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Heavy ions at the HL-LHC

Ongoing discussion, see for example:

Jan-Fiete Grosse-Oetringhaus, talk at Workshop on the physics of
HL-LHC, 30.10.2017: https://indico.cern.ch/event/647676/timetable/

Andrea Dainese, talk at ECFA High Luminosity LHC Experiments
Workshop, 04.10.2016: https://indico.cern.ch/event/524795/timetable/

J. M. Jowett, M. Schaumann and R. Versteegen, Heavy-Ion Operation of
HL-LHC: https://cds.cern.ch/record/1977371

Antonio Uras, Heavy-Ions at the High-Luminosity LHC:
http://inspirehep.net/record/1589642

preparation of a CERN yellow report chapter on Heavy ions at the
HL-LHC, working group meeting: https://indico.cern.ch/event/717641/

existing CERN yellow report chapter on Heavy Ions at the Future Circular
Collider: http://inspirehep.net/record/1455787?ln=de

I will not attempt to reflect the full ongoing discussion, but rather present my
own point of view (as a theorist).

1 / 26



Little bangs in the laboratory
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A great challenge

quantum fields at finite energy density and temperature

fundamental gauge theory: QCD

strongly interacting

non-equilibrium dynamics

experimentally driven field of research

big motivation for theory development
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Fluid dynamics

long distances, long times or strong enough interactions

matter or quantum fields form a fluid!

needs macroscopic fluid properties
thermodynamic equation of state p(T, µ)
shear viscosity η(T, µ)
bulk viscosity ζ(T, µ)
heat conductivity κ(T, µ)
electric conductivity σ(T, µ)
relaxation times, ...

ab initio calculation of fluid properties difficult but fixed by microscopic
properties in LQCD
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Thermodynamics of QCD
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Figure S7: The lattice result for the 2+1+1 flavor QCD pressure together with the fitted value of the
g6 order. We included the charm mass at tree-level. The perturbative result agrees with the data from
about 500 MeV temperature. Using the same fitted coe�cient we also calculated the e↵ect of the bottom
quark with the same method. The blue curve shows the EoS including the bottom contribution.

S4.1 The 2+1+1 flavor QCD equation of state

Now we show the complete result obtained from nf = 2 + 1 + 1 lattice QCD. Figure S8 depicts the trace
anomaly (left panel) and pressure (right panel). For comparison the 2+1 flavor results are also shown.

Plotting p/T 4 (which is the normalized free energy density), we can compare our result to other
approaches. At low temperatures the Hadron Resonance Gas model (using the 2014 PDG spectrum) gives
a good description of the lattice data. This was already observed in Ref. [S18].

In Ref. [S18] we gave a simple parametrization for the 2+1 flavor equation of state. Here we update
the 2+1 flavor parameters and provide a parametrization that covers the 100-1000 MeV temperature
range and describes the 2+1+1 lattice data, i.e. including the e↵ect of the charm quark. As before, the
parametrizing formula reads

I(T )

T 4
= exp(�h1/t � h2/t

2) ·
✓

h0 + f0
tanh(f1 · t + f2) + 1

1 + g1 · t + g2 · t2

◆
, (S11)

with t = T/200 MeV. The parameters are given in Table. S1, the resulting curves are shown in Fig. S8.
For completeness the nf = 2 + 1 parametrization is also shown.
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Figure S8: The QCD trace anomaly and pressure in the 2+1+1 and 2+1 flavor theories in our parametriza-
tion Eq. (S11). We also show the Hadron Resonance Gas model’s prediction for comparison.
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We show the leading order coefficient χB2 ðTÞ in Fig. 2
and the NLO (χB4 ) and NNLO (χB6 ) coefficients divided by
χB2 ðTÞ in Fig. 3. The left-hand part of Fig. 2 shows the
leading order contribution χB2 in the entire temperature
interval used in the current analysis. For the LO expansion
coefficients, we also used data from simulations on 483 ×
12 lattices. Here, we used existing data for ml=ms ¼ 1=20
[3] and generated new ensembles forml=ms ¼ 1=27 at nine
temperature values below T ¼ 175 MeV. Furthermore, we
used data on 643 × 16 lattices at a corresponding set of low
temperature values. These data are taken from an ongoing
calculation of higher-order susceptibilities performed by
the HotQCD Collaboration.2 This allowed us to update the
continuum extrapolation for χB2 given in [20]. The new
continuum extrapolation shown in Fig. 2 is consistent with
our earlier results, but has significantly smaller errors in the

low temperature region. In the right-hand part of this figure
we compare the continuum extrapolated lattice QCD data
for χB2 with HRG model calculations. It is obvious that the
continuum-extrapolated QCD results overshoot results
obtained from a conventional, noninteracting HRG model
calculations with resonances taken from the particle data
tables (PDG-HRG) and treated as pointlike excitations. We
therefore compare the QCD results also with a HRG model
that includes additional strange baryons, which are not
listed in the PDG but are predicted in quark models and
lattice QCD calculations. We successfully used such an
extended HRG model (QM-HRG) in previous calculations
[5,6]. As can be seen in Fig. 2 (left), continuum extrapo-
lated results for χB2 agree well with QM-HRG calculations.
As can be seen in the left-hand part of Fig. 3, the ratio

χB4 =χ
B
2 approaches unity with decreasing temperature,

but is small at high temperatures where the leading
order correction is large. The relative contribution of the
NLO correction thus is largest in the hadronic phase, where
χB4 =χ

B
2 ≃ 1. For temperatures T ≲ 155 MeV, we find
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FIG. 2. The leading order (Oðμ2BÞ) correction to the pressure calculated at zero baryon chemical potential. The left-hand figure shows the
leading order correction in a large temperature range. The right-hand part of the figure shows an enlarged view into the low temperature
region. In addition to the continuum extrapolation of the lattice QCD results, we also show results fromHRGmodel calculations based on
all hadron resonances listed by the particle data group (PDG-HRG) and obtained in quark model calculations (QM-PDG).
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FIG. 3. (Left) The ratio of fourth- and second-order cumulants of net-baryon number fluctuations (χB4 =χ
B
2 ) versus temperature. (Right)

Same as the left-hand side, but for the ratio of sixth- and second-order cumulants of net-baryon number fluctuations (χB6 =χ
B
2 ). The boxes

indicate the transition region, Tc ¼ ð154 $ 9Þ MeV. Grey bands show continuum estimate.

2We thank the HotQCD Collaboration for providing access to
the second-order quark number susceptibilities.

QCD EQUATION OF STATE TO Oðμ6BÞ … PHYSICAL REVIEW D 95, 054504 (2017)

054504-7

[Borsányi et al. (2016)], similar Bazavov et al. (2014) [Bazavov et al. (2017), similar Bellwied et al. (2015)]

thermodynamic equation of state p(T ) rather well understood now

also moments of conserved charges like charge susceptibility

χQ
2 =

〈Q2〉
V T 3

and higher orders understood

progress in computing power
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Quantum fields and information

surprising relations between quantum field theory and information theory

well understood in thermal equilibrium

currently investigated out-of-equilibrium

fluid dynamics / entanglement entropy / black hole physics (AdS/CFT)

shear viscosity to entropy density ratio η/s ≥ ~/(4πkB)
[Kovtun, Son, Starinets (2003)]

Figure 3: The holographic calculation of entanglement entropy via AdS/CFT.

the deficit angle δ localized on a codimension two surface γA. This is clearly true in the

three-dimensional pure gravity as the solution to the Einstein equation should be locally

the same as AdS3. However, this is not trivially obvious in higher dimensions. Under this

assumption, the Ricci scalar behaves like a delta function

R = 4π(1 − n)δ(γA) + R(0) , (3.4)

where δ(γA) is the delta function localized on γA, δ(γA) = ∞ for x ∈ γA whereas δ(γA) = 0

otherwise, and R(0) is that of the pure AdSd+2. Then we plug this in the supergravity

action

SAdS = − 1

16πG
(d+2)
N

∫

M

dxd+2√g(R + Λ) + · · · , (3.5)

where we only make explicit the bulk Einstein-Hilbert action. This is because the other

parts omitted in the above such as kinetic terms of scalars, lead to extensive terms which

are proportional to n and are canceled in the ratio (2.20). Now the bulk to boundary

relation (3.2) equates the partition function of CFT with the one of AdS gravity. Thus

we can holographically calculate the entanglement entropy SA as follows

SA = − ∂

∂n
log Trρn

A|n=1 = − ∂

∂n

[
(1 − n)Area(γA)

4Gd+2
N

]

n=1

=
Area(γA)

4Gd+2
N

. (3.6)

The action principle in the gravity theory requires that γA is the minimal area surface. In

this way, we reproduced our holographic formula (3.3) [27]. Notice that the presence of

non-trivial minimal surfaces is an well-established property of asymptotically AdS spaces.
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QCD strings and entanglement
[Berges, Floerchinger, Venugopalan (2017)]

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

particle production from QCD strings

Lund model (Pythia)

di↵erent regions in a string are entangled

subinterval A has reduced density matrix of mixed form even if ⇢ is pure

⇢A = TrB{⇢}

characterization by entanglement entropy

SA = �TrA {⇢A ln(⇢A)}

could this lead to thermal-like e↵ects?
29 / 36

[Ryu, Takayanagi (2006)] [Berges, Floerchinger, Venugopalan (2017)]
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Non-central collisions

pressure gradients larger in reaction plane

leads to larger fluid velocity in this direction

more particles fly in this direction

can be quantified in terms of elliptic flow v2

particle distribution

dN

dφ
=
N

2π

[
1 + 2

∑
m

vm cos (m (φ− ψR))

]

symmetry φ→ φ+ π implies v1 = v3 = v5 = . . . = 0.
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Two-particle correlation function

normalized two-particle correlation function

C(φ1, φ2) =
〈 dN
dφ1

dN
dφ2
〉events

〈 dN
dφ1
〉events〈 dNdφ2

〉events

= 1 + 2
∑
m

v2m cos(m (φ1 − φ2))

surprisingly v2, v3, v4, v5 and v6 are all non-zero!

[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]
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Event-by-event fluctuations

deviations from symmetric initial energy density distribution from
event-by-event fluctuations

one example is Glauber model

-10 -5 0 5 10

-5

0

5

also initial electric charge distribution is fluctuating!

can we understand charge transport?

need to solve also (in medium) Maxwell equations
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Big bang – little bang analogy

cosmol. scale: MPc= 3.1× 1022 m

Gravity + QED + Dark sector

one big event

nuclear scale: fm= 10−15 m

QCD +QED

very many events

initial conditions not directly accessible

all information must be reconstructed from final state

dynamical description as a fluid

fluctuating initial state
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Similarities to cosmological fluctuation analysis

fluctuation spectrum contains info from early times

detailed correlation functions are compared to theory

can lead to detailed understanding of evolution

Mode-by-mode fluid dynamics for heavy ion collisions
[Floerchinger, Wiedemann (2014)]
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The dark matter fluid

high energy nuclear collisions

LQCD → fluid properties

late time cosmology

fluid properties → Ldark matter

until direct detection of dark matter it can only be observed via gravity

Gµν = 8πGN T
µν

so all we can access is
Tµνdark matter

strong motivation to study heavy ion collisions and cosmology together!
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Theory development

many interesting experimental results available or in reach

precise studies need interplay of theory and experiment

more dedicated theory development needed

we need to develop and maintain a standard model

heavy ion collisions and QCD dynamics can be understood much better !
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Plans for heavy ions at runs 2-4 at the LHC

[J.-F. Grosse-Oetringhaus, CERN, 30.10.2017]

• Run 2:
– Pb-Pb: few nb-1 (0.7 nb-1 in 2015, ~1 nb-1 in 2018) at √sNN = 5 TeV
– p-Pb at 5 and 8 TeV (185 nb-1 in 2016)
– pp reference at Pb-Pb energy (5 TeV, Nov 2017)

• LS2: 
– LHC injector upgrades; bunch spacing reduced to 50 ns
– Pb-Pb interaction rate up to 50 kHz (now <10 kHz)
– Experiments’ upgrades (also LS3)

• Runs 3+4:
– Request for Pb-Pb: >10 nb-1

(ALICE: 10 nb-1 at 0.5T + 3 nb-1 at 0.2T)

– In line with projections by machine:
3.1 nb-1/month (Chamonix 2017)

5

Heavy Ions at the LHC

Heavy-Ion Prospects for HL-LHC - Jan Fiete Grosse-Oetringhaus

HL-LHC for heavy ions begins in Run 3 !

shadr,PbPb = 8 barn !

?
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Foreseen detector upgrades

[J.-F. Grosse-Oetringhaus, CERN, 30.10.2017]

Current 
acceptance

CMS

• ALICE (LS2)
– New inner tracker: precision and efficiency at low pT
– New pixel forward muon tracker: precise tracking and vertexing for m
– TPC upgrade + readout + online data reduction x100 faster readout (continuous)

• ATLAS (LS2/LS3)
– Fast tracking trigger (LS2): high-multiplicity tracking 
– Calorimeter and muon upgrades (LS2): electron, g, muon triggers
– ZDC replacement planned (LS2): radiation hardness, granularity
– Completely new tracker (LS3): tracking and b-tag up to h=4

• CMS (mainly LS3)
– Extension of forward muon system (LS2): muon acceptance
– Completely new tracker (LS3): tracking and b-tag up to h=4
– Upgrade forward calorimeter (LS3): forward jets in HI

• LHCb (LS2)
– Triggerless readout, full software trigger, higher granularity 

detectors: impact on tracking performance in Pb-Pb being studied
– Fixed-target programme with SMOG + possible extensions

6

Detector Upgrades 
most relevant to heavy-ion physics

Heavy-Ion Prospects for HL-LHC - Jan Fiete Grosse-Oetringhaus

20 mm at 1 GeV

ALICE

Current 
acceptance

ATLAS

LHCb

Upgrade

Current
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Higher energies

[Dainese, Wiedemann (ed.) et al. (2017)]

0 2 4 6 8 10 12 14
r [fm]0

5

10

15

τ [fm/c]

Table 2: Global properties measured in central Pb–Pb collisions (0–5% centrality class) at
p
sNN =

2.76 TeV and extrapolated to 5.5 and 39 TeV. The measurements at 2.76 TeV [9–14] are reported for
comparison only and without experimental uncertainties.

Quantity Pb–Pb 2.76 TeV Pb–Pb 5.5 TeV Pb–Pb 39 TeV
dNch/d⌘ at ⌘ = 0 1600 2000 3600
Total Nch 17000 23000 50000
dET/d⌘ at ⌘ = 0 1.8–2.0 TeV 2.3–2.6 TeV 5.2–5.8 TeV
Homogeneity volume 5000 fm3 6200 fm3 11000 fm3

Decoupling time 10 fm/c 11 fm/c 13 fm/c
" at ⌧ = 1 fm/c 12–13 GeV/fm3 16–17 GeV/fm3 35–40 GeV/fm3

Fig. 2: Left: space-time profile at freeze-out from hydrodynamical calculations for central Pb–Pb colli-
sions at

p
sNN = 5.5 TeV and 39 TeV. Right: time evolution of the QGP temperature as estimated on the

basis of the Bjorken relation and the Stefan-Boltzmann equation (see text for details).

multiplicity at FCC energy is of prime importance for the fluid dynamic expansion, since it constrains a
central characteristic of the initial conditions, namely the entropy density at initial time. More precisely,
for a general viscous dynamics, the second law of thermodynamics implies that the final multiplicity puts
an upper bound on the initial entropy. However, the QCD matter produced in heavy-ion collisions shows
very small dissipative properties at TeV energies and is thus expected to follow a close to isentropic
expansion: the initial entropy density is then fixed by the final event multiplicity. The

p
s-dependence

of fluid dynamic simulations of heavy-ion collisions thus results mainly from the increase in event mul-
tiplicity with

p
s. To illustrate the impact of the expected multiplicity increase from LHC to FCC, we

have run a simplified fluid dynamic simulation for a central Pb–Pb collision. The radial dependence of
the energy density in the initial conditions was chosen to be determined as the smooth nuclear transverse
overlap function of two Wood-Saxon profiles, neglecting any possible energy dependence and fluctu-
ations. Using a standard parametrisation of a realistic QCD equation of state and minimal dissipative
properties (shear viscosity to entropy density ratio ⌘/s = 1/4⇡), we show in Fig. 2 (left) results for the
freeze-out hypersurfaces of central Pb–Pb collisions at different collision energies. This figure quantifies
the naive expectation that the denser system created at higher collision energy has to expand to a larger
volume and for a longer time before reaching the freeze-out temperature at which decoupling to hadrons

9

CHAPTER 4: HEAVY IONS AT THE FUTURE CIRCULAR COLLIDER

643

Larger collision energy

higher initial energy density and temperature

higher multiplicity Nch

larger lifetime and volume of fireball

better probes of collective physics

thermal charm quarks

more hard probes
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A dedicated detector for low pT ?

advances in detector technology might allow to construct dedicated
detector for low pT spectrum

down to pT ≈ 10 MeV ≈ 1
20 fm

?

probe macroscopic properties of QCD fluid: very soft pions, kaons,
protons, di-leptons
→ dynamics of chiral symmetry restoration
→ pion condensates / disoriented chiral condensates ?

understand thermalization and dissipation in detail
→ spectrum also at pT � Tkinetic freeze-out ≈ 120 MeV

low momentum di-leptons
→ excellent understanding of charmonia and bottomonia
→ access to transport peak and electric conductivity

17 / 26



Electric current

quarks are charged and carry electric charge

four-current composed of net charge density and current density

Jµ(t,x) = (ρ(t,x), j(t,x))

source for electro-magnetic field Aµ in Maxwell equations

expectation value and fluctuation part

Jµ(x) = 〈Jµ(x)〉+ δJµ(x)

expectation value from net charge of quark-gluon plasma

initial state, thermal and quantum fluctuations
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Correlation and response functions in thermal equilibrium

statistical correlation function ∆µν
S (ω,k) defined by

1

2
〈δJµ(t1,x1)δJν(t2,x2) + δJν(t2,x2)δJµ(t1,x1)〉

=

∫
dωd3k

(2π)4
e−iω(t1−t2)+ik(x1−x2)∆µν

S (ω,k)

quantifies amount of thermal and quantum fluctuations

spectral function ∆µν
ρ (ω,k) defined by

〈δJµ(t1,x1)δJν(t2,x2)− δJν(t2,x2)δJµ(t1,x1)〉

=

∫
dωd3k

(2π)4
e−iω(t1−t2)+ik(x1−x2)∆µν

ρ (ω,k)

response of current to change in electro-magnetic field Aµ(t2,x2)

both functions depend also on temperature T

definitions extend beyond equilibrium
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Charge conservation

charge conservation law in local form

∂µJ
µ(t,x) =

∂

∂t
ρ(t,x) +∇ · j(t,x) = 0

implies for correlation functions kµ∆µν = 0 and in equilibrium

−ω2∆00(ω,k) + k2∆11(ω,k) = 0

implies in particular

∆00(ω,k = 0) = 0 (for ω 6= 0)
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The fluctuation-dissipation relation

close to thermal equilibrium one has fluctuation-dissipation relation

∆µν
S (ω,k) =

[
1

2
+

1

eω/T − 1

]
∆µν
ρ (ω,k)

statistical correlation function ∆µν
S (ω,k) → fluctuation

spectral function ∆µν
ρ (ω,k) → dissipation

contains Bose-Einstein distribution factor[
1

2
+

1

eω/T − 1

]
→ T

ω
(T � w)

would be very interesting to test! (test of equilibration)
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Photon and di-lepton rates

photon rate

ω
dR

d3k
=

1

16π3
gµν∆µν

ρ (ω,k)

thermal di-lepton rate (leading order)

dW

dωd3k
=

α

24π4(−ω2 + k2)
gµν∆µν

S (ω,k)

− zero temperature expression

=
α

24π4(−ω2 + k2)(eω/T − 1)
gµν∆µν

ρ (ω,k)

allows to probe statistical correlation function

related to spectral density through fluctuation-dissipation relation

sensitive to transport peak (conductivity) for ω � T , |k| ≈ 0
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Electric conductivity

electric conductivity from spatial components of spectral density

σ =
1

6
lim

ω/T→0

∑3
i=1 ∆ii

ρ (ω,k = 0)

ω

“transport peak” in spectral density for ω � T and |k| ≈ 0

could be constrained through charge transport in electric field

j(t,x) = σ E(t,x)

leads eventually to dissipation of electric fields
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Transport peak in spectral function

FIG. 3: Spectral weight vs. q0 with the dominant αs dependence factored out. For Nf = 2, the

two values of mD correspond to αs = 0.06 and 0.24; for Nf = 3 they correspond to αs = 0.05 and

0.21.

FIG. 4: Dominant large q0 and small q0 contributions to the spectral weight. The rising curve is

the leading-order Born term; the three curves sharply peaked at the origin are our results for a

3-flavor plasma with αs = 0.1, 0.2, 0.3. As the coupling is reduced, the peak at small q0 becomes

taller and narrower, but the area underneath is unchanged. The Born result is valid where it is

much larger than the peak, and the peak is valid where much larger than the Born term. In the

overlap region (where q0 ∼ gT ) the detailed behavior is not known.

17

[Moore & Robert (2006)]

“spectral weight” ρ = gµν∆µν
ρ (ω,k = 0) =

∑3
i=1 ∆ii

ρ (ω,k = 0)

directly accessible through di-lepton rate

transport peak at ω/T → 0 determined by electric conductivity σ
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Electric conductivity, theory expectations

perturbation theory [Arnold, Moore, Yaffe (2000)]

σ ∼ T

e2 ln e−1

lattice QCD calculation (with Cem = e2
∑
f Q

2
f )

σ ∼ T
12
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FIG. 11. Left : The thermal dilepton rate as obtained from ⇢R as a function of !/T , accompanied by the HTL rate and the
non interacting Born rate. Right : The final results for the electrical conductivity. They incorporate the full systematics, i.e.
the minimum and maximum conductivities, respectively, of ⇢ans and ⇢R.

pected from perturbation theory, although perturbative
estimates usually overestimate the electrical conductivity
for example. Calculations at finite momenta may o↵er an
alternative way to estimate the electical conductivity as
the system becomes more perturbative at the relevant
scales as observed in the study in [35], which can be used
to further reduce the systematic uncertainties of the spec-
tral function also at zero momentum.
As mentioned before, generally the fits of the models
⇢ans, ⇢part and ⇢flat to the correlator data yield equally
good results, which shows the di�culties in resolving de-
tails of the transport region of the spectral function. We
find that utilizing the covariance of the data points in
the fit generally increases the resolution of the procedure
with respect to the low frequency region, as described in
Sec. IV C, and also generally enhances the quality of the
fit, in the sense that the errors on the resulting parame-
ters are smaller compared to fits without the covariance
matrix. The role of the second thermal moment as a con-
straint in the fit, however, turns out to be a more subtle
one: On the one hand, when ignoring the covariance of
the data, fitting with the second thermal moment as a
constraint essentially also shows the e↵ect of reducing the
errors on the resulting fit parameters, as opposed to not
constraining the fit with the thermal moment. But this
e↵ect does not appear when fitting with the full covari-
ance of the data, showing that the information on the cur-
vature of the correlation function is already largely con-
tained in the statistical correlation. On the other hand,
in the fit of ⇢�(!), done with the full covariance of the
data, it still serves as a very strong indication that the
fit breaks down. This observation motivates us to also
show the reconstruction of the extrapolated second ther-
mal moment and the ratio of fourth to second thermal
moments in Fig. 10 (bottom) for all temperatures. The
reconstructed values from the fits (apart from ⇢�(!)) gen-
erally are in accord with the second thermal moments as
extracted from the data, which underlines that our fits
work well from the point of view of fit quality. Although

the second thermal moment is especially sensitive to the
low frequency region of the spectral function, at the cur-
rent state of data accuracy we cannot clearly di↵erentiate
between the models ⇢ans, ⇢R and ⇢flat using this observ-
able. Considering that for T = 1.1Tc and T = 1.5Tc the
thermal moment for ⇢flat deviates from the data visibly,
but within errors, increasing the accuracy of the thermal
moments data might provide a handle for this. The ra-

tios R
(4,2)
ii are not included in the fit as a constraint, but

a posteriori (re)constructed from the data and resulting
fit parameters, respectively. They compare within errors,
although for T = 1.1Tc and T = 1.5Tc the results from
the fit do not compare well. Note that the value from ⇢�
compares as well as any other reconstructed value, unlike
in the case of the second moments discussed above. As
expected in Sec. III from a rather qualitative argument,
we thus see here explicitly that the ratios of fourth to sec-
ond thermal moment are indeed far less sensitive to the
low frequency region than the second thermal moments.
Our final results for the electrical conductivity for all
three temperatures are summarized in Fig. 11 (Right).
In the plot we show the respective minimum and maxi-
mum value resulting from the two Ansätze ⇢ans and ⇢R,
to incorporate the full systematics found in our analysis,

�

CemT

����
1.1Tc

= 0.201 � 0.703

�

CemT

����
1.3Tc

= 0.203 � 0.388

�

CemT

����
1.5Tc

= 0.218 � 0.413

In this temperature region they are comparable to recent
lattice QCD results using dynamical fermions [15, 16, 52].
Note that in these studies a drop of the electrical conduc-
tivity is observed when going to smaller temperatures
around Tc, which may be due to the di↵erent nature of
the deconfinement transition. For a comparison of recent
lattice QCD results see [15] and a comparison of di↵er-

[Ding, Kaczmarek & Meyer (2016)]

25 / 26



Conclusions

collective physics at low pT is very interesting

could allow to test fluctuation-dissipation relation and access electric
conductivity through di-leptons

new fundamental transport property of QCD!

understanding also charge transport
→ test of fluctuation-dissipation relation

QCD fluid can be understood in much more detail with combined effort of
theory and experiment!
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