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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!

needs macroscopic fluid properties
equation of state p(T, µ)
shear + bulk viscosity
heat conductivity / baryon diffusion constant, . . .

fixed by microscopic properties of QCD encoded in Lagrangian

old dream of condensed matter physics: understand the fluid properties!
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Thermodynamic equation of state

describes volume V with temperature T and chemical potentials µB , µC
and µS associated with conserved baryon, charge and strangeness numbers

exchange of energy and particles with heat bath

can be simulated with Lattice QCD

all thermodynamic properties follow from

p(T, µB , µQ, µS)

chemical potentials
µB for (net) baryon number
µQ for (net) electric charge
µS for (net) strangeness
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Thermodynamics of QCD
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Figure S7: The lattice result for the 2+1+1 flavor QCD pressure together with the fitted value of the
g6 order. We included the charm mass at tree-level. The perturbative result agrees with the data from
about 500 MeV temperature. Using the same fitted coe�cient we also calculated the e↵ect of the bottom
quark with the same method. The blue curve shows the EoS including the bottom contribution.

S4.1 The 2+1+1 flavor QCD equation of state

Now we show the complete result obtained from nf = 2 + 1 + 1 lattice QCD. Figure S8 depicts the trace
anomaly (left panel) and pressure (right panel). For comparison the 2+1 flavor results are also shown.

Plotting p/T 4 (which is the normalized free energy density), we can compare our result to other
approaches. At low temperatures the Hadron Resonance Gas model (using the 2014 PDG spectrum) gives
a good description of the lattice data. This was already observed in Ref. [S18].

In Ref. [S18] we gave a simple parametrization for the 2+1 flavor equation of state. Here we update
the 2+1 flavor parameters and provide a parametrization that covers the 100-1000 MeV temperature
range and describes the 2+1+1 lattice data, i.e. including the e↵ect of the charm quark. As before, the
parametrizing formula reads

I(T )

T 4
= exp(�h1/t � h2/t

2) ·
✓

h0 + f0
tanh(f1 · t + f2) + 1

1 + g1 · t + g2 · t2

◆
, (S11)

with t = T/200 MeV. The parameters are given in Table. S1, the resulting curves are shown in Fig. S8.
For completeness the nf = 2 + 1 parametrization is also shown.
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Figure S8: The QCD trace anomaly and pressure in the 2+1+1 and 2+1 flavor theories in our parametriza-
tion Eq. (S11). We also show the Hadron Resonance Gas model’s prediction for comparison.
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Figure 3: The thermodynamic equation of state p(T ) as parametrized in equation (5.1). We show energy

density ✏, pressure p and the trace anomaly ✏ � 3 in units of T 4 in the left panel and the squared sound

velocity c2
s(T ) in the right panel. Lattice QCD data underlying the fit at high temperatures are taken from

ref. [45] and ref. [46], the hadron resonance gas approximation used at low temperatures was calculated

following ref. [47]. In the transition region both results were smoothly connected.

The parametrization of pressure as a function of temperature is taken as the following combination of

exponential and rational functions,

p(T )

T 4
= exp

"
� c2

(T/Tc)
� d2

(T/Tc)2

#
2
66664

(16 + 21
2 Nf )⇡2
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◆
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T
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✓
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✓
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✓
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◆
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✓
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✓
Tc

T

◆3

+ b4

✓
Tc

T

◆4

3
77775

.

(5.1)

Note that for asymptotically large temperatures p(T ) approaches the result for free gluons and Nf free

quarks. Below we take Nf = 3 and Tc = 154 MeV. The best fit results for the fit parameter aj , bj , c

and d are reported in table 1. The exponential terms in the prefactor in eq. (5.1) help in particular

a1 -0.752335 a2 -1.8151 a3 -2.83317 a4 4.20517 c 0.547521

b1 -1.68716 b2 7.83336 b3 -13.3421 b4 9.22752 d 0.0148163

Table 1: Best fit parameter for the thermodynamic equation of state as parametrized in equation (5.1).

to reproduce the hadron resonance gas regime while the rational term parametrizes the crossover to a

quark-guon plasma.

In the left panel of fig. 3 we show the resulting energy density ✏, pressure p and trace anomaly ✏�3p in

units of T 4 as a function of temperature. The right panel shows the square of the thermodynamic velocity of

sound c2
s as a function of temperature. The latter is particularly important for the fluid dynamic evolution

and determines for example the characteristic velocities in the absence of dissipative stresses.

To develop the fit (5.1) we have considered the trace anomaly ✏ � 3p. In fig. 4 we show our fit (solid

curve), together with available numerical data from the HotQCD collaboration [46] (for 2+1 quark flavors,

symbols with error bars), an analytic parametrization of lattice QCD data from ref. [45] (for 2 + 1 + 1

– 13 –

[Borsányi et al. (2016)], similar Bazavov et al. (2014) [Floerchinger, Grossi & Lion (2018)]

thermodynamic equation of state p(T ) rather well understood now

used for fluid dynamics at LHC energies
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Moments and cumulants at equilibrium

mean value of net baryon number

N̄B = 〈NB〉 = V
∂

∂µB
p(T, µB , µQ, µS)

variance in terms of δNB = NB − N̄B

σ2
B = 〈δN2

B〉 = TV
∂2

∂µ2
B

p(T, µB , µQ, µS)

skewness

SB =
〈δN3

B〉
σ3
B

=
1

σ3
B

T 2V
∂3

∂µ3
B

p(T, µB , µQ, µS)

kurtosis

κB =
〈δN4

B〉 − 3〈δN2
B〉

2

σ4
B

=
1

σ4
B

T 3V
∂4

∂µ4
B

p(T, µB , µQ, µS)

similar for mixed derivatives
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Lattice QCD results for cumulants

Lattice QCD results for

χB2 =
σ2
B

V T 3
=
〈δN2

B〉
V T 3

χB4
χB2

=
〈δN4

B〉
〈δN2

B〉
RQ31 =

χQ3

χQ1
=
〈δN3

Q〉
〈δNQ〉

We show the leading order coefficient χB2 ðTÞ in Fig. 2
and the NLO (χB4 ) and NNLO (χB6 ) coefficients divided by
χB2 ðTÞ in Fig. 3. The left-hand part of Fig. 2 shows the
leading order contribution χB2 in the entire temperature
interval used in the current analysis. For the LO expansion
coefficients, we also used data from simulations on 483 ×
12 lattices. Here, we used existing data for ml=ms ¼ 1=20
[3] and generated new ensembles forml=ms ¼ 1=27 at nine
temperature values below T ¼ 175 MeV. Furthermore, we
used data on 643 × 16 lattices at a corresponding set of low
temperature values. These data are taken from an ongoing
calculation of higher-order susceptibilities performed by
the HotQCD Collaboration.2 This allowed us to update the
continuum extrapolation for χB2 given in [20]. The new
continuum extrapolation shown in Fig. 2 is consistent with
our earlier results, but has significantly smaller errors in the

low temperature region. In the right-hand part of this figure
we compare the continuum extrapolated lattice QCD data
for χB2 with HRG model calculations. It is obvious that the
continuum-extrapolated QCD results overshoot results
obtained from a conventional, noninteracting HRG model
calculations with resonances taken from the particle data
tables (PDG-HRG) and treated as pointlike excitations. We
therefore compare the QCD results also with a HRG model
that includes additional strange baryons, which are not
listed in the PDG but are predicted in quark models and
lattice QCD calculations. We successfully used such an
extended HRG model (QM-HRG) in previous calculations
[5,6]. As can be seen in Fig. 2 (left), continuum extrapo-
lated results for χB2 agree well with QM-HRG calculations.
As can be seen in the left-hand part of Fig. 3, the ratio

χB4 =χ
B
2 approaches unity with decreasing temperature,

but is small at high temperatures where the leading
order correction is large. The relative contribution of the
NLO correction thus is largest in the hadronic phase, where
χB4 =χ

B
2 ≃ 1. For temperatures T ≲ 155 MeV, we find
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FIG. 2. The leading order (Oðμ2BÞ) correction to the pressure calculated at zero baryon chemical potential. The left-hand figure shows the
leading order correction in a large temperature range. The right-hand part of the figure shows an enlarged view into the low temperature
region. In addition to the continuum extrapolation of the lattice QCD results, we also show results fromHRGmodel calculations based on
all hadron resonances listed by the particle data group (PDG-HRG) and obtained in quark model calculations (QM-PDG).
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FIG. 3. (Left) The ratio of fourth- and second-order cumulants of net-baryon number fluctuations (χB4 =χ
B
2 ) versus temperature. (Right)

Same as the left-hand side, but for the ratio of sixth- and second-order cumulants of net-baryon number fluctuations (χB6 =χ
B
2 ). The boxes

indicate the transition region, Tc ¼ ð154 $ 9Þ MeV. Grey bands show continuum estimate.

2We thank the HotQCD Collaboration for providing access to
the second-order quark number susceptibilities.
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possible interpolations). Weighting these continuum
results by the goodness of the fit, a histogram is formed,
the width of which defines the systematic error (for details,
see Ref. [14]). In this Letter, we show the combined
systematic and statistical errors on the continuum data.

Similarly to previous works, we choose a tree-level
Symanzik improved gauge and a stout-improved staggered
fermionic action (see Ref. [15] for details). The stout-
smearing [16] reduces taste violation (this kind of smearing

has one of the smallest taste violations among the ones
used in the literature for large scale thermodynamic simu-
lations, together with the HISQ action [17,18] used by the
hotQCD collaboration). This lattice artifact needs to be
kept under control when studying higher order fluctuations
of electric charge, which are pion dominated at small
temperatures, and thus, particularly sensitive to this issue.
The observables under study are defined as:

!BSQ
lmn

Tlþmþn ¼
@lþmþnðp=T4Þ

@ð"B=TÞl@ð"S=TÞm@ð"Q=TÞn
; (1)

and they are related to the moments of the distributions of
the corresponding conserved charges by

mean: M ¼ !1; variance: #2 ¼ !2;

skewness: S ¼ !3=!
3=2
2 ; kurtosis: $ ¼ !4=!

2
2:

(2)

With these moments, we can express the volume indepen-
dent ratios

S# ¼ !3=!2; $#2 ¼ !4=!2;

M=#2 ¼ !1=!2; S#3=M ¼ !3=!1:
(3)

The experimental conditions are such, that the three
chemical potentials "B, "Q, and "S are not independent of
each other: the finite baryon density in the system is gener-
ated by the nucleon stopping in the collision region, and
is therefore due to light quarks only. Strangeness conserva-
tion then implies that the strangeness density hnSi ¼ 0.
Similarly, the initial isospin asymmetry of the colliding
nuclei yields a relationship between the electric charge
and baryon-number densities: hnQi ¼ Z=AhnBi. For Au-Au
and Pb-Pb collisions, a good approximation is to assume
Z=A ¼ 0:4.
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Hadron resonance gas (HRG) approximation works at small temperatures
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Hadron resonance gas

pressure for free hadrons and resonances with vacuum masses

p =
T 2

π2

∑
i

dim
2
iK2

(mi

T

)
cosh

(
BiµB +QiµQ + SiµS

T

)

implies relations like

κBσ
2
B =

T 2 ∂4

∂µ4
B
p

∂2

∂µ2
B
p

=
〈B4

i 〉
〈B2

i 〉
= 1, κBMB = SBσB ,

when only baryons with Bi = ±1 contribute

and for µS = µQ = 0 one has relations like

SBσB =
T ∂3

∂µ3
B
p

∂2

∂µ2
B
p

= tanh
(µB
T

)
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Hadron resonance gas versus experiment

ratios of cumulants are independent of volume V and less sensitive to
kinematic cuts

χ
(2)
B

χ
(1)
B

=
σ2
q

Mq
,

χ
(3)
B

χ
(2)
B

= Sqσq,
χ

(4)
B

χ
(2)
B

= κqσ
2
q

particularly well suited to compare to experiment
F. Karsch, K. Redlich / Physics Letters B 695 (2011) 136–142 139

Fig. 1. The ratio of quadratic fluctuations and mean net baryon number (σ 2
B /MB ),

cubic to quadratic (S BσB ) and quartic to quadratic (κBσ 2
B ) baryon number fluctua-

tions calculated in the HRG model on the freeze-out curve and compared to results
obtained by the STAR Collaboration [13]. The dashed curves show the approximate
tanh(µB/T ) result for κBσ 2

B and S Bσ , respectively.

findings of the STAR Collaboration, which measured moments of
baryon number fluctuations through net-proton number fluctua-
tions [13].

Fig. 1 shows a comparison of the energy dependence of quad-
ratic fluctuations (σ 2

B ) normalized to the net baryon number (MB ),
skewness S BσB and kurtosis κBσ 2

B obtained in the HRG model at
chemical freeze-out with the STAR data.

Obviously, the HRG model provides a good description of prop-
erties of different moments of net proton number fluctuations
measured at RHIC energies. The reason for considering ratios of
charge fluctuations rather than absolute values for different mo-
ments was, of course, that one is independent of definitions of
the interaction volume and also is less sensitive to experimental
cuts and systematic errors. Moreover, some of these ratios have
an interesting interpretation, like e.g. the ratio χ (4)

B /χ (2)
B which

directly characterizes the dominant degrees of freedom carrying
baryon number [5]. In addition it is also of interest to understand
whether the HRG model can quantitatively describe the energy de-
pendence of the STAR data [13] on the first four moments, i.e. the
mean, variance, skewness and kurtosis.2

In order to compare the HRG model calculations with the
experimental results presented in [13] we note that this analy-
sis only explored fluctuations in a limited phase space. In fact,
the data on mean particle yields differ from previous results ob-
tained by the STAR Collaboration [16]. From Ref. [13] one gets:
M p−p̄ ≃ 1.75 ± 0.25 and M p−p̄ ≃ 3.5 ± 0.4 in the central (0–5%)
bin of Au–Au collisions at

√
sN N = 200 GeV and 62.4 GeV, respec-

tively. These values should be compared with M p−p̄ ≃ 8 ± 1.8 and
M p−p̄ ≃ 15.4±2.1 obtained at mid-rapidity at corresponding ener-
gies in [16]. These data differ by a common factor K ≃ 0.22. Part of
the difference may be attributed to the fact that net proton fluc-
tuation data in Ref. [13] were taken in the restricted transverse
momentum range 0.4 < pT < 0.8 GeV.

In the HRG model used by us the thermal phase–space of all
particles is not restricted. Consequently, in order to compare pre-
dictions for different moments of net proton fluctuations with
experimental data one needs to rescale its thermal phase space
by the above mentioned factor K ≃ 0.22. Effectively, this corre-
sponds to rescaling the volume parameter V T 3 appearing for in-
stance in Eq. (8), by the K -factor, although its origin is not nec-

2 Of course, as we have already verified consistency of three ratios with the HRG
model calculations, only the energy dependence of one of theses observable pro-
vides additional information.

essarily related with a smaller volume of the system at chemical
freeze-out.

The change of volume with energy on the freeze-out line is
calculated by comparing data on dNπ−/dy at mid rapidity for
different

√
s with HRG model results.3 We then obtain, V =

[dNπ−/dy]data/nHRG
π− [T , µ⃗], where in the HRG model the negatively

charged pion density nHRG
π− is calculated using the relation between√

s and the thermal parameters given in Eqs. (1) and (2). Our re-
sults on V (

√
s ) extracted in this way are consistent with those

obtained recently in Ref. [10].
Fig. 2 (top left) shows the energy dependence of the first mo-

ment (Mp−p̄) of net proton number in the HRG model with a
volume parameter, V T 3, rescaled by the factor K ≃ 0.22. One can
see in this figure that the HRG model results are consistent with
the data.

Taking into account the results for various ratios of moments
shown in Fig. 1 it immediately follows that the HRG model will
also describe the energy dependence of other moments, i.e. vari-
ance, skewness and kurtosis. These are also shown in Fig. 2.

The good agreement of HRG model calculations with RHIC data
allows us to make predictions for different moments of charge
fluctuations covering the energy range of the RHIC low energy scan
and the lowest energy for heavy ion collision at the LHC. We sum-
marize the HRG model results at different energies in Table 2.

4.2. Electric charge and strangeness fluctuations

More subtle dependencies on temperature and baryon number
arise in the case of electric charge and strangeness fluctuations
where multiple charged hadrons get larger weight in higher mo-
ments and where meson as well as baryon sectors contribute. This
results in characteristic deviations of the kurtosis, more precisely
κQ σ 2

Q = χ (4)
Q /χ (2)

Q , from unity and also the skewness no longer is
simply related to tanh(µB/T ). In the case of electric charge fluc-
tuations we may separate contributions of different charge sectors
to the partition function. For instance, for n even, we may then
obtain for moments of electric charge fluctuations,

χ (n)
Q = 1

V T 3

(
ln Z |Q |=1(T ,µB ,µQ ,µS)

+ 2n ln Z |Q |=2(T ,µB ,µQ ,µS)
)
, (21)

where the logarithms of partition functions, ln Z |Q | , are obtained
from Eq. (5) by restricting the sums over mesons and baryons
to the relevant charge sectors. From this it is obvious that devi-
ations of κQ σ 2

Q = χ (4)
Q /χ (2)

Q from unity only arises from contribu-
tions of baryons with electric charge 2. Similarly the odd moments
are modified. On the freeze-out curve this leads to a characteris-
tic dependence of ratios of moments on the collision energy that
is shown in Fig. 3. In the energy range relevant for current low-
energy runs at RHIC [12] as well as at LHC one has κQ σ 2

Q ≃ 1.8,
which varies only little with

√
sN N .

In addition one may analyze correlations between baryon num-
ber and different moments of charge fluctuations. Some results are
shown in the left hand part of Fig. 3.

For completeness we show in Fig. 4 fluctuations and correla-
tions in the strangeness sector of the HRG model. In practice it
may be more difficult to compare this with experimental results
as it will be crucial that the analysis allows for strangeness fluc-
tuations in a sub-volume and will not impose the constraint of
vanishing strangeness on event-by-event basis.

3 For a compilation of heavy ion data on charged pion yields at mid–rapidity at
different energies see e.g. Ref. [8].

Data: STAR, Lines: HRG. [F. Karsch, K. Redlich, PLB 695, 136 (2011)]
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Moments versus differential correlation functions

problem 1: what is optimal range of acceptance?

full coverage for 208Pb - 208Pb: no fluctuations at all

NB = 2× 208 = 416, NQ = 2× 82 = 164, NS = 0.

too small coverage: Poisson statistics

problem 2: fireball is not in thermal equilibrium

approximate local equilibrium =̂ viscous fluid dynamics

need more differential description including dependence on rapidity,
azimuthal angle and transverse momentum
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Correlation functions as generalized moments / cumulants

correlation function of baryon number density

C
(B,B)
2 (t, ~x; t′, ~x′) = 〈nB(t, ~x)nB(t′, x′)〉 − 〈nB(t, ~x)〉〈nB(t′, ~x′) 〉

integral over equal time correlation gives variance

σ2
B = 〈δN2

B〉 =

∫
V

d3x

∫
V

d3x′ C
(B,B)
2 (t, ~x; t, ~x′)

similar for higher order correlation functions

thermodynamic variables can be traded

(ε, nB , nQ, nS) ↔ (T, µB , µQ, µS)
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Cooper-Frye freeze-out

0 2 4 6 8 10
r @fmD0

2

4

6

8

10

12

14

Τ @fm�cD

single particle distribution [Cooper & Frye (1974)]

E
dNi
d3p

= −pµ
∫

Σf

dΣµ
(2π)3

fi(p;x)

with close-to equilibrium distribution

fi(p;x) = fi(p;T (x), µi(x), uµ(x), πµν(x), ϕ(x), . . .)

precise position of freeze-out surface is unknown, usual assumption

〈T (x)〉 = Tfo = const
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Particle correlations from freeze-out

[Floerchinger & Guenduez, work in progress]

can be used for expectation values...〈
E
dNi
d3p

〉
=

〈
−pµ

∫
Σf

dΣµ

(2π)3
fi(p;x)

〉

... but also for correlation functions〈
E
dNi
d3p

E′
dNj
d3p′

〉
= pµp

′
ν

∫
Σf

dΣµ

(2π)3

dΣ′ν

(2π)3

〈
fi(p;x) fj(p

′;x′)
〉

the right hand side involves correlation functions〈
fi(p;x) fj(p

′;x′)
〉

between different points x and x′ on the freeze-out surface.

works similar for higher order correlation functions.

thermal fluctuations and initial state fluctuations contribute to correlations
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Particle correlations from field correlation functions
[Floerchinger & Guenduez, work in progress]

one can decompose

T (x) = T̄ (x) + δT (x), µ(x) = µ̄(x) + δµ(x)

and expand the distribution functions

fi(p;x) =fi(p; T̄ (x), µ̄i(x), . . .)

+ δT (x)
∂

∂T
fi(p; T̄ (x), µ̄(x), . . .)

+ δµ(x)
∂

∂µ
fi(p; T̄ (x), µ̄(x), . . .) + . . .

two-particle correlation function governed by integral over〈
fi(p;x) fj(p

′;x′)
〉

=fi(p; T̄ (x), . . .) fj(p
′; T̄ (x′), . . .)

+
〈
δT (x)δT (x′)

〉 ∂
∂T

fi(p; T̄ (x), . . .)
∂

∂T
fj(p; T̄ (x′), . . .)

+
〈
δµ(x)δµ(x′)

〉 ∂
∂µ

fi(p; T̄ (x), . . .)
∂

∂µ
fj(p; T̄ (x′), . . .)

+
〈
δϕ(x)δϕ(x′)

〉 ∂
∂ϕ

fi(p; T̄ (x), . . .)
∂

∂ϕ
fj(p; T̄ (x′), . . .)

+ . . .
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Critical physics

critical physics shows up in correlation functions

in homogeneous space

〈ϕ(~x)ϕ(~x+ ~r)〉 ∼ 1

rd−2+η
exp

(
−r
ξ

)
with correlation length

ξ ∼ 1

|T − Tc|ν

critical slowing down triggers drop out of equilibrium
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Relativistic fluid dynamics

evolution of baryon number density from conservation law ∇µNµ = 0

uµ∂µn+ n∇µuµ +∇µνµ = 0

diffusion current να determined by heat conductivity κ

να = −κ
[
nT

ε+ p

]2

∆αβ∂β
( µ
T

)

can be extended to second order in gradients

similar for net strangeness, charm and beauty currents

evolution of electric current needs also electro-magnetic fields Fµν
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Evolution of baryon number in fluid dynamics

small perturbation in static medium with uµ = (1, 0, 0, 0)

∂

∂t
δn(t, ~x) = D~∇2δn(t, ~x)

baryon number diffusion constant

D = κ

[
nT

ε+ p

]2(
∂(µ/T )

∂n

)
ε

heat capacity κ appears here because

baryon diffusion
in Landau frame

=̂
heat conduction
in Eckart frame

is D finite for n→ 0 ?
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Heat conductivity

heat conductivity of QCD rather poorly understood theoretically so far.

from perturbation theory [Danielewicz & Gyulassy, PRD 31, 53 (1985)]

κ ∼ T 4

µ2α2
s lnαs

(µ� T )

from AdS/CFT [Son & Starinets, JHEP 0603 (2006)]

κ = 8π2 T

µ2
η = 2π

sT

µ2
(µ� T )

baryon diffusion constant D finite for µ→ 0 !
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Bjorken expansion
[Floerchinger & Martinez, PRC 92, 064906 (2015)]

consider Bjorken type expansion

∂τ ε+ (ε+ p)
1

τ
−
(

4
3
η + ζ

) 1

τ2
= 0

∂τn+ n
1

τ
= 0

heat conductivity κ does not enter by symmetry argument

compare ideal gas to lattice QCD equation of state

(a) (b)

μ0 (GeV)
0.05

0.15

0.25

0.35

0.45

0.55

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

μ [GeV]

T
[G

eV
]

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

μ [GeV]

T
[G

eV
]

ideal gas EOS lattice QCD EOS [Borsanyi et al. (2012)]
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Perturbations around Bjorken expansion

[Floerchinger & Martinez, PRC 92, 064906 (2015)]

consider situation with 〈n(x)〉 = 〈µ(x)〉 = 0

local event-by-event fluctuation δn 6= 0

concentrate now on Bjorken flow profile for uµ

consider perturbation δn

∂τδn+
1

τ
δn−D(τ)

(
∂2
x + ∂2

y +
1

τ2
∂2
η

)
δn = 0

structures in transverse and rapidity directions are “flattened out” by heat
conductive dissipation
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Solution by Bessel-Fourier expansion
[Floerchinger & Martinez, PRC 92, 064906 (2015)]

expand perturbations like

δn(τ, r, φ, η) =

∫ ∞
0

dk k

∞∑
m=−∞

∫
dq

2π
δn(τ, k,m, q) ei(mφ+qη)Jm(kr)

leads to

∂τδn+
1

τ
δn+D(τ)

(
k2 +

q2

τ2

)
δn = 0.

ratio of final to initial fluctuations
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0.02

0.04

0.06

0.08

0.10

δ
n
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δ
n
(τ

f
,q
)
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0

η/s = 1/(4π) δn0≠ 0

k[1/fm] q

only long-range fluctuations survive diffusive damping
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Initial transverse densities for conserved charge fluctuations
[Martinez, Sievert, Wertepny & Noronha-Hostler, 1911.10272]

conserved charge distribution from gluon to quark-anti-quark splitting

Monte-Carlo implementation

Initial state fluctuations of QCD conserved charges in heavy-ion collisions

Mauricio Martinez,1, ⇤ Matthew D. Sievert,2, 3, † Douglas E. Wertepny,4, ‡ and Jacquelyn Noronha-Hostler2, 3, §

1North Carolina State University, Raleigh, NC 27695, USA
2University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States

3Rutgers University, Piscataway, NJ 08854, USA
4Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Dated: November 26, 2019)

We initialize the Quantum Chromodynamic conserved charges of baryon number, strangeness,
and electric charge arising from gluon splitting into quark-antiquark pairs for the initial conditions
of relativistic heavy-ion collisions. A new Monte Carlo procedure that can sample from a generic
energy density profile is presented, called Initial Conserved Charges in Nuclear Geometry (ICCING),
based on quark and gluon multiplicities derived within the color glass condensate (CGC) e↵ective
theory. We find that while baryon number and electric charge have nearly identical geometries to
the energy density profile, the initial strangeness distribution is considerable more eccentric and
is produced primarily at the hot spots corresponding to temperatures of T & 400 MeV for PbPb
collisions at

p
sNN = 5.02 TeV.

Introduction One of the most crucial breakthroughs in
the study of heavy-ion collisions was the understanding
that event-by-event fluctuating initial conditions are nec-
essary to describe two-particle correlations [1] and in par-
ticular the triangular flow v3 [2]. Following this revolu-
tion, initial conditions at µB = 0 first included energy
density fluctuations [3], then initial flow [4–6], and more
recently the full shear stress tensor [7] (see also [8, 9]). At
lower beam energies a finite net baryon density must be
initialized as well, although no single approach to this has
been settled on at the moment [10–13]. These approaches
at finite net baryon densities occur at the nucleonic level
(i.e. they do not consider partonic structure inside the
nucleons) and primarily focus only on initializing the net
baryon density (with the exception of [14]). Important
steps toward incorporating baryon stopping in a CGC
picture have been made as well [15, 16].

Despite the focus on finite net baryon densities, signifi-
cant questions still remain at µB = 0 regarding the three
QCD conserved charges of baryon number B, strangeness
S, and electric charge Q. A tension remains between light
and strange particle yields [17, 18], fluctuations [19], and
flow harmonics [20, 21], and di�culties persist describing
strangeness enhancement in small systems [22] (although
the core-corona approach may be an alternative [23]).
Additionally, there appears to be charge splitting both
in large and small systems [24–26] but the origin of the
e↵ect is still under debate [27, 28]. It is not yet clear if
these issues arise from the initial conditions or medium
e↵ects (such as [29–36]).

In order to disentangle BSQ dynamics from the initial
state versus the medium, we create the first 2D model of
event-by-event sea quark fluctuations on top of a generic
energy density profile at LHC energies as shown in Fig. 1.
Previous studies have focused on quark degrees of free-
dom during the approach to thermalization and chemical
equilibrium [37–40]. In this procedure we first sample
gluons from a generic 2D energy density profile, then the

probability of g ! qq̄ splitting into various flavors, and fi-
nally the displacement of the quarks relative to the gluon.
The probabilities utilized in this sampling procedure are
based on multiplicities derived in a previous CGC calcu-
lation [41]. While at LHC energies the sea quarks make
a subdominant contribution to the initial energy density
compared to gluons [42], they provide the leading source
of the conserved charges BSQ.
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FIG. 1. An event after being fully sampled by the ICCING
algorithm, which supplements the initial energy density with
new distributions of the three conserved charges B, S, Q.

Due to the nontrivial mass threshold of ss̄ pair produc-
tion, the initial strangeness distribution arises not from
the bulk collision geometry, but from hot spots in the
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Fluctuations at freeze-out

background-perturbation splitting can also be used at freeze-out

interesting observable is net baryon number

dNB
dφdη

=
dNbaryon

dφdη
− dNanti-baryon

dφdη

correlation functions and distributions contain information about baryon
number fluctuations

two-particle correlation function of net baryon number

CBaryon(φ1 − φ2, η1 − η2) =

〈
dNB
dφ1dη1

dNB
dφ2dη2

〉
c
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Baryon number correlation function

in Fourier representation

CBaryon(∆φ,∆η) =
∞∑

m=−∞

∫
dq

2π
C̃Baryon(m, q) eim∆φ+iq∆η

heat conductivity leads to exponential suppression

C̃Baryon(m, q) = e−m
2I1−q2I2 C̃Baryon(m, q)

∣∣
κ=0

I1 and I2 can be approximated as

I1 ≈
∫ τf

τ0

dτ
2

R2
κ

[
nT

ε+ p

]2 (∂(µ/T )

∂n

)
ε

I2 ≈
∫ τf

τ0

dτ
2

τ2
κ

[
nT

ε+ p

]2 (∂(µ/T )

∂n

)
ε

I2 � I1 would lead to long-range correlations in rapidity direction
(”baryon number ridge”)
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More detailed theory: mode expansion

Bessel-Fourier expansion of initial transverse density
[Floerchinger & Wiedemann (2013), see also Coleman-Smith, Petersen & Wolpert (2012)]

ε(r, φ, η) = ε̄(r)
[
1 +

∑
m,l

∫
k

w
(m)
l (k) eimφ+ikη Jm(z

(m)
l ρ(r))

]

azimuthal wavenumber m, radial wavenumber l, rapidity wavenumber k

can also be used for conserved charges

fast convergence

(original) (m, l ≤ 5) (m, l ≤ 10) (m, l ≤ 20)

23 / 25



Fluid dynamic response
Fluid dynamics of heavy ion collisions with Mode expansion (FluiduM)
[Floerchinger & Wiedemann (2014), Floerchinger, Grossi & Lion (2019)]

evolution of perturbations mode-by-mode
e. g. energy density, m = 2, l = 3

Fluid dynamic response

evolution of perturbations

Energy density perturbation

8 / 19

free streaming hadrons

quark-gluon plasma

can also be used for conserved charges
particle distribution through response functions

dN

pT dpT dφdy
= S0(pT )︸ ︷︷ ︸

from background

[
1 +

∑
m,l

w
(m)
l eimφ θ

(m)
l (pT )

︸ ︷︷ ︸
from fluctuations

+ . . .
]

resonance decays [Mazeliauskas, Floerchinger, Grossi & Teaney (2019)]
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Conclusions

differential correlation functions of conserved quantum numbers
net baryon number
electric charge
strangeness
charm, beauty

contain very interesting physics information

sensitive to QGP transport properties
heat conductivity =̂ baryon diffusion
electric conductivity
heavy quark diffusion

need theoretical and experimental effort to understand this in detail
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