A quantum information perspective on relativistic fluid dynamics and quantum fields out-of-equilibrium

Stefan Floerchinger (Heidelberg U.)

National Centre for Nuclear Research, Warsaw, Poland January 20, 2021.

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Understanding quantum field dynamics

- microscopic Lagrangian for many phenomena is known
- quantum field theories change with scale!
- need to understand quantum field dynamics away from simple limits
- important for condensed matter, optics, atomic physics, astrophysics, nuclear physics, cosmology, ...

What are the macroscopic evolution equations for quantum fields ?

Local equilibrium & partition function

• partition function Z[J], Schwinger functional W[J]

$$Z[J] = e^{W[J]} = \int D\phi \, e^{-S[\phi] + \int_x J\phi}$$

• local equilibrium with T(x) and $u^{\mu}(x)$ [Floerchinger, JHEP 1609, 099 (2016)]

$$\beta^{\mu}(x) = \frac{u^{\mu}(x)}{T(x)}$$

includes global equilibrium and vacuum as special cases

One-particle irreducible or quantum effective action

• quantum effective action $\Gamma[\phi]$ defined by Legendre transform

$$\Gamma[\Phi] = \int_x J_a(x)\Phi_a(x) - W[J]$$

with expectation values

$$\Phi_a(x) = \frac{\delta}{\delta J_a(x)} W[J]$$

• Euclidean field equation

$$\frac{\delta}{\delta \Phi_a(x)} \Gamma[\Phi] = J(x)$$

- use analytic continuation to obtain macroscopic evolution equations [Floerchinger, JHEP 1205, 021 (2012); JHEP 1609, 099 (2016)]
- includes quantum and statistical fluctuations !
- imaginary terms lead to effective dissipation
- functional renormalization group: flow equation for $\Gamma[\Phi]$

High energy nuclear collisions: QCD fluid

Fluid dynamics

- long distances, long times or strong enough interactions
- quantum fields form a fluid!
- needs macroscopic fluid properties
 - thermodynamic equation of state $p(T, \mu)$
 - shear + bulk viscosity $\eta(T,\mu)$, $\zeta(T,\mu)$
 - heat conductivity $\kappa(T,\mu)$, ...
 - relaxation times, ...
 - electrical conductivity $\sigma(T,\mu)$
- fixed by microscopic properties encoded in Lagrangian LQCD
- old dream of condensed matter physics: understand the fluid properties!

Relativistic fluid dynamics

Energy-momentum tensor and conserved current

$$\begin{split} T^{\mu\nu} &= \epsilon \, u^{\mu} u^{\nu} + (p + \pi_{\mathsf{bulk}}) \Delta^{\mu\nu} + \pi^{\mu\nu} \\ N^{\mu} &= n \, u^{\mu} + \nu^{\mu} \end{split}$$

- tensor decomposition using fluid velocity $u^{\mu},\,\Delta^{\mu\nu}=g^{\mu\nu}+u^{\mu}u^{\nu}$
- \bullet thermodynamic equation of state $p=p(T,\mu)$

Covariant conservation laws $\nabla_{\mu}T^{\mu\nu} = 0$ and $\nabla_{\mu}N^{\mu} = 0$ imply

- $\bullet\,$ equation for energy density $\epsilon\,$
- $\bullet\,$ equation for fluid velocity u^{μ}
- \bullet equation for particle number density n

Need in addition constitutive relations [e.g Israel & Stewart]

- equation for shear stress $\pi^{\mu\nu}$
- equation for bulk viscous pressure π_{bulk}

$$au_{\mathsf{bulk}} u^{\mu} \partial_{\mu} \pi_{\mathsf{bulk}} + \ldots + \pi_{\mathsf{bulk}} = -\zeta \
abla_{\mu} u^{\mu}$$

 $\bullet\,$ equation for diffusion current ν^{μ}

Flow and fluctuations in heavy ion collisions

Fluid uM: Fluid dynamics of heavy ion collisions with Mode expansion [Floerchinger & Wiedemann, PLB 728, 407 (2014), PRC 88, 044906 (2013), 89, 034914 (2014)] [Floerchinger, Grossi & Lion, PRC 100, 014905 (2019)]

- $\bullet \ \ background-fluctuation \ \ splitting + \ mode \ expansion$
- analogous to cosmological perturbation theory
- substantially improved numerical performance (pseudospectral method)
- resonance decays included [Mazeliauskas, Floerchinger, Grossi & Teaney, EPJC 79, 284 (2019)]
- allows fast and precise comparison between theory and experiment

Particle production at the Large Hadron Collider

[Devetak, Dubla, Floerchinger, Grossi, Masciocchi, Mazeliauskas & Selyuzhenkov, 1909.10485]

- data are very precise now high quality theory development needed!
- next step: include coherent fields / condensates

Causality

[Floerchinger & Grossi, JHEP 08 (2018) 186]

- inequalities for relativistic causality
- dissipative fluid equations can be of hyperbolic type
- characteristic velocities depend on fluid fields
- $\bullet \mbox{ need } |\lambda^{(j)}| < c \mbox{ for relativistic causality}$

Entropy current, local dissipation and unitarity

• local dissipation = local entropy production

 $\nabla_{\mu}s^{\mu}(x) \ge 0$

- e. g. from analytically continued quantum effective action [Floerchinger, JHEP 1609, 099 (2016)]
- fluid dynamics in Navier-Stokes approximation

$$\nabla_{\mu}s^{\mu} = \frac{1}{T} \left[2\eta \sigma_{\mu\nu}\sigma^{\mu\nu} + \zeta (\nabla_{\rho}u^{\rho})^2 \right] \ge 0$$

• unitary time evolution conserves von-Neumann entropy

$$S = -\mathrm{Tr}\{\rho \ln \rho\} = -\mathrm{Tr}\{(U\rho U^{\dagger})\ln(U\rho U^{\dagger})\} \qquad \Rightarrow \qquad \frac{d}{dt}S = 0$$

quantum information is globally conserved

What is local dissipation in isolated quantum systems ?

.

$Quantum \ entanglement$

 Can quantum-mechanical description of physical reality be considered complete? [Einstein, Podolsky, Rosen (1935), Bohm (1951)]

$$\psi = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_A |\downarrow\rangle_B - |\downarrow\rangle_A |\uparrow\rangle_B \right)$$
$$= \frac{1}{\sqrt{2}} \left(|\rightarrow\rangle_A |\leftarrow\rangle_B - |\leftarrow\rangle_A |\rightarrow\rangle_B \right)$$

• Bertlemann's socks and the nature of reality [Bell (1980)]

Bell's inequalities and Bell tests

[John Stewart Bell (1966)]

• most popular version [Clauser, Horne, Shimony, Holt (1969)]

 $S = |E(a, b) - E(a, b') + E(a', b) + E(a', b')| \le 2$

holds for local hidden variable theories

• expectation value of product of two observables

 $E(a,b) = \langle A(a)B(b)\rangle$

with possible values $A = \pm 1$, $B = \pm 1$.

- depending on measurement settings a, a' and b, b' respectively
- quantum mechanical bound is $S \leq 2\sqrt{2}$
- \bullet experimental values $2 < S \leq 2\sqrt{2}$ rule out local hidden variables
- one measurement setting but at different times [Leggett, Garg (1985)]

Entanglement in high energy (QCD) physics

- entanglement of quantum fields instead of particles
- entanglement on sub-nucleonic scales
- $\bullet\,$ entanglement in non-Abelian gauge theory / color / confinement
- discussions in mathematical physics [e. g. Witten (2018)]
- connections to black holes and holography [Ryu & Takayanagi (2006)]
- thermalization in closed quantum systems

$Classical\ statistics$

- ullet consider system of two random variables x and y
- \bullet joint probability $p(\boldsymbol{x},\boldsymbol{y})$, joint entropy

$$S = -\sum_{x,y} p(x,y) \ln p(x,y)$$

- \bullet reduced or marginal probability $p(x) = \sum_y p(x,y)$
- reduced or marginal entropy

$$S_x = -\sum_x p(x) \ln p(x)$$

• one can prove: joint entropy is greater than or equal to reduced entropy

$$S \ge S_x$$

• globally pure state S = 0 is also locally pure $S_x = 0$

Quantum statistics

- $\bullet\,$ consider system with two subsystems A and B
- \bullet combined state ρ , combined or full entropy

 $S = -\mathsf{Tr}\{\rho \ln \rho\}$

- reduced density matrix $\rho_A = \text{Tr}_B\{\rho\}$
- reduced or entanglement entropy

$$S_A = -\operatorname{Tr}_A\{\rho_A \ln \rho_A\}$$

- pure product state $\rho = \rho_A \otimes \rho_B$ leads to $S_A = 0$
- pure entangled state $\rho \neq \rho_A \otimes \rho_B$ leads to $S_A > 0$
- for quantum systems entanglement makes a difference

 $S \not\geq S_A$

- coherent information $I_{B \setminus A} = S_A S$ can be positive!
- globally pure state S = 0 can be locally mixed $S_A > 0$

Entanglement, QCD strings and thermalization

- hadronization in Lund string model (e. g. PYTHIA)
- reduced density matrix for region A

$$\rho_A = \mathsf{Tr}_B\{\rho\}$$

has entanglement entropy

$$S_A = -\mathsf{Tr}_A\{\rho_A \ln \rho_A\} > 0$$

o could this lead to thermal-like effects?

The thermal model puzzle

- elementary particle collision experiments such as $e^+ e^-$ collisions show some thermal-like features [see also Fischer & Sjöstrand (2017)]
- particle multiplicities well described by thermal model

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

- conventional thermalization by collisions unlikely
- alternative explanations needed

$Microscopic \ model$

• QCD in 1+1 dimensions described by 't Hooft model

$$\mathscr{L}=-ar{\psi}_i\gamma^\mu(\partial_\mu-ig\mathbf{A}_\mu)\psi_i-m_iar{\psi}_i\psi_i-rac{1}{2}{
m tr}\,\mathbf{F}_{\mu
u}\mathbf{F}^{\mu
u}$$

- fermionic fields ψ_i with sums over flavor species $i = 1, \ldots, N_f$
- SU(N_c) gauge fields ${f A}_\mu$ with field strength tensor ${f F}_{\mu
 u}$
- gluons are not dynamical in two dimensions
- \bullet gauge coupling g has dimension of mass
- non-trivial, interacting theory, cannot be solved exactly
- spectrum of excitations known for $N_c \rightarrow \infty$ with $g^2 N_c$ fixed ['t Hooft (1974)]

Schwinger model

• QED in 1+1 dimension

$$\mathscr{L} = -ar{\psi}_i \gamma^\mu (\partial_\mu - iqA_\mu) \psi_i - m_i ar{\psi}_i \psi_i - rac{1}{4} F_{\mu
u} F^{\mu
u}$$

- geometric confinement
- U(1) charge related to string tension $q = \sqrt{2\sigma}$
- for single fermion one can bosonize theory exactly [Coleman, Jackiw, Susskind (1975)]

$$S = \int d^2x \sqrt{g} \left\{ -\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} M^2 \phi^2 - \frac{m q e^{\gamma}}{2\pi^{3/2}} \cos\left(2\sqrt{\pi}\phi + \theta\right) \right\}$$

- Schwinger bosons are dipoles $\phi\sim \bar\psi\psi$
- \bullet scalar mass related to U(1) charge by $M=q/\sqrt{\pi}=\sqrt{2\sigma/\pi}$
- massless Schwinger model m = 0 leads to free bosonic theory

Expanding string solution

- external quark-anti-quark pair on trajectories $z = \pm t$
- coordinates: Bjorken time $\tau = \sqrt{t^2 z^2}$, rapidity $\eta = \operatorname{arctanh}(z/t)$
- metric $ds^2 = -d\tau^2 + \tau^2 d\eta^2$
- \bullet symmetry with respect to longitudinal boosts $\eta \to \eta + \Delta \eta$

Expanding string solution 2

• Schwinger boson field depends only on au

$$\bar{\phi} = \bar{\phi}(\tau)$$

equation of motion

$$\partial_{\tau}^2 \bar{\phi} + \frac{1}{\tau} \partial_{\tau} \bar{\phi} + M^2 \bar{\phi} = 0.$$

• Gauss law: electric field $E = q\phi/\sqrt{\pi}$ must approach the U(1) charge of the external quarks $E \to q_e$ for $\tau \to 0_+$

$$\bar{\phi}(\tau)
ightarrow rac{\sqrt{\pi}q_{\mathsf{e}}}{q} \qquad (\tau
ightarrow 0_{+})$$

• solution of equation of motion [Loshaj, Kharzeev (2011)]

$$\bar{\phi}(\tau) = \frac{\sqrt{\pi}q_{\rm e}}{q} J_0(M\tau)$$

$Gaussian \ states$

- theories with quadratic action often have Gaussian density matrix
- fully characterized by field expectation values

 $\bar{\phi}(x) = \langle \phi(x) \rangle, \qquad \bar{\pi}(x) = \langle \pi(x) \rangle$

and connected two-point correlation functions, e. g.

$$\langle \phi(x)\phi(y)\rangle_c = \langle \phi(x)\phi(y)\rangle - \bar{\phi}(x)\bar{\phi}(y)$$

• if ρ is Gaussian, also reduced density matrix ρ_A is Gaussian

Entanglement entropy for Gaussian state

• entanglement entropy of Gaussian state in region A [Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

$$S_A = \frac{1}{2} \operatorname{Tr}_A \left\{ D \ln(D^2) \right\}$$

- operator trace over region A only
- matrix of correlation functions

$$D(x,y) = \begin{pmatrix} -i\langle\phi(x)\pi(y)\rangle_c & i\langle\phi(x)\phi(y)\rangle_c \\ -i\langle\pi(x)\pi(y)\rangle_c & i\langle\pi(x)\phi(y)\rangle_c \end{pmatrix}$$

- \bullet involves connected correlation functions of field $\phi(x)$ and canonically conjugate momentum field $\pi(x)$
- expectation value $\bar{\phi}$ does not appear explicitly
- coherent states and vacuum have equal entanglement entropy S_A

Rapidity interval

- consider rapidity interval $(-\Delta\eta/2,\Delta\eta/2)$ at fixed Bjorken time au
- entanglement entropy does not change by unitary time evolution with endpoints kept fixed
- can be evaluated equivalently in interval $\Delta z=2\tau\sinh(\Delta\eta/2)$ at fixed time $t=\tau\cosh(\Delta\eta/2)$
- need to solve eigenvalue problem with correct boundary conditions

Bosonized massless Schwinger model

- entanglement entropy understood numerically for free massive scalars [Casini, Huerta (2009)]
- entanglement entropy density $dS/d\Delta\eta$ for bosonized massless Schwinger model $(M = \frac{q}{\sqrt{\pi}})$

Conformal limit

• For $M au \to 0$ one has conformal field theory limit [Holzhey, Larsen, Wilczek (1994)]

$$S(\Delta z) = rac{c}{3} \ln \left(\Delta z / \epsilon
ight) + \text{constant}$$

with small length ϵ acting as UV cutoff.

Here this implies

$$S(\tau,\Delta\eta) = \frac{c}{3}\ln\left(2\tau\sinh(\Delta\eta/2)/\epsilon\right) + \text{constant}$$

- Conformal charge c = 1 for free massless scalars or Dirac fermions.
- Additive constant not universal but entropy density is

$$\begin{split} \frac{\partial}{\partial \Delta \eta} S(\tau, \Delta \eta) &= \frac{c}{6} \mathrm{coth}(\Delta \eta/2) \\ &\to \frac{c}{6} \qquad (\Delta \eta \gg 1) \end{split}$$

• Entropy becomes extensive in $\Delta \eta$!

Temperature and entanglement entropy

- for conformal fields, entanglement entropy has also been calculated at non-zero temperature.
- for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

$$S(T,l) = \frac{c}{3} \ln \left(\frac{1}{\pi T \epsilon} \sinh(\pi L T) \right) + \text{const}$$

compare this to our result in expanding geometry

$$S(\tau,\Delta\eta) = \frac{c}{3}\ln\left(\frac{2\tau}{\epsilon}\sinh(\Delta\eta/2)\right) + {\rm const}$$

• expressions agree for $L = \tau \Delta \eta$ (with metric $ds^2 = -d\tau^2 + \tau^2 d\eta^2$) and time-dependent temperature

$$T = \frac{1}{2\pi\tau}$$

Universal entanglement entropy density

 for very early times "Hubble" expansion rate dominates over masses and interactions

$$H = \frac{1}{\tau} \gg M = \frac{q}{\sqrt{\pi}}, m$$

- theory dominated by free, massless fermions
- universal entanglement entropy density

$$\frac{dS}{d\Delta\eta} = \frac{c}{6}$$

with conformal charge c

• for QCD in 1+1 D (gluons not dynamical, no transverse excitations)

 $c = N_c \times N_f$

• from fluctuating transverse coordinates (Nambu-Goto action)

$$c = N_c \times N_f + 2 \approx 9 + 2 = 11$$

Local density matrix and temperature in expanding string

- Bjorken time $\tau = \sqrt{t^2 z^2}$, rapidity $\eta = \operatorname{arctanh}(z/t)$
- local density matrix thermal at early times as result of entanglement [Berges, Floerchinger, Venugopalan, PLB778, 442 (2018); JHEP 1804 (2018) 145]

$$T(\tau) = \frac{\hbar}{2\pi\tau}$$

• Hawking-Unruh temperature in Rindler space $T(x) = \frac{\hbar c}{2\pi x}$

Physics picture

- coherent state at early time contains entangled pairs of quasi-particles with opposite wave numbers
- on finite rapidity interval $(-\Delta \eta/2, \Delta \eta/2)$ in- and out-flux of quasi-particles with thermal distribution via boundaries
- technically limits $\Delta\eta \to \infty$ and $M\tau \to 0$ do not commute
 - $\Delta\eta \rightarrow \infty$ for any finite $M\tau$ gives pure state
 - $M\tau \to 0$ for any finite $\Delta \eta$ gives thermal state with $T=1/(2\pi\tau)$

$Quantum \ field \ dynamics$

new hypothesis

- quantum information is spread
- locally, quantum state approaches mixed state form
- full loss of *local* quantum information = *local* thermalization

Entanglement entropy in quantum field theory

- $\bullet\,$ entanglement entropy of region A is a local notion of entropy
 - $S_A = -\operatorname{tr}_A \left\{ \rho_A \ln \rho_A \right\} \qquad \quad \rho_A = \operatorname{tr}_B \left\{ \rho \right\}$

• however, it is infinite already in vacuum state

$$S_A = \frac{\text{const}}{\epsilon^{d-2}} \int_{\partial A} d^{d-2} \sigma \sqrt{h} + \text{subleading divergences} + \text{finite}$$

- UV divergence proportional to entangling surface
- quantum fields are very strongly entangled already in vacuum
- Theorem [Reeh & Schlieder (1961)]: local operators in region A can create all particle states

Relative entropy

• relative entropy of two density matrices

$$S(\rho|\sigma) = \operatorname{tr} \left\{ \rho \left(\ln \rho - \ln \sigma \right) \right\}$$

- ullet measures how well state ρ can be distinguished from a model σ
- Gibbs inequality: $S(\rho|\sigma) \ge 0$
- $S(\rho|\sigma) = 0$ if and only if $\rho = \sigma$
- quantum generalization of Kullback-Leibler divergence

Relative entanglement entropy

consider now reduced density matrices

$$\rho_A = \mathsf{Tr}_B\{\rho\}, \qquad \sigma_A = \mathsf{Tr}_B\{\sigma\}$$

• define relative entanglement entropy

$$S_A(\rho|\sigma) = \mathsf{Tr} \left\{ \rho_A \left(\ln \rho_A - \ln \sigma_A \right) \right\} = -\mathsf{Tr} \left\{ \rho_A \ln \Delta_A \right\}$$

with relative modular operator Δ_A

- \bullet measures how well ρ is represented by σ locally in region A
- UV divergences cancel: contains real physics information
- well defined in algebraic quantum field theory [Araki (1977)] [see also works by Casini, Myers, Lashkari, Witten, Liu, ...]

An approximate local description

[Dowling, Floerchinger & Haas, PRD 102 (2020) 10, 105002]

- consider non-equilibrium situation with
 - true density matrix ρ
 - local equilibrium approximation

$$\sigma = \frac{1}{Z} e^{-\int d\Sigma_{\mu} \{\beta_{\nu}(x) T^{\mu\nu} + \alpha(x) N^{\mu}\}}$$

- reduced density matrices $\rho_A = \text{Tr}_B\{\rho\}$ and $\sigma_A = \text{Tr}_B\{\sigma\}$
- σ is very good model for ρ in region A when

$$S_A = \mathsf{Tr}_A\{\rho_A(\ln \rho_A - \ln \sigma_A)\} \to 0$$

• does not imply that globally $\rho = \sigma$

Monotonicity of relative entropy

• monotonicity of relative entropy [Lindblad (1975)]

 $S(\mathcal{N}(\rho)|\mathcal{N}(\sigma)) \leq S(\rho|\sigma)$

with $\ensuremath{\mathcal{N}}$ completely positive, trace-preserving map

 $\bullet \ \mathcal{N}$ unitary evolution

 $S(\mathcal{N}(\rho)|\mathcal{N}(\sigma)) = S(\rho|\sigma)$

 $\bullet~\mathcal{N}$ open system evolution with generation of entanglement to environment

 $S(\mathcal{N}(\rho)|\mathcal{N}(\sigma)) < S(\rho|\sigma)$

leads to local, second law type relation
 [Dowling, Floerchinger & Haas, PRD 102 (2020) 10, 105002]

Entropy production

[Floerchinger, JHEP 1609, 099 (2016)]

- variational principle with effective dissipation from analytic continuation
- analysis of general covariance leads to entropy current and local entropy production

$$\nabla_{\mu}s^{\mu} = \frac{1}{\sqrt{g}} \frac{\delta\Gamma_D}{\delta\Phi_a} \Big|_{\rm ret} \beta^{\lambda} \partial_{\lambda} \Phi_a + \beta_{\mu} \nabla_{\nu} \left(-\frac{2}{\sqrt{g}} \frac{\delta\Gamma_D}{\delta g_{\mu\nu}} \Big|_{\rm ret} \right)$$

• can likely be understood as entanglement generation

Entropic uncertainty relations

Heisenberg / Robertson uncertainty relation [Robertson (1929)]

$$\sigma(X)\sigma(Z) \geq \frac{1}{2} |\langle \psi | [X, Z] | \psi \rangle|$$

Entropic uncertainty relations [Maassen & Uffink (1988), Frank & Lieb (2012)]

$$H(X) + H(Z) \ge \ln \frac{1}{c} + S(\rho)$$

• Shannon information entropy for measurement outcome

$$H(X) = -\sum_{x} p(x) \ln p(x)$$

$$S(\rho) = -\operatorname{Tr}\{\rho \ln \rho\}$$

• maximal overlap between basis states

$$c = \max_{x,z} |\langle x|z\rangle|^2$$

• formulation in terms of relative entropy [Floerchinger, Haas & Hoeber, 2012.10080]

Entanglement and entropic uncertainty relations [Berta et al. (2010)]

• side information from entanglement with system B

$$H(X_A|X_B) + H(Z_A|Z_B) \ge \ln\frac{1}{c} + S(A|B)$$

- ${\ensuremath{\, \bullet }}$ use measurement on B to infer outcome on A
- quantum conditional entropy can be negative for positive coherent information

$$S(A|B) = S(\rho) - S(\rho_B) = -I_{A \mid B}$$

- experiments with cold atoms [with M. Gärttner and M. Oberthaler]
- towards test of local dissipation = quantum entanglement generation
- more applications in nuclear and high energy physics to be explored

Conclusions

- relativistic fluid dynamics has a foundation in quantum information theory
- proper description of local thermalization in terms of relative entanglement
- quantum field theoretic description with two density matrices:
 - true density matrix ρ evolves unitary
 - fluid model σ agrees locally but evolves non-unitary
- local "thermalization" without collisions possible
- need to test the picture with more calculations and experiments
- entropic uncertainty relations may allow to access entanglement entropies

Backup

Modular or entanglement Hamiltonian 1

- conformal field theory
- \bullet hypersurface Σ with boundary on the intersection of two light cones
- reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta (2017), see also Candelas, Dowker (1979)]

$$\rho_A = \frac{1}{Z_A} e^{-K}, \qquad Z_A = \operatorname{Tr} e^{-K}$$

• modular or entanglement Hamiltonian K

Modular or entanglement Hamiltonian 2

modular or entanglement Hamiltonian is local expression

$$K = \int_{\Sigma} d\Sigma_{\mu} \, \xi_{\nu}(x) \, T^{\mu\nu}(x)$$

- energy-momentum tensor $T^{\mu \nu}(x)$ of excitations
- vector field

$$\xi^{\mu}(x) = \frac{2\pi}{(q-p)^2} [(q-x)^{\mu}(x-p)(q-p) + (x-p)^{\mu}(q-x)(q-p) - (q-p)^{\mu}(x-p)(q-x)]$$

end point of future light cone q, starting point of past light cone p ${\mbox{\circ}}$ inverse temperature and fluid velocity

$$\xi^{\mu}(x) = \beta^{\mu}(x) = \frac{u^{\mu}(x)}{T(x)}$$

Modular or entanglement Hamiltonian 3

• for $\Delta \eta \rightarrow \infty$: fluid velocity in τ -direction, τ -dependent temperature

$$T(\tau) = \frac{\hbar}{2\pi\tau}$$

- Entanglement between different rapidity intervals alone leads to local thermal density matrix at very early times !
- Hawking-Unruh temperature in Rindler wedge $T(x) = \hbar c/(2\pi x)$

Particle production in massive Schwinger model

[ongoing work with Lara Kuhn, Jürgen Berges]

- for expanding strings
- ullet asymptotic particle number depends on $g\sim m/q$
- \bullet exponential suppression for large fermion mass $g\gg 1$

$$\frac{N}{\Delta\eta} \sim e^{-0.55\frac{m}{q} + 7.48\frac{q}{m} + \dots} = e^{-0.55\frac{m}{\sqrt{2\sigma}} + 7.48\frac{\sqrt{2\sigma}}{m} + \dots}$$

Wigner distribution and entanglement

- Classical field approximation usually based on non-negative Wigner representation of density matrix
- leads for many observables to classical statistical description
- can nevertheless show entanglement and pass Bell test for "improper" variables where Weyl transform of operator has values outside of its spectrum [Revzen, Mello, Mann, Johansen (2005)]
- Bell test violation also possible for negative Wigner distribution [Bell (1986)]

$Transverse \ coordinates$

- so far dynamics strictly confined to 1+1 dimensions
- transverse coordinates may fluctuate, can be described by Nambu-Goto action (h_{µν} = ∂_µX^m∂_νX_m)

$$\begin{split} S_{\rm NG} &= \int d^2 x \sqrt{-\det h_{\mu\nu}} \left\{ -\sigma + \ldots \right\} \\ &\approx \int d^2 x \sqrt{g} \left\{ -\sigma - \frac{\sigma}{2} g^{\mu\nu} \partial_{\mu} X^i \partial_{\nu} X^i + \ldots \right\} \end{split}$$

 $\bullet\,$ two additional, massless, bosonic degrees of freedom corresponding to transverse coordinates X^i with i=1,2

Rapidity distribution

[open (filled) symbols: e⁺e⁻ (pp), Grosse-Oetringhaus & Reygers (2010)]

- rapidity distribution $dN/d\eta$ has plateau around midrapidity
- only logarithmic dependence on collision energy

Experimental access to entanglement?

- could longitudinal entanglement be tested experimentally?
- ullet unfortunately entropy density $dS/d\eta$ not straight-forward to access
- measured in e^+e^- is the number of charged particles per unit rapidity $dN_{\rm ch}/d\eta$ (rapidity defined with respect to the thrust axis)
- \bullet typical values for collision energies $\sqrt{s}=14-206~{\rm GeV}$ in the range

 $dN_{\rm ch}/d\eta \approx 2-4$

- entropy per particle S/N can be estimated for a hadron resonance gas in thermal equilibrium $S/N_{\rm ch}=7.2$ would give

 $dS/d\eta \approx 14 - 28$

• this is an upper bound: correlations beyond one-particle functions would lead to reduced entropy

Entanglement and QCD physics

- how strongly entangled is the nuclear wave function?
- what is the entropy of quasi-free partons and can it be understood as a result of entanglement? [Kharzeev, Levin (2017)]
- does saturation at small Bjorken-x have an entropic meaning?
- entanglement entropy and entropy production in the color glass condensate [Kovner, Lublinsky (2015); Kovner, Lublinsky, Serino (2018)]
- could entanglement entropy help for a non-perturbative extension of the parton model?
- entropy of perturbative and non-perturbative Pomeron descriptions [Shuryak, Zahed (2017)]