A quantum information perspective on relativistic fluid dynamics and quantum fields out-of-equilibrium

Stefan Floerchinger (Heidelberg U.)

Theoretical Foundations of Relativistic Hydrodynamics, BIRS Workshop, Banff, 27 November 2019.

Entropy and information

[Claude Shannon (1948)]

- ullet consider a random variable x with probability distribution p(x)
- ullet information content or "surprise" associated with outcome x

$$i(x) = -\ln p(x)$$

• Entropy is expectation value of information content

$$S = \langle i(x) \rangle = -\sum p(x) \ln p(x)$$

Entropy in quantum theory

[John von Neumann (1932)]

$$S = -\mathsf{Tr}\{\rho \ln \rho\}$$

- ullet based on the quantum density operator ho
- for pure states $\rho = |\psi\rangle\langle\psi|$ one has S=0
- \bullet for mixed states $\rho = \sum_j p_j |j\rangle\langle j|$ one has $S = -\sum_j p_j \ln p_j > 0$
- unitary time evolution conserves entropy

$$-{\rm Tr}\{(U\rho U^\dagger)\ln(U\rho U^\dagger)\} = -{\rm Tr}\{\rho\ln\rho\} \qquad \to \qquad S = {\rm const.}$$

quantum information is globally conserved

Relativistic fluid dynamics

- approximate description of quantum field dynamics
- local dissipation = local entropy production

$$-\nabla_{\mu}s^{\mu}(x) > 0$$

• e. g. in Navier-Stokes approximation

$$-\nabla_{\mu}s^{\mu} = \frac{1}{T} \left[2\eta \sigma_{\mu\nu} \sigma^{\mu\nu} + \zeta (\nabla_{\rho} u^{\rho})^2 \right]$$

crucial difference to quantum field theory: entropy not conserved

What is an entropy current?

can not be density of global von-Neumann entropy for closed system

$$\int_{\Sigma} d\Sigma_{\mu} \ s^{\mu}(x) \neq -\text{Tr}\left\{\rho \ln \rho\right\}$$

kinetic theory for weakly coupled (quasi-) particles [Boltzmann (1890)]

$$s^{\mu}(x) = -\int \frac{d^3p}{p^0} \left\{ p^{\mu} f(x, p) \ln f(x, p) \right\}$$

- molecular chaos: keep only single particle distribution f(x,p)
- how to go beyond weak coupling / quasiparticles?
- aim: local notion of entropy in QFT

Entropy and entanglement

ullet consider a split of a quantum system into two A+B

ullet reduced density operator for system A

$$\rho_A = \mathsf{Tr}_B\{\rho\}$$

entropy associated with subsystem A

$$S_A = -\mathsf{Tr}_A \{ \rho_A \ln \rho_A \}$$

- pure **product** state $\rho = \rho_A \otimes \rho_B$ leads to $S_A = 0$
- pure entangled state $\rho \neq \rho_A \otimes \rho_B$ leads to $S_A > 0$
- S_A is called **entanglement entropy**

Classical statistics

- ullet consider system of two random variables x and y
- ullet joint probability p(x,y) , joint entropy

$$S = -\sum_{x,y} p(x,y) \ln p(x,y)$$

- reduced or marginal probability $p(x) = \sum_{y} p(x, y)$
- reduced or marginal entropy

$$S_x = -\sum_x p(x) \ln p(x)$$

 one can prove: joint entropy is greater than or equal to reduced entropy

$$S \ge S_x$$

• globally pure state S=0 is also locally pure $S_x=0$

Quantum statistics

- ullet consider system with two subsystems A and B
- ullet combined state ho , combined or full entropy

$$S = -\mathsf{Tr}\{\rho \ln \rho\}$$

- reduced density matrix $\rho_A = \text{Tr}_B\{\rho\}$
- reduced or entanglement entropy

$$S_A = -\mathsf{Tr}_A \{ \rho_A \ln \rho_A \}$$

• for quantum systems entanglement makes a difference

$$S \ngeq S_A$$

- coherent information $I_{B \rangle A} = S_A S$ can be positive!
- globally pure state S=0 can be locally mixed $S_A>0$

Entanglement entropy in quantum field theory

ullet entanglement entropy of region A is a local notion of entropy

$$S_A = -\mathsf{tr}_A \left\{ \rho_A \ln \rho_A \right\} \qquad \qquad \rho_A = \mathsf{tr}_B \left\{ \rho \right\}$$

however, it is infinite already in vacuum state

$$S_A = \frac{\mathsf{const}}{\epsilon^{d-2}} \int_{\partial A} d^{d-2} \sigma \sqrt{h} + \dots$$

- UV divergence proportional to entangling surface
- quantum fields are very strongly entangled already in vacuum
- \bullet Theorem [Reeh & Schlieder (1961)]: local operators in region A can create all particle states

Relative entropy

• relative entropy of two density matrices

$$S(\rho|\sigma) = \operatorname{tr} \left\{ \rho \left(\ln \rho - \ln \sigma \right) \right\}$$

- ullet measures how well state ho can be distinguished from a model σ
- Gibbs inequality: $S(\rho|\sigma) \ge 0$
- $S(\rho|\sigma) = 0$ if and only if $\rho = \sigma$
- quantum generalization of Kullback-Leibler divergence

Relative entanglement entropy

consider now reduced density matrices

$$\rho_A = \mathsf{Tr}_B\{\rho\}, \qquad \sigma_A = \mathsf{Tr}_B\{\sigma\}$$

define relative entanglement entropy

$$S_A(\rho|\sigma) = \text{Tr}\left\{\rho_A\left(\ln\rho_A - \ln\sigma_A\right)\right\}$$

- ullet measures how well ho is represented by σ locally in region A
- UV divergences cancel: contains real physics information
- well defined in quantum field theory [Araki (1977), see also Witten (2018)]

An approximate local description

- consider non-equilibrium situation with
 - true density matrix ρ
 - local equilibrium approximation

$$\sigma = \frac{1}{Z} e^{-\int d\Sigma_{\mu} \{\beta_{\nu}(x) T^{\mu\nu} + \alpha(x) N^{\mu}\}}$$

- reduced density matrices $\rho_A = \text{Tr}_B\{\rho\}$ and $\sigma_A = \text{Tr}_B\{\sigma\}$
- ullet σ is very good model for ρ in region A when

$$S_A = \mathsf{Tr}_A \{ \rho_A (\ln \rho_A - \ln \sigma_A) \} \to 0$$

ullet does *not* imply that globally $ho=\sigma$

Monotonicity of relative entropy

monotonicity of relative entropy

$$S(\mathcal{N}(\rho)|\mathcal{N}(\sigma)) \le S(\rho|\sigma)$$

with ${\mathcal N}$ completely positive, trace-preserving map

ullet $\mathcal N$ unitary evolution

$$S(\mathcal{N}(\rho)|\mathcal{N}(\sigma)) = S(\rho|\sigma)$$

ullet ${\cal N}$ open system evolution with generation of entanglement to environment

$$S(\mathcal{N}(\rho)|\mathcal{N}(\sigma)) < S(\rho|\sigma)$$

Local form of second law

• for small volume $A \to 0$ (hypothesis)

$$S_A(\rho|\sigma) = \int_A d\Sigma_\mu s^\mu(\rho|\sigma)$$

local form of second law of thermodynamics

$$-\nabla_{\mu} s^{\mu}(\rho|\sigma) \le 0$$

 \bullet relative entanglement entropy between ρ and thermal state σ is non-increasing

Quantum field dynamics

- quantum information is spread
- locally, quantum state approaches mixed state form
- ullet full loss of local quantum information = local thermalization
- \bullet fluid dynamics + coherent quantum fields with local dissipation

Local equilibrium & partition function

[Floerchinger, JHEP 1609, 099 (2016)]

- (a) Global thermal equilibrium $d\tau \qquad \qquad d\tau \qquad d$
- local equilibrium with T(x) and $u^{\mu}(x)$

$$\beta^{\mu}(x) = \frac{u^{\mu}(x)}{T(x)}$$

represent partition function as functional integral with periodicity

$$\phi(x^{\mu} - i\beta^{\mu}(x)) = \pm \phi(x^{\mu})$$

 \bullet partition function Z[J], Schwinger functional W[J] in Euclidean

$$Z[J] = e^{W_E[J]} = \int D\phi \, e^{-S_E[\phi] + \int_x J\phi}$$

$Entropy\ production$

[Floerchinger, JHEP 1609, 099 (2016)]

- variational principle with effective dissipation from analytic continuation
- analysis of general covariance leads to entropy current and local entropy production

$$\nabla_{\mu} s^{\mu} = \frac{1}{\sqrt{g}} \frac{\delta \Gamma_D}{\delta \Phi_a} \Big|_{\rm ret} \beta^{\lambda} \partial_{\lambda} \Phi_a + \beta_{\mu} \nabla_{\nu} \left(-\frac{2}{\sqrt{g}} \frac{\delta \Gamma_D}{\delta g_{\mu\nu}} \Big|_{\rm ret} \right)$$

• can likely be understood as entanglement generation

Thermalization beyond collisions

- quantum fields can be locally thermal without collisions
- horizons: black holes, de-Sitter space
- space-time dynamics of entanglement

Entanglement, QCD strings and thermalization

- hadronization in Lund string model (e. g. PYTHIA)
- ullet reduced density matrix for region A

$$\rho_A = \mathsf{Tr}_B\{\rho\}$$

entanglement entropy

$$S_A = -\mathsf{Tr}_A \{ \rho_A \ln \rho_A \}$$

could this lead to thermal-like effects?

Local density matrix and temperature in expanding string

[Berges, Floerchinger, Venugopalan, *Thermal excitation spectrum from entanglement in an expanding quantum string*, PLB778, 442 (2018)]

- Bjorken time $\tau = \sqrt{t^2 z^2}$, rapidity $\eta = \operatorname{arctanh}(z/t)$
- local density matrix thermal at early times as result of entanglement

$$T(\tau) = \frac{\hbar}{2\pi\tau}$$

 \bullet Hawking-Unruh temperature in Rindler space $T(x)=\frac{\hbar c}{2\pi x}$

Conclusions

- new perspectives on relativistic fluids dynamics from quantum information theory
- relative entanglement entropy useful to describe local thermalization
- quantum field theoretic description of relativistic fluid dynamics with two density matrices
- ullet true density matrix ho evolves unitary
- ullet fluid model σ agrees locally but evolves non-unitary
- local thermalization without collisions possible

$One-particle\ irreducible\ or\ quantum\ effective\ action$

ullet in Euclidean domain $\Gamma[\phi]$ defined by Legendre transform

$$\Gamma_E[\Phi] = \int_x J_a(x)\Phi_a(x) - W_E[J]$$

with expectation values

$$\Phi_a(x) = \frac{1}{\sqrt{g}(x)} \frac{\delta}{\delta J_a(x)} W_E[J]$$

Euclidean field equation

$$\frac{\delta}{\delta \Phi_a(x)} \Gamma_E[\Phi] = \sqrt{g}(x) J_a(x)$$

resembles classical equation of motion for J=0

need analytic continuation to obtain a viable equation of motion

Analytic continuation

ofor homogeneous background field and in global equilibrium

$$\begin{split} &\frac{\delta^2}{\delta J_a(-p)\delta J_b(q)} W_E[J] = G_{ab}(p) \ (2\pi)^4 \delta^{(4)}(p-q) \\ &\frac{\delta^2}{\delta \Phi_a(-p)\delta \Phi_b(q)} \Gamma_E[\Phi] = P_{ab}(p) \ (2\pi)^4 \delta^{(4)}(p-q) \end{split}$$

from definition of effective action

$$\sum_{b} G_{ab}(p) P_{bc}(p) = \delta_{ac}$$

- \bullet correlation functions can be analytically continued in $\omega = -u^\mu p_\mu$
- ullet branch cut on real frequency axis $\omega \in \mathbb{R}$

Variational principle with effective dissipation

[Floerchinger, JHEP 1609, 099 (2016)]

decompose inverse two-point function

$$P_{ab}(p) = P_{1,ab}(p) - is_{\mathsf{I}}(-u^{\mu}p_{\mu}) P_{2,ab}(p)$$

with $s_{\rm I}(\omega) = {\rm sign}({\rm Im}\;\omega)$

• in position space, replace

$$\begin{split} s_{\rm I} \left(-u^\mu p_\mu \right) &= {\rm sign} \left({\rm Im} (-u^\mu p_\mu) \right) \\ &\to {\rm sign} \left({\rm Im} \left(i u^\mu \frac{\partial}{\partial x^\mu} \right) \right) = {\rm sign} \left({\rm Re} \left(u^\mu \frac{\partial}{\partial x^\mu} \right) \right) = s_{\rm R} \left(u^\mu \frac{\partial}{\partial x^\mu} \right) \end{split}$$

- ullet this symbol appears also in $\Gamma[\Phi]$
- real and causal field equations follow from

$$\left. \frac{\delta \Gamma[\Phi]}{\delta \Phi_a(x)} \right|_{\text{ret}} = 0$$

with certain algebraic rules for $s_{\rm R}\left(u^{\mu}\frac{\partial}{\partial x^{\mu}}\right) \to \pm 1$

The thermal model puzzle

- ullet elementary particle collision experiments such as $e^+\ e^-$ collisions show some thermal-like features
- particle multiplicities well described by thermal model

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

- conventional thermalization by collisions unlikely
- more thermal-like features difficult to understand in PYTHIA [Fischer, Sjöstrand (2017)]
- alternative explanations needed

QCD strings

- particle production from QCD strings
- Lund string model (e. g. PYTHIA)
- different regions in a string are entangled
- ullet subinterval A is described by reduced density matrix

$$\rho_A = \mathsf{Tr}_B\{\rho\}$$

- reduced density matrix is of mixed state form
- could this lead to thermal-like effects?

$Microscopic\ model$

• QCD in 1+1 dimensions described by 't Hooft model

$$\mathscr{L} = -\bar{\psi}_i \gamma^{\mu} (\partial_{\mu} - ig\mathbf{A}_{\mu})\psi_i - m_i \bar{\psi}_i \psi_i - \frac{1}{2} \operatorname{tr} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu}$$

- ullet fermionic fields ψ_i with sums over flavor species $i=1,\dots,N_f$
- ullet SU (N_c) gauge fields ${f A}_\mu$ with field strength tensor ${f F}_{\mu
 u}$
- gluons are not dynamical in two dimensions
- ullet gauge coupling g has dimension of mass
- non-trivial, interacting theory, cannot be solved exactly
- \bullet spectrum of excitations known for $N_c \to \infty$ with $g^2 N_c$ fixed ['t Hooft (1974)]

Schwinger model

• QED in 1+1 dimension

$$\mathscr{L} = -\bar{\psi}_i \gamma^{\mu} (\partial_{\mu} - iqA_{\mu}) \psi_i - m_i \bar{\psi}_i \psi_i - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

- geometric confinement
- U(1) charge related to string tension $q = \sqrt{2\sigma}$
- for single fermion one can bosonize theory exactly [Coleman, Jackiw, Susskind (1975)]

$$S = \int d^2x \sqrt{g} \left\{ -\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} M^2 \phi^2 - \frac{m q e^{\gamma}}{2\pi^{3/2}} \cos\left(2\sqrt{\pi}\phi + \theta\right) \right\}$$

- Schwinger bosons are dipoles $\phi \sim \bar{\psi} \psi$
- \bullet scalar mass related to U(1) charge by $M=q/\sqrt{\pi}=\sqrt{2\sigma/\pi}$
- ullet massless Schwinger model m=0 leads to free bosonic theory

Expanding string solution 1

- ullet external quark-anti-quark pair on trajectories $z=\pm t$
- \bullet coordinates: Bjorken time $\tau=\sqrt{t^2-z^2},$ rapidity $\eta={\rm arctanh}(z/t)$
- $\bullet \ \mathrm{metric} \ ds^2 = -d\tau^2 + \tau^2 d\eta^2$
- \bullet symmetry with respect to longitudinal boosts $\eta \to \eta + \Delta \eta$

Expanding string solution 2

ullet Schwinger boson field depends only on au

$$\bar{\phi} = \bar{\phi}(\tau)$$

equation of motion

$$\partial_{\tau}^{2}\bar{\phi} + \frac{1}{\tau}\partial_{\tau}\bar{\phi} + M^{2}\bar{\phi} = 0.$$

• Gauss law: electric field $E=q\phi/\sqrt{\pi}$ must approach the U(1) charge of the external quarks $E\to q_{\rm e}$ for $\tau\to 0_+$

$$\bar{\phi}(\tau) \to \frac{\sqrt{\pi}q_{\mathsf{e}}}{q} \qquad (\tau \to 0_+)$$

• solution of equation of motion [Loshaj, Kharzeev (2011)]

$$ar{\phi}(au) = rac{\sqrt{\pi}q_{\mathsf{e}}}{q} J_0(M au)$$

Gaussian states

- theories with quadratic action often have Gaussian density matrix
- fully characterized by field expectation values

$$\bar{\phi}(x) = \langle \phi(x) \rangle, \qquad \bar{\pi}(x) = \langle \pi(x) \rangle$$

and connected two-point correlation functions, e. g.

$$\langle \phi(x)\phi(y)\rangle_c = \langle \phi(x)\phi(y)\rangle - \bar{\phi}(x)\bar{\phi}(y)$$

ullet if ho is Gaussian, also reduced density matrix ho_A is Gaussian

Entanglement entropy for Gaussian state

ullet entanglement entropy of Gaussian state in region A [Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

$$S_A = \frac{1}{2} \operatorname{Tr}_A \left\{ D \ln(D^2) \right\}$$

- ullet operator trace over region A only
- matrix of correlation functions

$$D(x,y) = \begin{pmatrix} -i\langle\phi(x)\pi(y)\rangle_c & i\langle\phi(x)\phi(y)\rangle_c \\ -i\langle\pi(x)\pi(y)\rangle_c & i\langle\pi(x)\phi(y)\rangle_c \end{pmatrix}$$

- involves connected correlation functions of field $\phi(x)$ and canonically conjugate momentum field $\pi(x)$
- ullet expectation value $ar{\phi}$ does not appear explicitly
- ullet coherent states and vacuum have equal entanglement entropy S_A

$Rapidity\ interval$

- consider rapidity interval $(-\Delta\eta/2,\Delta\eta/2)$ at fixed Bjorken time τ
- entanglement entropy does not change by unitary time evolution with endpoints kept fixed
- can be evaluated equivalently in interval $\Delta z = 2\tau \sinh(\Delta\eta/2)$ at fixed time $t = \tau \cosh(\Delta\eta/2)$
- need to solve eigenvalue problem with correct boundary conditions

Bosonized massless Schwinger model

- entanglement entropy understood numerically for free massive scalars [Casini, Huerta (2009)]
- entanglement entropy density $dS/d\Delta\eta$ for bosonized massless Schwinger model $(M=\frac{q}{\sqrt{\pi}})$

Conformal limit

 \bullet For $M\tau \to 0$ one has conformal field theory limit [Holzhey, Larsen, Wilczek (1994)]

$$S(\Delta z) = \frac{c}{3} \ln \left(\Delta z / \epsilon \right) + \text{constant}$$

with small length ϵ acting as UV cutoff.

Here this implies

$$S(au,\Delta\eta)=rac{c}{3}\ln{(2 au\sinh(\Delta\eta/2)/\epsilon)}+{
m constant}$$

- ullet Conformal charge c=1 for free massless scalars or Dirac fermions.
- · Additive constant not universal but entropy density is

$$\begin{split} \frac{\partial}{\partial \Delta \eta} S(\tau, \Delta \eta) = & \frac{c}{6} \mathrm{coth}(\Delta \eta / 2) \\ \rightarrow & \frac{c}{6} \qquad (\Delta \eta \gg 1) \end{split}$$

• Entropy becomes extensive in $\Delta \eta$!

Universal entanglement entropy density

 for very early times "Hubble" expansion rate dominates over masses and interactions

$$H = \frac{1}{\tau} \gg M = \frac{q}{\sqrt{\pi}}, m$$

- theory dominated by free, massless fermions
- universal entanglement entropy density

$$\frac{dS}{d\Delta\eta} = \frac{c}{6}$$

with conformal charge c

• for QCD in 1+1 D (gluons not dynamical, no transverse excitations)

$$c = N_c \times N_f$$

from fluctuating transverse coordinates (Nambu-Goto action)

$$c = N_c \times N_f + 2 \approx 9 + 2 = 11$$

Modular or entanglement Hamiltonian 1

- conformal field theory
- \bullet hypersurface Σ with boundary on the intersection of two light cones
- reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta (2017), see also Candelas, Dowker (1979)]

$$\rho_A = \frac{1}{Z_A} e^{-K}, \qquad Z_A = \operatorname{Tr} e^{-K}$$

 \bullet modular or entanglement Hamiltonian K

Modular or entanglement Hamiltonian 2

modular or entanglement Hamiltonian is local expression

$$K = \int_{\Sigma} d\Sigma_{\mu} \, \xi_{\nu}(x) \, T^{\mu\nu}(x).$$

- ullet energy-momentum tensor $T^{\mu
 u}(x)$ of excitations
- vector field

$$\xi^{\mu}(x) = \frac{2\pi}{(q-p)^2} [(q-x)^{\mu}(x-p)(q-p) + (x-p)^{\mu}(q-x)(q-p) - (q-p)^{\mu}(x-p)(q-x)]$$

end point of future light cone \emph{q} , starting point of past light cone \emph{p}

inverse temperature and fluid velocity

$$\xi^{\mu}(x) = \beta^{\mu}(x) = \frac{u^{\mu}(x)}{T(x)}$$

Modular or entanglement Hamiltonian 3

• for $\Delta \eta \to \infty$: fluid velocity in τ -direction, τ -dependent temperature

$$T(\tau) = \frac{\hbar}{2\pi\tau}$$

- Entanglement between different rapidity intervals alone leads to local thermal density matrix at very early times!
- Hawking-Unruh temperature in Rindler wedge $T(x) = \hbar c/(2\pi x)$

Physics picture

- coherent state vacuum at early time contains entangled pairs of quasi-particles with opposite wave numbers
- on finite rapidity interval $(-\Delta \eta/2, \Delta \eta/2)$ in- and out-flux of quasi-particles with thermal distribution via boundaries
- technically limits $\Delta \eta \to \infty$ and $M \tau \to 0$ do not commute
 - $\Delta \eta \to \infty$ for any finite $M \tau$ gives pure state
 - M au o 0 for any finite $\Delta \eta$ gives thermal state with $T=1/(2\pi au)$

Particle production in massive Schwinger model

[ongoing work with Lara Kuhn, Jürgen Berges]

- for expanding strings
- \bullet asymptotic particle number depends on $g\sim m/q$
- \bullet exponential suppression for large fermion mass $g\gg 1$

$$\frac{N}{\Delta \eta} \sim e^{-0.55 \frac{m}{q} + 7.48 \frac{q}{m} + \dots} = e^{-0.55 \frac{m}{\sqrt{2\sigma}} + 7.48 \frac{\sqrt{2\sigma}}{m} + \dots}$$

Wigner distribution and entanglement

- Classical field approximation usually based on non-negative Wigner representation of density matrix
- leads for many observables to classical statistical description
- can nevertheless show entanglement and pass Bell test for "improper" variables where Weyl transform of operator has values outside of its spectrum [Revzen, Mello, Mann, Johansen (2005)]
- Bell test violation also possible for negative Wigner distribution
 [Bell (1986)]

Transverse coordinates

- so far dynamics strictly confined to 1+1 dimensions
- transverse coordinates may fluctuate, can be described by Nambu-Goto action $(h_{\mu\nu}=\partial_{\mu}X^{m}\partial_{\nu}X_{m})$

$$\begin{split} S_{\text{NG}} &= \int d^2x \sqrt{-\text{det}\,h_{\mu\nu}}\,\left\{-\sigma + \ldots\right\} \\ &\approx \int d^2x \sqrt{g}\left\{-\sigma - \frac{\sigma}{2}g^{\mu\nu}\partial_{\mu}X^i\partial_{\nu}X^i + \ldots\right\} \end{split}$$

ullet two additional, massless, bosonic degrees of freedom corresponding to transverse coordinates X^i with i=1,2

Temperature and entanglement entropy

- for conformal fields, entanglement entropy has also been calculated at non-zero temperature.
- ullet for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

$$S(T,l) = \frac{c}{3} \ln \left(\frac{1}{\pi T \epsilon} \sinh(\pi L T) \right) + \text{const}$$

compare this to our result in expanding geometry

$$S(\tau,\Delta\eta) = \frac{c}{3} \ln \left(\frac{2\tau}{\epsilon} \sinh(\Delta\eta/2) \right) + \mathrm{const}$$

• expressions agree for $L=\tau\Delta\eta$ (with metric $ds^2=-d\tau^2+\tau^2d\eta^2$) and time-dependent temperature

$$T = \frac{1}{2\pi\tau}$$

Rapidity distribution

[open (filled) symbols: e⁺e⁻ (pp), Grosse-Oetringhaus & Reygers (2010)]

- ullet rapidity distribution $dN/d\eta$ has plateau around midrapidity
- only logarithmic dependence on collision energy

Experimental access to entanglement?

- could longitudinal entanglement be tested experimentally?
- ullet unfortunately entropy density $dS/d\eta$ not straight-forward to access
- measured in e^+e^- is the number of charged particles per unit rapidity $dN_{\rm ch}/d\eta$ (rapidity defined with respect to the thrust axis)
- \bullet typical values for collision energies $\sqrt{s}=14-206$ GeV in the range

$$dN_{\rm ch}/d\eta \approx 2-4$$

• entropy per particle S/N can be estimated for a hadron resonance gas in thermal equilibrium $S/N_{\rm ch}=7.2$ would give

$$dS/d\eta \approx 14 - 28$$

 this is an upper bound: correlations beyond one-particle functions would lead to reduced entropy

Entanglement and QCD physics

- how strongly entangled is the nuclear wave function?
- what is the entropy of quasi-free partons and can it be understood as a result of entanglement? [Kharzeev, Levin (2017)]
- does saturation at small Bjorken-x have an entropic meaning?
- entanglement entropy and entropy production in the color glass condensate [Kovner, Lublinsky (2015); Kovner, Lublinsky, Serino (2018)]
- could entanglement entropy help for a non-perturbative extension of the parton model?
- entropy of perturbative and non-perturbative Pomeron descriptions [Shuryak, Zahed (2017)]