + constant

with small length € acting as UV cutoff.

@ Here this implies

S(r,An) = gln (27 sinh(An/2)/€) + constant

o Conformal charge ¢ = 1 for free massless scalars or Dirac fermions.
o Additive constant not universal but entropy density is
9] c
——S(7, An) =—coth(An/2
5 57 An) =G eoth(An/2)

—>% (An>>1)

Entropy becomes extensive in An !
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Temperature and entanglement entropy

e for conformal fields, entanglement entropy has also been calculated at
non-zero temperature.

o for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

S(T,1) = gln (% sinh(wLT)) + const
@ compare this to our result in expanding geometry

S(r,An) = Sin (%T sinh(An/2)> + const

o expressions agree for L = 7An (with metric ds* = —dr? 4 72dn?) and
time-dependent temperature
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Universal entanglement entropy density

o for very early times “Hubble” expansion rate dominates over masses and
interactions
1 q
H=->M=—m
™

== NG
@ theory dominated by free, massless fermions
@ universal entanglement entropy density

ds c

dAn 6
with conformal charge ¢
e for QCD in 141 D (gluons not dynamical, no transverse excitations)

C:NCXNf

e from fluctuating transverse coordinates (Nambu-Goto action)

c=Nc.XNy+2=9+2=11
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Local density matriz and temperature in expanding string

—— t=const
————— n = const
----- region A

region B

z

o Bjorken time 7 = /12 — 22, rapidity n = arctanh(z/t)
o local density matrix thermal at early times as result of entanglement
[Berges, Floerchinger, Venugopalan, PLB778, 442 (2018); JHEP 1804 (2018) 145]

h
T = 5er

he
2wx

o Hawking-Unruh temperature in Rindler space T'(x) =
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Physics picture

@ coherent state at early time contains entangled pairs of quasi-particles
with opposite wave numbers

@ on finite rapidity interval (—An/2,An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

o technically limits An — oo and M7 — 0 do not commute

e An — oo for any finite Mt gives pure state
o Mt — 0 for any finite A7 gives thermal state with T' = 1/(277)
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Quantum field dynamics

Quantum
field theory

FIuid. Information
dynamics theory

new hypothesis

local dissipation = quantum entanglement generation

@ quantum information is spread

locally, quantum state approaches mixed state form

o full loss of local quantum information = local thermalization
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Entanglement entropy in quantum field theory

B

(+)

@ entanglement entropy of region A is a local notion of entropy

Sa=—tra{palnpa} pa = trz {p}

@ however, it is infinite already in vacuum state

const

Sa = i3 / d*2ovh + subleading divergences + finite
dA

@ UV divergence proportional to entangling surface

quantum fields are very strongly entangled already in vacuum

Theorem [Reeh & Schlieder (1961)]: local operators in region A can create all
particle states
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Relative entropy

o relative entropy of two density matrices

S(plo) =tr{p(Inp—Ino)}

@ measures how well state p can be distinguished from a model o
o Gibbs inequality: S(plo) >0
S(plo) =0ifand only if p =0

@ quantum generalization of Kullback-Leibler divergence
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Relative entanglement entropy

(+)

@ consider now reduced density matrices

pa = Tre{p}, o4 =Trg{o}

o define relative entanglement entropy
Sa(plo) =Tr{pa(lnpa —Inoa)} = -Tr{paln A4}

with relative modular operator A 4
o measures how well p is represented by o locally in region A
o UV divergences cancel: contains real physics information

o well defined in algebraic quantum field theory [Araki (1977)]
[see also works by Casini, Myers, Lashkari, Witten, Liu, ...]
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An approximate local description
[Dowling, Floerchinger & Haas, PRD 102 (2020) 10, 105002]

@ consider non-equilibrium situation with

o true density matrix p
o local equilibrium approximation

o= L= [ a5 {Bu (@) T +a(a)N"}

o reduced density matrices pa = Trg{p} and 04 = Tre{c}

@ o is very good model for p in region A when

Sa=Tra{pa(lnpa —Inoa)} =0

o does not imply that globally p = ¢

B

()
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Momnotonicity of relative entropy

@ monotonicity of relative entropy [Lindblad (1975)]
SN (p)IN(9)) < S(plo)

with A/ completely positive, trace-preserving map

o N unitary evolution

SWN(p)IN(e)) = S(plo)

o N open system evolution with generation of entanglement to environment

S(N(p)IN (o)) < S(plo)

@ leads to local, second law type relation
[Dowling, Floerchinger & Haas, PRD 102 (2020) 10, 105002]

B

(+)

36/40



Entropy production

[Floerchinger, JHEP 1609, 099 (2016)]

@ variational principle with effective dissipation from analytic continuation
@ analysis of general covariance leads to entropy current and local entropy
production
. 1 d0p
ret

2 or
us == oT'p
\/§ 6q)a ret

_% 0w

ﬂ/\a)\¢a + BHVV (

@ can likely be understood as entanglement generation
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Entropic uncertainty relations
Heisenberg / Robertson uncertainty relation [Robertson (1929)]

1
a(X)a(2) = SIWIX, Z]|4)]
Entropic uncertainty relations [Maassen & Uffink (1988), Frank & Lieb (2012)]

H(X) + H(Z) > In - + 5(p)

@ Shannon information entropy for measurement outcome

Zp ) Inp(x

o von-Neumann entropy
S(p) = =Tr{plnp}

@ maximal overlap between basis states

¢ = max |(z]2)|?
T,z

)

o formulation in terms of relative entropy [Floerchinger, Haas & Hoeber, 2012.10080]
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Entanglement and entropic uncertainty relations
[Berta et al. (2010)]

@ side information from entanglement with system B

1
H(XA|X5) + H(Za|Z5) > In - + S(A| B)

@ use measurement on B to infer outcome on A

@ quantum conditional entropy can be negative for positive coherent
information
S(A[B) = S(p) — S(ps) = —Lays

@ experiments with cold atoms [with M. Garttner and M. Oberthaler]
o towards test of local dissipation = quantum entanglement generation
@ more applications in nuclear and high energy physics to be explored

B

(+)
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Conclusions

o relativistic fluid dynamics has a foundation in quantum information theory

@ proper description of local thermalization in terms of relative entanglement
@ quantum field theoretic description with two density matrices:

o true density matrix p evolves unitary
o fluid model o agrees locally but evolves non-unitary

o local "“thermalization” without collisions possible
@ need to test the picture with more calculations and experiments

@ entropic uncertainty relations may allow to access entanglement entropies
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Backup



Modular or entanglement Hamiltonian 1

——— T=const
————— n = const
----- region A

region B

conformal field theory

hypersurface 3 with boundary on the intersection of two light cones

@ reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta
(2017), see also Candelas, Dowker (1979)]

paA = ZiAefK, Za=Tr e K

modular or entanglement Hamiltonian K



Modular or entanglement Hamiltonian 2

@ modular or entanglement Hamiltonian is local expression

K = /E A8, &, (x) T (z).

@ energy-momentum tensor T+ (x) of excitations
o vector field
¢'(2) = 253l(a—2)"(z —p)(a—p)
+@-p)*a—2)(qg—p) - (a-p)" (@ -p)(q-2)

end point of future light cone ¢, starting point of past light cone p

@ inverse temperature and fluid velocity

u* ()
()

§(z) =p"(z) =



Modular or entanglement Hamiltonian 3

T = const
————— n = const
————— region A
region B

o for An — oo: fluid velocity in 7-direction, T-dependent temperature

h
T = 5y

o Entanglement between different rapidity intervals alone leads to local
thermal density matrix at very early times !

o Hawking-Unruh temperature in Rindler wedge T'(x) = hc/(27x)



Particle production in massive Schwinger model

[ongoing work with Lara Kuhn, Jiirgen Berges]

105 3
& d 1023
= z
1071 3
-2 0 2 0 2
®

o for expanding strings
@ asymptotic particle number depends on g ~ m/q

@ exponential suppression for large fermion mass g > 1

N _ m a4
OB ATAS L

An



Wigner distribution and entanglement

o Classical field approximation usually based on non-negative Wigner
representation of density matrix

@ leads for many observables to classical statistical description

@ can nevertheless show entanglement and pass Bell test for “improper”
variables where Weyl transform of operator has values outside of its
spectrum [Revzen, Mello, Mann, Johansen (2005)]

o Bell test violation also possible for negative Wigner distribution [Bell (1986)]



Transverse coordinates

@ so far dynamics strictly confined to 1+1 dimensions

@ transverse coordinates may fluctuate, can be described by Nambu-Goto
action (huy = 0, X™ 0y Xm)

Sne = /dgm«/—dethw {—o+..}

~ /dzx\/g{fa — %g‘“’@uXiauXi +.. }

@ two additional, massless, bosonic degrees of freedom corresponding to
transverse coordinates X* with i = 1,2



Rapidity distribution
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[open (filled) symbols: eTe™ (pp), Grosse-Oetringhaus & Reygers (2010)]

o rapidity distribution dN/dn has plateau around midrapidity

o only logarithmic dependence on collision energy



Ezxperimental access to entanglement ¢

@ could longitudinal entanglement be tested experimentally?

@ unfortunately entropy density dS/dn not straight-forward to access

e measured in eTe™ is the number of charged particles per unit rapidity
dNeh/dn (rapidity defined with respect to the thrust axis)

o typical values for collision energies /s = 14 — 206 GeV in the range

chh/dn ~2—4

@ entropy per particle S/N can be estimated for a hadron resonance gas in
thermal equilibrium S/Nc, = 7.2 would give

dS/dn ~ 14 — 28

@ this is an upper bound: correlations beyond one-particle functions would
lead to reduced entropy



Entanglement and QCD physics

@ how strongly entangled is the nuclear wave function?

@ what is the entropy of quasi-free partons and can it be understood as a
result of entanglement? [Kharzeev, Levin (2017)]

o does saturation at small Bjorken-x have an entropic meaning?

@ entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015); Kovner, Lublinsky, Serino (2018)]

@ could entanglement entropy help for a non-perturbative extension of the
parton model?

@ entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]



