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Understanding quantum field dynamics

microscopic Lagrangian for many phenomena is known

quantum field theories change with scale!

need to understand quantum field dynamics away from simple limits

important for condensed matter, optics, atomic physics, astrophysics,
nuclear physics, cosmology, ...

What are the macroscopic evolution equations for quantum fields ?
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Local equilibrium & partition function
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(a) Global thermal equilibrium (b) Local thermal equilibrium

FIG. 2. Comparison between the global thermal equilibrium (a) and local thermal equilibrium

states (b).

where aī ⌘ �e��uī, �
0
īj̄ ⌘ �īj̄ + uīuj̄, and we used g̃0̄0̄ = �Ñ2 + ÑīÑ

ī = �e2�. In this

parametrization, the square root of determinant of metric becomes
p�g̃ = Ñ

p
� = e�

p
�0.

This parametrization of the Massieu-Planck functional was discussed in Ref. [28]. Following

Ref. [28], we can easily see that this metric is invariant under the local transformation (the

Kaluza-Klein gauge transformation),
8
>>>><
>>>>:

t̃ ! t̃ + �(x̄),

x̄ ! x̄,

aī(x̄) ! aī(x̄) � @ī�(x̄),

(42)

where �(x̄) is an arbitrary function of the spatial coordinates. We note that �īj̄ nonlinearly

transforms under this transformation since �0īj̄ does not change, so that � is not gauge

invariant. This symmetry enables us to restrict possible terms that appear in the Massieu-

Planck functional [28]. For example, aī appears in the Massieu-Planck functional only

through the gauge invariant combination such as the field strength, fīj̄ ⌘ @īaj̄ � @j̄aī.

In addition to the above symmetry associated with the imaginary time translation, the

Massieu-Planck functional has the (d � 1)-dimensional spatial di↵eomorphism, x̄ ! x̄0(x̄).

This spatial di↵eomorphism invariance also restricts possible terms that could appear in the

Massieu-Planck functional. For example, �0 appears only in combination with dd�1x̄, i.e.,

dd�1x̄
p
�0 = d⌃t̄Ne��. In Sec. IV, we will write down the possible form of the Massieu-

Planck functional within the derivative expansion using these symmetric properties.

Although we only consider the neutral scalar field, the extension to a system with finite

chemical potential is straightforward: We may replace the partial derivative @⌧ with the

covariant one, D⌧ ⌘ (@⌧ � e�µ), in which the additional term e�µ = ⌫/�0 is Kaluza-Klein

11

partition function Z[J ], Schwinger functional W [J ]

Z[J ] = eW [J] =

∫
Dφe−S[φ]+

∫
x Jφ

local equilibrium with T (x) and uµ(x)
[Floerchinger, JHEP 1609, 099 (2016)]

βµ(x) = uµ(x)
T (x)

includes global equilibrium and vacuum as special cases
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One-particle irreducible or quantum effective action

quantum effective action Γ[φ] defined by Legendre transform

Γ[Φ] =

∫
x

Ja(x)Φa(x)−W [J ]

with expectation values

Φa(x) =
δ

δJa(x)
W [J ]

Euclidean field equation

δ

δΦa(x)
Γ[Φ] = J(x)

use analytic continuation to obtain macroscopic evolution equations
[Floerchinger, JHEP 1205, 021 (2012); JHEP 1609, 099 (2016)]

includes quantum and statistical fluctuations !

imaginary terms lead to effective dissipation

functional renormalization group: flow equation for Γ[Φ]
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High energy nuclear collisions: QCD fluid
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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!

needs macroscopic fluid properties
thermodynamic equation of state p(T, µ)
shear + bulk viscosity η(T, µ), ζ(T, µ)
heat conductivity κ(T, µ), . . .
relaxation times, ...
electrical conductivity σ(T, µ)

fixed by microscopic properties encoded in Lagrangian LQCD

old dream of condensed matter physics: understand the fluid properties!
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Relativistic fluid dynamics

Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p+ πbulk)∆µν + πµν

Nµ = nuµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T, µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply

equation for energy density ε

equation for fluid velocity uµ

equation for particle number density n

Need in addition constitutive relations [e.g Israel & Stewart]

equation for shear stress πµν

equation for bulk viscous pressure πbulk

τbulk u
µ∂µπbulk + . . .+πbulk = −ζ ∇µuµ

equation for diffusion current νµ
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Flow and fluctuations in heavy ion collisions

FluiduM: Fluid dynamics of heavy ion collisions with Mode expansion
[Floerchinger & Wiedemann, PLB 728, 407 (2014), PRC 88, 044906 (2013), 89, 034914 (2014)]

[Floerchinger, Grossi & Lion, PRC 100, 014905 (2019)]
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Figure 3: The thermodynamic equation of state p(T ) as parametrized in equation (5.1). We show energy

density ✏, pressure p and the trace anomaly ✏ � 3 in units of T 4 in the left panel and the squared sound

velocity c2
s(T ) in the right panel. Lattice QCD data underlying the fit at high temperatures are taken from

ref. [45] and ref. [46], the hadron resonance gas approximation used at low temperatures was calculated

following ref. [47]. In the transition region both results were smoothly connected.

The parametrization of pressure as a function of temperature is taken as the following combination of

exponential and rational functions,
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(5.1)

Note that for asymptotically large temperatures p(T ) approaches the result for free gluons and Nf free

quarks. Below we take Nf = 3 and Tc = 154 MeV. The best fit results for the fit parameter aj , bj , c

and d are reported in table 1. The exponential terms in the prefactor in eq. (5.1) help in particular

a1 -0.752335 a2 -1.8151 a3 -2.83317 a4 4.20517 c 0.547521

b1 -1.68716 b2 7.83336 b3 -13.3421 b4 9.22752 d 0.0148163

Table 1: Best fit parameter for the thermodynamic equation of state as parametrized in equation (5.1).

to reproduce the hadron resonance gas regime while the rational term parametrizes the crossover to a

quark-guon plasma.

In the left panel of fig. 3 we show the resulting energy density ✏, pressure p and trace anomaly ✏�3p in

units of T 4 as a function of temperature. The right panel shows the square of the thermodynamic velocity of

sound c2
s as a function of temperature. The latter is particularly important for the fluid dynamic evolution

and determines for example the characteristic velocities in the absence of dissipative stresses.

To develop the fit (5.1) we have considered the trace anomaly ✏ � 3p. In fig. 4 we show our fit (solid

curve), together with available numerical data from the HotQCD collaboration [46] (for 2+1 quark flavors,

symbols with error bars), an analytic parametrization of lattice QCD data from ref. [45] (for 2 + 1 + 1
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free streaming hadrons

quark-gluon plasma

background-fluctuation splitting + mode expansion

analogous to cosmological perturbation theory

substantially improved numerical performance (pseudospectral method)

resonance decays included
[Mazeliauskas, Floerchinger, Grossi & Teaney, EPJC 79, 284 (2019)]

allows fast and precise comparison between theory and experiment
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Particle production at the Large Hadron Collider
[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, 1909.10485]
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data are very precise now - high quality theory development needed!

next step: include coherent fields / condensates
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Causality

[Floerchinger & Grossi, JHEP 08 (2018) 186]
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inequalities for relativistic causality

dissipative fluid equations can be of hyperbolic type

characteristic velocities depend on fluid fields

need |λ(j)| < c for relativistic causality
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Entropy current, local dissipation and unitarity

local dissipation = local entropy production

∇µsµ(x) ≥ 0

e. g. from analytically continued quantum effective action
[Floerchinger, JHEP 1609, 099 (2016)]

fluid dynamics in Navier-Stokes approximation

∇µsµ =
1

T

[
2ησµνσ

µν + ζ(∇ρuρ)2] ≥ 0

unitary time evolution conserves von-Neumann entropy

S = −Tr{ρ ln ρ} = −Tr{(UρU†) ln(UρU†)} ⇒ d

dt
S = 0

quantum information is globally conserved

What is local dissipation in isolated quantum systems ?
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Quantum entanglement

Can quantum-mechanical description of physical reality be considered
complete? [Einstein, Podolsky, Rosen (1935), Bohm (1951)]

ψ =
1√
2

(| ↑〉A| ↓〉B − | ↓〉A| ↑〉B)

=
1√
2

(| →〉A| ←〉B − | ←〉A| →〉B)

Bertlemann’s socks and the nature of reality [Bell (1980)]
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Bell’s inequalities and Bell tests

[John Stewart Bell (1966)]

most popular version [Clauser, Horne, Shimony, Holt (1969)]

S = |E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)| ≤ 2

holds for local hidden variable theories

expectation value of product of two observables

E(a, b) = 〈A(a)B(b)〉

with possible values A = ±1, B = ±1.

depending on measurement settings a, a′ and b, b′ respectively

quantum mechanical bound is S ≤ 2
√

2

experimental values 2 < S ≤ 2
√

2 rule out local hidden variables

one measurement setting but at different times [Leggett, Garg (1985)]
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Entanglement in high energy (QCD) physics

entanglement of quantum fields instead of particles

entanglement on sub-nucleonic scales

entanglement in non-Abelian gauge theory / color / confinement

discussions in mathematical physics [e. g. Witten (2018)]

connections to black holes and holography [Ryu & Takayanagi (2006)]

thermalization in closed quantum systems
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Classical statistics

consider system of two random variables x and y

joint probability p(x, y) , joint entropy

S = −
∑
x,y

p(x, y) ln p(x, y)

reduced or marginal probability p(x) =
∑
y p(x, y)

reduced or marginal entropy

Sx = −
∑
x

p(x) ln p(x)

one can prove: joint entropy is greater than or equal to reduced entropy

S ≥ Sx

globally pure state S = 0 is also locally pure Sx = 0
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Quantum statistics

consider system with two subsystems A and B

combined state ρ , combined or full entropy

S = −Tr{ρ ln ρ}

reduced density matrix ρA = TrB{ρ}
reduced or entanglement entropy

SA = −TrA{ρA ln ρA}

pure product state ρ = ρA ⊗ ρB leads to SA = 0

pure entangled state ρ 6= ρA ⊗ ρB leads to SA > 0

for quantum systems entanglement makes a difference

S � SA

coherent information IB〉A = SA − S can be positive!

globally pure state S = 0 can be locally mixed SA > 0
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Entanglement, QCD strings and thermalization

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

hadronization in Lund string model (e. g. Pythia)

reduced density matrix for region A

ρA = TrB{ρ}

has entanglement entropy

SA = −TrA{ρA ln ρA} > 0

could this lead to thermal-like effects?
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The thermal model puzzle

elementary particle collision experiments such as e+ e− collisions show
some thermal-like features [see also Fischer & Sjöstrand (2017)]

particle multiplicities well described by thermal model500 Eur. Phys. J. C (2008) 56: 493–510

Fig. 4 Comparison between measured and fit multiplicities of long-lived hadronic species in e+e− collisions at
√

s = 91.25 GeV. Left: statistical
hadronization model with one temperature. Right: Hawking–Unruh radiation model

Next, we perform the corresponding hadron-resonance
gas analysis in the Hawking–Unruh formulation, introduc-
ing different temperatures determined by the string tension
σ and the strange quark mass ms . The results for long-lived
species are shown in Table 4 and Fig. 4. The resulting fit
parameters here are

σ = 0.1683 ± 0.0048 GeV2;
ms = 0.083 ± 0.004 GeV,

V = 40.3 ± 3.2 fm3;
(27)

with a χ2/dof = 22/12, somewhat better than that of the
corresponding conventional fit.

We now repeat both analyses using the entire 91.25 GeV
data set, with the results shown in table XX and XXI of the
appendix. The resulting fit values (see Tables 3 and 4) agree
well within errors with those obtained from the “golden”
data set at 91.25 GeV. As expected, because of the men-
tioned error sizes, the χ2/dof for the full 91.25 set is con-
siderably worse.

Here a comment is in order. The simple formulae (5) and
(7), in both models, rely on some side assumptions (e.g. the
special distributions for cluster charge fluctuations needed
for the introduction of the equivalent global cluster) that are
not expected to be exactly fulfilled. Therefore, those for-
mulae are to be taken as a zero-order approximation and
not as a faithful representation of the real process. Devia-
tions from the introduced assumption entail corrections to
the formulae (5) and (7) which are nevertheless very diffi-
cult to estimate. The theoretical error involved in these for-
mulae becomes important when the accuracy of measure-

Table 5 Best fit parameters for the statistical hadronization model in
e+e− collisions. The golden sample fit is marked with a ∗
√

s T [MeV] V T 3 γS χ2/dof

14 172.1 ± 5.2 8.3 ± 1.0 0.772 ± 0.094 0.9/3

22 178.7 ± 3.7 8.70 ± 0.94 0.76 ± 0.10 0.7/3

29 164.0 ± 5.4 15.0 ± 2.4 0.683 ± 0.075 33/13

35 163.3 ± 3.2 15.0 ± 1.4 0.730 ± 0.045 8.2/7

43 169 ± 10 13.5 ± 3.2 0.741 ± 0.074 2.9/3

91 161.9 ± 4.1 25.8 ± 3.4 0.638 ± 0.039 215/27

91* 164.6 ± 3.0 23.3 ± 2.2 0.648 ± 0.026 39/12

133 167.1 ± 7.5 26.0 ± 4.6 0.671 ± 0.074 0.1/2

161 153.4 ± 6.5 37.2 ± 5.9 0.72 ± 0.12 0.03/1

183 161 ± 13 35 ± 11 0.446 ± 0.098 5.0/2

189 159 ± 12 36 ± 10 0.54 ± 0.11 7.5/2

ments is comparable and, in this case, a bad χ2 is to be
expected. This is probably the case at

√
s = 91.25 GeV,

where the relative accuracy of measurements is of the or-
der of few percent for many particles. In this case, the χ2

fit is a useful tool to determine the best parameters of the
“simplified” theory but should be used very carefully as a
measure of the fit quality. As has been mentioned, in order
to take into account the uncertainty on parameters implied in
fits with χ2/dof > 1, parameter errors have been rescaled by√

χ2/dof if this is larger than 1, according to Particle Data
Group procedure [40].

For all the remaining energies we have also carried out
the corresponding analyses; the results are listed in Tables 5
and 6 for the model parameters, while the comparison be-

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

conventional thermalization by collisions unlikely

alternative explanations needed
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Microscopic model

QCD in 1+1 dimensions described by ’t Hooft model

L = −ψ̄iγµ(∂µ − igAµ)ψi −miψ̄iψi −
1

2
trFµνF

µν

fermionic fields ψi with sums over flavor species i = 1, . . . , Nf

SU(Nc) gauge fields Aµ with field strength tensor Fµν

gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for Nc →∞ with g2Nc fixed
[’t Hooft (1974)]
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Schwinger model

QED in 1+1 dimension

L = −ψ̄iγµ(∂µ − iqAµ)ψi −miψ̄iψi −
1

4
FµνF

µν

geometric confinement

U(1) charge related to string tension q =
√

2σ

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S =

∫
d2x
√
g

{
− 1

2
gµν∂µφ∂νφ−

1

2
M2φ2

− mq eγ

2π3/2
cos
(
2
√
πφ+ θ

)}

Schwinger bosons are dipoles φ ∼ ψ̄ψ
scalar mass related to U(1) charge by M = q/

√
π =

√
2σ/π

massless Schwinger model m = 0 leads to free bosonic theory
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Expanding string solution

z

t

external quark-anti-quark pair on trajectories z = ±t
coordinates: Bjorken time τ =

√
t2 − z2, rapidity η = arctanh(z/t)

metric ds2 = −dτ2 + τ2dη2

symmetry with respect to longitudinal boosts η → η + ∆η
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Expanding string solution 2

Schwinger boson field depends only on τ

φ̄ = φ̄(τ)

equation of motion

∂2
τ φ̄+

1

τ
∂τ φ̄+M2φ̄ = 0.

Gauss law: electric field E = qφ/
√
π must approach the U(1) charge of

the external quarks E → qe for τ → 0+

φ̄(τ)→
√
πqe

q
(τ → 0+)

solution of equation of motion [Loshaj, Kharzeev (2011)]

φ̄(τ) =

√
πqe

q
J0(Mτ)
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Gaussian states

theories with quadratic action often have Gaussian density matrix

fully characterized by field expectation values

φ̄(x) = 〈φ(x)〉, π̄(x) = 〈π(x)〉

and connected two-point correlation functions, e. g.

〈φ(x)φ(y)〉c = 〈φ(x)φ(y)〉 − φ̄(x)φ̄(y)

if ρ is Gaussian, also reduced density matrix ρA is Gaussian

22 / 40



Entanglement entropy for Gaussian state

entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

SA =
1

2
TrA

{
D ln(D2)

}
operator trace over region A only

matrix of correlation functions

D(x, y) =

(
−i〈φ(x)π(y)〉c i〈φ(x)φ(y)〉c
−i〈π(x)π(y)〉c i〈π(x)φ(y)〉c

)

involves connected correlation functions of field φ(x) and canonically
conjugate momentum field π(x)

expectation value φ̄ does not appear explicitly

coherent states and vacuum have equal entanglement entropy SA
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Rapidity interval

p

q

τ = const
η = const

region A

region B

z

t

consider rapidity interval (−∆η/2,∆η/2) at fixed Bjorken time τ

entanglement entropy does not change by unitary time evolution with
endpoints kept fixed

can be evaluated equivalently in interval ∆z = 2τ sinh(∆η/2) at fixed
time t = τ cosh(∆η/2)

need to solve eigenvalue problem with correct boundary conditions

24 / 40



Bosonized massless Schwinger model

entanglement entropy understood numerically for free massive scalars
[Casini, Huerta (2009)]

entanglement entropy density dS/d∆η for bosonized massless Schwinger
model (M = q√

π
)

0 5 10 15 20 25
Δη0.0

0.1

0.2

0.3

0.4
dS/dΔη

Mτ = 1, 10−1, 10−2, 10−3, 10−4, and 10−5
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Conformal limit

For Mτ → 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(∆z) =
c

3
ln (∆z/ε) + constant

with small length ε acting as UV cutoff.

Here this implies

S(τ,∆η) =
c

3
ln (2τ sinh(∆η/2)/ε) + constant

Conformal charge c = 1 for free massless scalars or Dirac fermions.

Additive constant not universal but entropy density is

∂

∂∆η
S(τ,∆η) =

c

6
coth(∆η/2)

→ c

6
(∆η � 1)

Entropy becomes extensive in ∆η !
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Temperature and entanglement entropy

for conformal fields, entanglement entropy has also been calculated at
non-zero temperature.

for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

S(T, l) =
c

3
ln

(
1

πTε
sinh(πLT )

)
+ const

compare this to our result in expanding geometry

S(τ,∆η) =
c

3
ln

(
2τ

ε
sinh(∆η/2)

)
+ const

expressions agree for L = τ∆η (with metric ds2 = −dτ2 + τ2dη2) and
time-dependent temperature

T =
1

2πτ
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Universal entanglement entropy density

for very early times “Hubble” expansion rate dominates over masses and
interactions

H =
1

τ
�M =

q√
π
,m

theory dominated by free, massless fermions

universal entanglement entropy density

dS

d∆η
=
c

6

with conformal charge c

for QCD in 1+1 D (gluons not dynamical, no transverse excitations)

c = Nc ×Nf

from fluctuating transverse coordinates (Nambu-Goto action)

c = Nc ×Nf + 2 ≈ 9 + 2 = 11
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Local density matrix and temperature in expanding string

p

q

τ = const
η = const

region A

region B

z

t

Bjorken time τ =
√
t2 − z2, rapidity η = arctanh(z/t)

local density matrix thermal at early times as result of entanglement
[Berges, Floerchinger, Venugopalan, PLB778, 442 (2018); JHEP 1804 (2018) 145]

T (τ) =
~

2πτ

Hawking-Unruh temperature in Rindler space T (x) = ~c
2πx
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Physics picture

coherent state at early time contains entangled pairs of quasi-particles
with opposite wave numbers

on finite rapidity interval (−∆η/2,∆η/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

technically limits ∆η →∞ and Mτ → 0 do not commute
∆η → ∞ for any finite Mτ gives pure state
Mτ → 0 for any finite ∆η gives thermal state with T = 1/(2πτ)
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Quantum field dynamics

Quantum
field theory

Fluid 
dynamics

Information
theory

new hypothesis

local dissipation = quantum entanglement generation

quantum information is spread

locally, quantum state approaches mixed state form

full loss of local quantum information = local thermalization
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Entanglement entropy in quantum field theory

A

B

entanglement entropy of region A is a local notion of entropy

SA = −trA {ρA ln ρA} ρA = trB {ρ}

however, it is infinite already in vacuum state

SA =
const

εd−2

∫
∂A

dd−2σ
√
h + subleading divergences + finite

UV divergence proportional to entangling surface

quantum fields are very strongly entangled already in vacuum

Theorem [Reeh & Schlieder (1961)]: local operators in region A can create all
particle states
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Relative entropy

relative entropy of two density matrices

S(ρ|σ) = tr {ρ (ln ρ− lnσ)}

measures how well state ρ can be distinguished from a model σ

Gibbs inequality: S(ρ|σ) ≥ 0

S(ρ|σ) = 0 if and only if ρ = σ

quantum generalization of Kullback-Leibler divergence
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Relative entanglement entropy

A

B

consider now reduced density matrices

ρA = TrB{ρ}, σA = TrB{σ}

define relative entanglement entropy

SA(ρ|σ) = Tr {ρA (ln ρA − lnσA)} = −Tr {ρA ln ∆A}

with relative modular operator ∆A

measures how well ρ is represented by σ locally in region A

UV divergences cancel: contains real physics information

well defined in algebraic quantum field theory [Araki (1977)]

[see also works by Casini, Myers, Lashkari, Witten, Liu, ...]
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An approximate local description

[Dowling, Floerchinger & Haas, PRD 102 (2020) 10, 105002]

consider non-equilibrium situation with
true density matrix ρ
local equilibrium approximation

σ =
1

Z
e−

∫
dΣµ{βν(x)Tµν+α(x)Nµ}

reduced density matrices ρA = TrB{ρ} and σA = TrB{σ}
σ is very good model for ρ in region A when

SA = TrA{ρA(ln ρA − lnσA)} → 0

does not imply that globally ρ = σ

A

B
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Monotonicity of relative entropy

monotonicity of relative entropy [Lindblad (1975)]

S(N (ρ)|N (σ)) ≤ S(ρ|σ)

with N completely positive, trace-preserving map

N unitary evolution
S(N (ρ)|N (σ)) = S(ρ|σ)

N open system evolution with generation of entanglement to environment

S(N (ρ)|N (σ)) < S(ρ|σ)

leads to local, second law type relation
[Dowling, Floerchinger & Haas, PRD 102 (2020) 10, 105002]

A

B
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Entropy production

[Floerchinger, JHEP 1609, 099 (2016)]

variational principle with effective dissipation from analytic continuation

analysis of general covariance leads to entropy current and local entropy
production

∇µsµ =
1
√
g

δΓD
δΦa

∣∣∣
ret
βλ∂λΦa + βµ∇ν

(
− 2
√
g

δΓD
δgµν

∣∣∣
ret

)

can likely be understood as entanglement generation
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Entropic uncertainty relations
Heisenberg / Robertson uncertainty relation [Robertson (1929)]

σ(X)σ(Z) ≥ 1

2
|〈ψ|[X,Z]|ψ〉|

Entropic uncertainty relations [Maassen & Uffink (1988), Frank & Lieb (2012)]

H(X) +H(Z) ≥ ln
1

c
+ S(ρ)

Shannon information entropy for measurement outcome

H(X) = −
∑
x

p(x) ln p(x)

von-Neumann entropy
S(ρ) = −Tr{ρ ln ρ}

maximal overlap between basis states

c = max
x,z
|〈x|z〉|2

formulation in terms of relative entropy [Floerchinger, Haas & Hoeber, 2012.10080]
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Entanglement and entropic uncertainty relations
[Berta et al. (2010)]

side information from entanglement with system B

H(XA|XB) +H(ZA|ZB) ≥ ln
1

c
+ S(A|B)

use measurement on B to infer outcome on A

quantum conditional entropy can be negative for positive coherent
information

S(A|B) = S(ρ)− S(ρB) = −IA〉B

experiments with cold atoms [with M. Gärttner and M. Oberthaler]

towards test of local dissipation = quantum entanglement generation

more applications in nuclear and high energy physics to be explored

A

B
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Conclusions

relativistic fluid dynamics has a foundation in quantum information theory

proper description of local thermalization in terms of relative entanglement

quantum field theoretic description with two density matrices:
true density matrix ρ evolves unitary
fluid model σ agrees locally but evolves non-unitary

local “thermalization” without collisions possible

need to test the picture with more calculations and experiments

entropic uncertainty relations may allow to access entanglement entropies
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Backup



Modular or entanglement Hamiltonian 1

p

q

τ = const
η = const

region A

region B

z

t

conformal field theory

hypersurface Σ with boundary on the intersection of two light cones

reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta

(2017), see also Candelas, Dowker (1979)]

ρA =
1

ZA
e−K , ZA = Tr e−K

modular or entanglement Hamiltonian K



Modular or entanglement Hamiltonian 2

modular or entanglement Hamiltonian is local expression

K =

∫
Σ

dΣµ ξν(x)Tµν(x).

energy-momentum tensor Tµν(x) of excitations

vector field
ξ
µ
(x) = 2π

(q−p)2
[(q − x)

µ
(x− p)(q − p)

+ (x− p)
µ
(q − x)(q − p) − (q − p)

µ
(x− p)(q − x)]

end point of future light cone q, starting point of past light cone p

inverse temperature and fluid velocity

ξµ(x) = βµ(x) =
uµ(x)

T (x)



Modular or entanglement Hamiltonian 3

p

q

τ = const
η = const

region A

region B

z

t

for ∆η →∞: fluid velocity in τ -direction, τ -dependent temperature

T (τ) =
~

2πτ

Entanglement between different rapidity intervals alone leads to local
thermal density matrix at very early times !

Hawking-Unruh temperature in Rindler wedge T (x) = ~c/(2πx)



Particle production in massive Schwinger model

[ongoing work with Lara Kuhn, Jürgen Berges]
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Figure 1: Potential of the coherent background field V (�) = 1
2M2�2 + J cos (2

p
⇡� + ✓) for vacuum angles

✓ = 0 (left) and ✓ = ⇡ (right). The different colors represent different coupling strengths g = 2
p
⇡J

M2 .
The dots indicate the initial value �(0) = �vac +

p
⇡.

the potential has one minimum at � = 0. As g becomes larger the number of minima increases: for ✓ = 0 and
g > 1

2
p
⇡

there are two global minima which, for sufficiently large g, are accompanied by further local minima;
for ✓ = ⇡ the potential always has exactly one global minimum, but as g gets larger than approximately 1.3
further local minima emerge.
The initial condition �(0) can be obtained by noting its relation to the electric field E = ep

⇡
�[3]. Due to

the vacuum angle ✓ there is a constant background electric field [4]. The strength of this field is given by the
absolute minimum �vac of the potential in figure 1. Additionally we have to consider the electric field generated
by the two charges: Classically the electric field of two relativistic point charges ±e flying in opposite directions
is given by E = ±e⇥(⌧) which goes to e for ⌧ ! 0+. Furthermore one can assume that for ⌧ ! 0+ quantum
effects are negligible [5] and the electric field produced by the charges is

p
⇡ at ⌧ = 0+. In total the initial value

of the coherent field is given by the sum �(0) = �vac +
p
⇡.

Starting from this value the field rolls down the potential and ends up oscillating around one of the minima. On
this way it might transit from one minimum to another. The oscillation can be explained by the production of
quark-antiquark pairs in an electric field. At first the pairs are on top of each other, then they separate where
the quarks/antiquarks move towards the positive/negative initial charge [6]. During this process the electric
field performs work and changes sign. This occurs repeatedly, each time less quark-antiquark pairs are created
and eventually the electric field falls off to one of the minima.
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Figure 2: Background field for vacuum angle ✓ = 0 (left) and ✓ = ⇡ (right) with different couplings g . The
dashed lines indicate the position of the minimum around which � oscillates for M⌧ � 1.

In figure 2 the behavior of � is shown for different values of g and ✓ = 0, ⇡. In the beginning all curves behave
similar (except for being shifted due to different initial values). The reason for this is, that, as one can see in

2
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Figure 6: Total particle number per rapidity interval N
�⌘ at M⌧ = 510.0 in dependence of the coupling g for

✓ = 0 (left), where the fit was made for 3.5  g  7.0 and ✓ = ⇡ (right), where the fit was made for
2.2  g  7.0.

6 Conclusion
We considered a quark-antiquark pair in 1+1 dimensions and investigated particle production after a collision.
At first we analyzed the behavior of a coherent field. We observe an oscillation and transition between the
minima of the potential (figure 1 and 2).
Then we added small fluctuations and computed the mode functions f (figure 3). These are growing for some
combinations of ✓, g and k what is also visible in the particle spectra (figure 4 and 5) which show clear maxima
at finite k.
The spectra were computed in dependence of the momentum k in Bjorken coordinates. Translating them into
Minkowski space requires knowledge of momentum and the exact trajectory of the produced particles which
probably is not accessible in experiment.
In addition to the spectra, another result of our calculations are the total particle numbers per rapidity interval
(figure 6). We observe maxima at those g where the background field � changes its asymptotic value, i.e. where
it oscillates around another minimum of the potential in figure 1 for large M⌧ . For large g (large fermion masses
m � e) the total particle number per rapidity interval shows a Boltzmanian decay and a temperature can be
assigned to the particles, which could be measured in experiments.
Furthermore, our results could be improved by considering backreactions from the fluctuations to the background
field and performing one or higher loop calculations. Additionally, the effect of tunneling should be taken into
account. Especially in the case of large g the background field will decay from the false vacuum to the true one.
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for expanding strings

asymptotic particle number depends on g ∼ m/q
exponential suppression for large fermion mass g � 1

N

∆η
∼ e−0.55m

q
+7.48 q

m
+...

= e
−0.55 m√

2σ
+7.48

√
2σ
m

+...



Wigner distribution and entanglement

Classical field approximation usually based on non-negative Wigner
representation of density matrix

leads for many observables to classical statistical description

can nevertheless show entanglement and pass Bell test for “improper”
variables where Weyl transform of operator has values outside of its
spectrum [Revzen, Mello, Mann, Johansen (2005)]

Bell test violation also possible for negative Wigner distribution [Bell (1986)]



Transverse coordinates

so far dynamics strictly confined to 1+1 dimensions

transverse coordinates may fluctuate, can be described by Nambu-Goto
action (hµν = ∂µX

m∂νXm)

SNG =

∫
d2x
√
−dethµν {−σ + . . .}

≈
∫
d2x
√
g
{
−σ − σ

2
gµν∂µX

i∂νX
i + . . .

}
two additional, massless, bosonic degrees of freedom corresponding to
transverse coordinates Xi with i = 1, 2



Rapidity distribution
J. Phys. G: Nucl. Part. Phys. 37 (2010) 083001 Topical Review
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Figure 11. Left panel: comparison of η (p + p(p̄)) and yT distributions (e+e−) at different
energies. The variable yT is the rapidity with respect to the thrust axis of the e+e− collision. Right
panel: the width λ of the η distributions (p + p(p̄)) and yT distributions (e+e−) as a function of√

s. Note that the difference between inelastic and non-single diffractive collisions is neglected
by fitting the combined p + p(p̄) data with λ = a + b ln

√
s. In the case of the Landau model

⟨Nch⟩/(dNch/dy |y =0) =
√

2πL where L = ln(
√

s/(2mp)) is shown. Data points for e+e− from
[8, 62, 110–114].

which √
spp ≈ (2 ÷ 3)

√
see. For the shown cases the dNch/dη distribution in p + p(p̄) are

broader than the dNch/dyT distributions. This might indicate the contribution from beam-
particle fragmentation in p + p(p̄). Note, however, that based on the Landau hydrodynamic
picture a simple relation between dNch/dη|p+p,

√
s

η=0 and dNch/dyT |e
+e−,

√
s/3

yT =0 was suggested
in [103, 105]. The width λ of the distribution defined as λ = ⟨Nch⟩/dNch/dη|η=0 and
λ = ⟨Nch⟩/dNch/dyT |yT =0, respectively, is shown in the right panel of figure 11. Based on the
QCD calculation in [106], λ is expected to scale linearly with

√
ln s. As shown in figure 11

this form does not describe the p+p(p̄) data which are well parameterized with λ = a +b ln s.
The Landau hydrodynamic model also predicts a linear

√
ln s dependence of λ [107–109] and

hence also fails to describe the p + p(p̄) data.
It will be interesting to see whether this universality of multiplicities in e+e− and p +p(p̄)

collisions also holds at LHC energies. This universality appears to be valid at least up to
Tevatron energies despite its rather weak theoretical foundation (see section 2.6). Under
the assumptions that K2 remains constant at about 0.35 also at LHC energies and that the
extrapolation of the e+e− data with the 3NLO QCD form is still reliable at

√
s ≈ 5 TeV

one can use the fit of p + p(p̄) data to predict the multiplicities at the LHC. This yields
⟨Nch⟩ ≈ 70.9 at 7 TeV, ⟨Nch⟩ ≈ 79.7 at 10 TeV and ⟨Nch⟩ ≈ 88.9 at 14 TeV. Extrapolating
the ratio λ = ⟨Nch⟩/(dNch/dη)η=0 with the form λ = a + b ln

√
s (see figure 11), these

multiplicities correspond to dNch/dη|η=0 ≈ 5.5 at 7 TeV, dNch/dη|η=0 ≈ 5.9 at 10 TeV and
dNch/dη|η=0 ≈ 6.4 at 14 TeV.

3.6. Moments

The moments of the multiplicity distributions as defined in section 2.2 will now be used to
identify general trends as a function of

√
s and to study the validity of KNO scaling. First
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[open (filled) symbols: e+e− (pp), Grosse-Oetringhaus & Reygers (2010)]

rapidity distribution dN/dη has plateau around midrapidity

only logarithmic dependence on collision energy



Experimental access to entanglement ?

could longitudinal entanglement be tested experimentally?

unfortunately entropy density dS/dη not straight-forward to access

measured in e+e− is the number of charged particles per unit rapidity
dNch/dη (rapidity defined with respect to the thrust axis)

typical values for collision energies
√
s = 14− 206 GeV in the range

dNch/dη ≈ 2− 4

entropy per particle S/N can be estimated for a hadron resonance gas in
thermal equilibrium S/Nch = 7.2 would give

dS/dη ≈ 14− 28

this is an upper bound: correlations beyond one-particle functions would
lead to reduced entropy



Entanglement and QCD physics

how strongly entangled is the nuclear wave function?

what is the entropy of quasi-free partons and can it be understood as a
result of entanglement? [Kharzeev, Levin (2017)]

does saturation at small Bjorken-x have an entropic meaning?

entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015); Kovner, Lublinsky, Serino (2018)]

could entanglement entropy help for a non-perturbative extension of the
parton model?

entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]


