A quantum information perspective on
relativistic fluid dynamics and quantum fields
out-of-equilibrium

Stefan Floerchinger (Heidelberg U.)

Theoretical Foundations of Relativistic Hydrodynamics,
BIRS Workshop, Banff, 27 November 2019.

ISOQUANT

UNIVERSITAT
HEIDELBERG
ZUKUNFT

SEIT 1386 SFB1225




Entropy and information

[Claude Shannon (1948)]
@ consider a random variable = with probability distribution p(x)

@ information content or “surprise” associated with outcome z
i(x)

. 6
i(2) = ~Inp(a) .
2
0.0 0.2 04 06 08 1.0 P()

o Entropy is expectation value of information content

S = Zp YInp(x

S=0 S =1n(2) S =2In(2)
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Entropy in quantum theory

[John von Neumann (1932)]

S =-Tr{plnp}

based on the quantum density operator p
for pure states p = 1) (¥)| one has S =0
for mixed states p =} p;[j)(j| one has S = -3, p;Inp; >0

unitary time evolution conserves entropy

~Tr{(UpU) In(UpUT)} = —Tr{pIn p} — S = const.

@ quantum information is globally conserved
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Relativistic flurd dynamics

@ approximate description of quantum field dynamics

local dissipation = local entropy production

—V,st(x) >0

@ e. g. in Navier-Stokes approximation

1
—V,st = T [Qnawa’“’ + C(Vpup)z]

crucial difference to quantum field theory: entropy not conserved
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What is an entropy current?

can not be density of global von-Neumann entropy for closed system

/ZdEM st(x) # —Tr{plnp}

kinetic theory for weakly coupled (quasi-) particles [Boltzmann (1890)]

3
() = — / %p{p“f(w,p) In f(z,p)}

e molecular chaos: keep only single particle distribution f(z,p)

how to go beyond weak coupling / quasiparticles?

aim: local notion of entropy in QFT
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Entropy and entanglement

e consider a split of a quantum system into two A + B

==

B A B

reduced density operator for system A

pa = Trp{p}

entropy associated with subsystem A

Sa=—-Tra{palnpa}

@ pure product state p = p4 ® pp leads to S4 =0
e pure entangled state p # py ® pp leads to Sy > 0
@ S, is called entanglement entropy
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Classical statistics

consider system of two random variables = and y

joint probability p(x,y) , joint entropy

S =— Zp(x, y)Inp(z,y)

T,y

reduced or marginal probability p(z) = Zy p(z,y)

reduced or marginal entropy

Sy = Zp YInp(x

@ one can prove: joint entropy is greater than or equal to reduced
entropy
S>S,

globally pure state S = 0 is also locally pure S, =0
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Quantum statistics

consider system with two subsystems A and B

combined state p , combined or full entropy

S =-Tr{plnp}

reduced density matrix p4 = Tre{p}
reduced or entanglement entropy

Sa=—Tra{palnpa}

for quantum systems entanglement makes a difference

S# 54

coherent information Ipy4 = S4 — S can be positive!
globally pure state S = 0 can be locally mixed S4 > 0
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Entanglement entropy in quantum field theory

entanglement entropy of region A is a local notion of entropy

Sa=—tra{palnpa} pa =trp{p}

@ however, it is infinite already in vacuum state

t
SA:cons/ d*2ovVh+ ...
A

ed—2

UV divergence proportional to entangling surface

quantum fields are very strongly entangled already in vacuum

Theorem [Reeh & Schlieder (1961)]: local operators in region A can
create all particle states
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Relative entropy

o relative entropy of two density matrices

S(plo) =tr{p(np—Ino)}

measures how well state p can be distinguished from a model o
Gibbs inequality: S(plo) >0
S(plo)=0ifand only if p =0

@ quantum generalization of Kullback-Leibler divergence
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Relative entanglement entropy

@ consider now reduced density matrices

pa = Tre{p}, oa = Trp{o}

o define relative entanglement entropy

Salplo) =Tr{pa(lnps —Inoa)}

measures how well p is represented by o locally in region A

UV divergences cancel: contains real physics information

well defined in quantum field theory [Araki (1977), see also Witten (2018)]
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An approximate local description

@ consider non-equilibrium situation with

e true density matrix p
e local equilibrium approximation
o = L[S (B (@) T +a(z)NH}

Z

reduced density matrices p4 = Trg{p} and 04 = Trg{o}

o is very good model for p in region A when

SA = TFA{pA(lnpA — IHJA)} — 0

does not imply that globally p = o
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Monotonicity of relative entropy

@ monotonicity of relative entropy
SWN(p)IN(0)) < S(plo)

with ' completely positive, trace-preserving map

e N unitary evolution

SN (p)IN(a)) = S(plo)

o N open system evolution with generation of entanglement to
environment

SWN(p)IN () < S(plo)
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Local form of second law

o for small volume A — 0 (hypothesis)

Sa(plo) = [ 4=, olo)

@ local form of second law of thermodynamics

—V,ust(plo) <0

o relative entanglement entropy between p and thermal state o
is non-increasing
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Quantum field dynamics

Quantum
field theory

FIuidl Information
dynamics theory

quantum information is spread

locally, quantum state approaches mixed state form

full loss of local quantum information = local thermalization

fluid dynamics 4 coherent quantum fields with local dissipation
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Local equilibrium & partition function
[Floerchinger, JHEP 1609, 099 (2016)]

(a) Global thermal equilibrium (b) Local thermal equilibrium
E (lT ‘ IH'
x xr

o local equilibrium with T'(z) and u*(x)

B
&

@ represent partition function as functional integral with periodicity
p(at —ip(x)) = £¢(z")
e partition function Z[J], Schwinger functional W[J] in Euclidean

Z[J) = eWelJl = /D¢e—SE[¢]+fm J¢
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Entropy production

[Floerchinger, JHEP 1609, 099 (2016)]

variational principle with effective dissipation from analytic
continuation

analysis of general covariance leads to entropy current and local
entropy production
ret>

1 o0
V/LSM B % (S(I)[a) retﬂAa)\q)a N 6Hvu (

29T
V909w

can likely be understood as entanglement generation
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Thermalization beyond collisions

@ quantum fields can be locally thermal without collisions
@ horizons: black holes, de-Sitter space

@ space-time dynamics of entanglement
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Entanglement, QCD strings and thermalization

e
“" O S— 'l l

o hadronization in Lund string model (e. g. PYTHIA)
o reduced density matrix for region A

pa = Tre{p}

e entanglement entropy

Sa=—-Tra{palnpa}

@ could this lead to thermal-like effects?
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Local density matriz and temperature in expanding

string

[Berges, Floerchinger, Venugopalan, Thermal excitation spectrum from entanglement

in an expanding quantum string, PLB778, 442 (2018)]

—— t=const

————— n = const

----- region A
region B

z

@ Bjorken time T = v/t? — 22, rapidity n = arctanh(z/t)
o local density matrix thermal at early times as result of

entanglement
h

T(r)= —

T onr

o Hawking-Unruh temperature in Rindler space T'(z) = <
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Conclusions

@ new perspectives on relativistic fluids dynamics from quantum
information theory

o relative entanglement entropy useful to describe local thermalization

@ quantum field theoretic description of relativistic fluid dynamics with
two density matrices

@ true density matrix p evolves unitary
o fluid model o agrees locally but evolves non-unitary
@ local thermalization without collisions possible
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Backup



One-particle vrreducible or quantum effective action

@ in Euclidean domain I'[¢] defined by Legendre transform

I'p[®] = / Jo(2)®q () — WplJ]

with expectation values

1 )
V9(x) 0Ja()

(I)a(x) = WE[‘]}
o Euclidean field equation
s Tl = Vi(e) (@)

resembles classical equation of motion for J =0

@ need analytic continuation to obtain a viable equation of motion



Analytic continuation
e for homogeneous background field and in global equilibrium

e
8Ja(—p)dJu(q)
62
6@, (—p)d®s(q)

WelJ] = Ga(p) (2m)*6 (p — q)
I'p[®] = Puy(p) 2m)*6™ (p — q)

e from definition of effective action

Z Gab(p)PbC(p> = dac
b

e correlation functions can be analytically continued in w = —u*p,,
@ branch cut on real frequency axis w € R

Im(w)

Matsubara

retarded Feynman

advanced




Variational principle with effective dissipation

[Floerchinger, JHEP 1609, 099 (2016)]

@ decompose inverse two-point function

Pop(p) = Prap(p) —isi(—u!'pp) Paab(p)
with s(w) = sign(Im w)

@ in position space, replace

s1 (—u"py) = sign (Im(—u"p,.))

— sign (Im (iu”52;)) = sign (Re (v 527)) = sr (u" 52

e this symbol appears also in I'[®]

e real and causal field equations follow from

ST[®]

, . . 0
with certain algebraic rules for sg (u”52;) — £1



The thermal model puzzle

@ elementary particle collision experiments such as et e~

show some thermal-like features

@ particle multiplicities well described by thermal model
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely

@ more thermal-like features difficult to understand in PyTHIA
[Fischer, Sjéstrand (2017)]

@ alternative explanations needed



QCD strings

==

B A B

particle production from QCD strings
Lund string model (e. g. PYTHIA)

different regions in a string are entangled

subinterval A is described by reduced density matrix

pa = Tre{p}

reduced density matrix is of mixed state form

could this lead to thermal-like effects?



Microscopic model

QCD in 141 dimensions described by 't Hooft model
. . 1
L= =iy (O — igA )i — mipinhi — St F,,F"
fermionic fields 9; with sums over flavor species i =1,..., Ny
SU(NV.) gauge fields A, with field strength tensor F,,
gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass
non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for N, — co with g2, fixed
['t Hooft (1974)]



Schwinger model
e QED in 1+1 dimension

L = *1/_%")#(8# - iqAH)w mﬂ/&% - ;wFlw

@ geometric confinement
U(1) charge related to string tension ¢ = /20

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

1 1
S = / de\@{ - fgwamaygﬁ - 5M2¢>2

mqe

5377 cos(2f¢+9)}

Schwinger bosons are dipoles ¢ ~ 1))

scalar mass related to U(1) charge by M = ¢/\/7 = \/20/7
massless Schwinger model m = 0 leads to free bosonic theory



Ezxpanding string solution 1

t

@ external quark-anti-quark pair on trajectories z = +t

e coordinates: Bjorken time 7 = /12 — 22, rapidity n = arctanh(z/t)
e metric ds? = —d7? + 72dn?

@ symmetry with respect to longitudinal boosts n — 1 + An



FExpanding string solution 2
@ Schwinger boson field depends only on 7

¢ =o(r)

@ equation of motion

_ 1 _ _
02¢ + ;&gb + M?%*¢ =0.

o Gauss law: electric field E = q¢/+/m must approach the U(1) charge
of the external quarks E — ¢, for 7 — 0

3(r) —» YTl

(1= 04)

@ solution of equation of motion [Loshaj, Kharzeev (2011)]

3(r) = \/?e Jo(M7)




Gaussian states

o theories with quadratic action often have Gaussian density matrix

o fully characterized by field expectation values

and connected two-point correlation functions, e. g.

(B(2)d(y))e = ($(2)d(y)) — d(x)(y)

o if p is Gaussian, also reduced density matrix p4 is Gaussian



Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

1
Sa=5Tra {DIn(D?)}

@ operator trace over region A only

@ matrix of correlation functions

(i@ idD@)d)e
Dia,y) = (—z’<w<x>w<y>>c i<w(x)¢<y>>c>

@ involves connected correlation functions of field ¢(x) and canonically
conjugate momentum field 7(x)

@ expectation value ¢ does not appear explicitly
@ coherent states and vacuum have equal entanglement entropy S4



Rapidity interval

T = const
fffff n = const
----- region A
region B

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time

@ entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27sinh(An/2) at
fixed time ¢ = 7 cosh(An/2)

@ need to solve eigenvalue problem with correct boundary conditions



Bosonized massless Schwinger model

@ entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

@ entanglement entropy density d.S/dAn for bosonized massless
Schwinger model (M = \/L%)

dS/dAn
0.4
0.3

0.2 H

0.1+

0.0 An

0 5 10 15 20 25

Mr=1,10"1% 1072, 1073, 104, and 107°



Conformal limat
o For M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(Az) = gln (Az/€) + constant

with small length e acting as UV cutoff.

@ Here this implies

S(r,An) = %ln (27 sinh(An/2)/€) + constant

o Conformal charge ¢ =1 for free massless scalars or Dirac fermions.

o Additive constant not universal but entropy density is

0 c

H% (A > 1)

o Entropy becomes extensive in An !



Unwversal entanglement entropy density
o for very early times “Hubble" expansion rate dominates over masses

and interactions

1
H=->M=-"L n
T

NZs
o theory dominated by free, massless fermions
@ universal entanglement entropy density

ds c

dAn 6
with conformal charge ¢
o for QCD in 141 D (gluons not dynamical, no transverse excitations)

CZNCXNf

o from fluctuating transverse coordinates (Nambu-Goto action)

c=N.XNy+2=9+2=11



Modular or entanglement Hamiltonian 1

t

——— t=const
————— n = const
----- region A
region B

z

@ conformal field theory
o hypersurface X2 with boundary on the intersection of two light cones

o reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,
Huerta (2017), see also Candelas, Dowker (1979)]

1
pAz—e_K, Za=Tre K
ZA

e modular or entanglement Hamiltonian K



Modular or entanglement Hamiltonian 2

@ modular or entanglement Hamiltonian is local expression

K:/Edzué“,,(ac)T‘“’(x).

@ energy-momentum tensor T+ (z) of excitations
@ vector field
¢ (2) = Fzlla — )" (@ —p)(a — p)
+ (@ —p)*(g—2)(qg—p) — (¢ —p)"(z —p)g — )]

end point of future light cone ¢, starting point of past light cone p

@ inverse temperature and fluid velocity

ut(x)

€ (x) = () = T




Modular or entanglement Hamiltonian 3

T = const

______ n = const

————— region A
region B

z

o for An — oo: fluid velocity in 7-direction, 7-dependent temperature

h

~ 2n7

T(r)

e Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

o Hawking-Unruh temperature in Rindler wedge T'(x) = hic/(27x)



Physics picture

@ coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

e on finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

o technically limits Anp — oo and M7 — 0 do not commute

e An — oo for any finite M7 gives pure state
o Mt — 0 for any finite An gives thermal state with "= 1/(27T)



Particle production in massive Schwinger model

[ongoing work with Lara Kuhn, Jiirgen Berges]

O=m
10° 4 fit
4 1027
S~
.
10—1 3
—~—
T T T T T —
0 2 4 6
g

o for expanding strings
@ asymptotic particle number depends on g ~ m/q

@ exponential suppression for large fermion mass g > 1

N

— ~ e

An

70.55%+7.48%+... —

_ _m_ V2o
o055 A+ TR




Wigner distribution and entanglement

o Classical field approximation usually based on non-negative Wigner
representation of density matrix

o leads for many observables to classical statistical description

@ can nevertheless show entanglement and pass Bell test for
“improper” variables where Weyl transform of operator has values
outside of its spectrum [Revzen, Mello, Mann, Johansen (2005)]

o Bell test violation also possible for negative Wigner distribution
[Bell (1986)]



Transverse coordinates

@ so far dynamics strictly confined to 1+1 dimensions

@ transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hy, = 0, X0, X)

SnGg = /dzx\/—dethw {—0’ + .. }

~ /d%\/g{—a — gg‘“’auXi&,Xi + }

@ two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates X* with ¢ = 1,2



Temperature and entanglement entropy

o for conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

o for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

1
S(T,1) = gln (T sinh(wLT)) + const

Tl €

@ compare this to our result in expanding geometry

2
S(r,An) = gln (T sinh(An/2)> + const
€
@ expressions agree for L = 7An (with metric ds? = —d7? + 72dn?)
and time-dependent temperature

1
T=—
2T



Rapidity distribution

S asp ® UA5 53 GeV NSD ® UAS 200 GeV NSD

d
>
°
T
T
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[open (filled) symbols: ete™ (pp), Grosse-Oetringhaus & Reygers (2010)]

o rapidity distribution dN/dn has plateau around midrapidity
@ only logarithmic dependence on collision energy



Fxperimental access to entanglement ¢

o could longitudinal entanglement be tested experimentally?
e unfortunately entropy density d.S/dn not straight-forward to access

@ measured in eTe™ is the number of charged particles per unit
rapidity dN¢/dn (rapidity defined with respect to the thrust axis)

o typical values for collision energies /s = 14 — 206 GeV in the range

ANy /dn ~ 2 — 4

@ entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/Ng, = 7.2 would give

dS/dn ~ 14 — 28

@ this is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy



Entanglement and QCD physics

@ how strongly entangled is the nuclear wave function?

@ what is the entropy of quasi-free partons and can it be understood
as a result of entanglement? [Kharzeev, Levin (2017)]

@ does saturation at small Bjorken-x have an entropic meaning?

@ entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015); Kovner, Lublinsky, Serino (2018)]

@ could entanglement entropy help for a non-perturbative extension of
the parton model?

@ entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]



