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Why is velocity dispersion interesting

goes beyond ideal fluid / single stream approximation

regularizes shell crossing singularities

could help to describe cosmological fluid at smaller scales and later times
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Vlasov-Poisson system

description of dark matter as classical particles on trajectories

dx

dτ
=

p

am
,

dp

dτ
= − am∇xφ

number of particles in phase space volume

f(τ,x,p) d3x d3p

Vlasov equation (collision-less Boltzmann equation)

∂τf +
p

am
· ∇xf − am∇xφ · ∇pf = 0

supplemented by FRW equation for scale factor a(τ)

Newtonian potential φ(τ,x) from Poisson equation

∆xφ =
3

2
H2 Ωm δ
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Mass density field

mass density as integral or zero’th moment of distribution function

ρ(τ,x) =
m

a3(τ)

∫
R3

d3p f(τ,x,p)

spatially homogeneous expectation value (determines Ωm(τ))

ρ̄(τ) = 〈ρ(τ,x)〉

spatially varying density contrast field

δ(τ,x) =
ρ(τ,x)− ρ̄(τ)

ρ̄(τ)
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Peculiar velocity or fluid velocity field

velocity field as first moment or first cumulant of distribution function

ui(τ,x) =
1

ρ(τ,x)

m

a(τ)3

∫
R3

d3p
pi

a(τ)m
f(τ,x,p)

expectation value excluded by symmetries
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Velocity dispersion tensor

second cumulant of distribution function is velocity dispersion tensor

σij(τ,x) =
1

ρ(τ,x)

m

a(τ)3

∫
R3

d3p
pipj

a(τ)2 m2
f(τ,x,p)− ui(τ,x)uj(τ,x)

quantifies deviation of particle velocity from velocity field ui(τ,x)

symmetries allow expectation value

〈σij(τ,x)〉 = δij σ̄(τ)

expectation value positive semi-definite σ̄(τ) ≥ 0

σ̄ = 0 in single stream approximation

deviation from expectation values defines fluctuation field

ςij(τ,x) = σij(τ,x)− δij σ̄(τ)
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Generating functions 1

moment generating function

M(τ,x; l) =
m

a(τ)3ρ̄(τ)

∫
R3

d3p exp

(
l · p
a(τ)m

)
f(τ,x,p)

such that moments of distribution are

m
(n)
i1...in

(τ,x) =

[
n∏
j=1

∂

∂lij

]
M(τ,x; l)

∣∣
l=0

first few moments

m(0)(τ,x) = 1 + δ(τ,x)

m
(1)
i (τ,x) = [1 + δ(τ,x)]ui(τ,x)

m
(2)
ij (τ,x) = [1 + δ(τ,x)] [ui(τ,x)uj(τ,x) + σij(τ,x)]
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Generating functions 2

cumulant generating function

C(τ,x; 1) = ln(M(τ,x; l))

such that cumulants are given by

c
(n)
i1...in

(τ,x) =

[
n∏
j=1

∂

∂lij

]
C(τ,x; l)

∣∣
l=0

first few cumulants

c(0)(τ,x) = ln(1 + δ(τ,x))

c
(1)
i (τ,x) = ui(τ,x)

c
(2)
ij (τ,x) = σij(τ,x)

Vlasov equation for cumulant generating function

∂τC +H l · ∇lC +∇xC · ∇lC +∇x · ∇lC + l · ∇xφ = 0
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Truncations
single stream / ideal cold fluid approximation

cumulant generating function

C(τ,x; l) = c(0)(τ,x) + lic
(1)
i (τ,x)

distribution function

f(τ,x,p) =
a(τ)3

m
ρ(τ,x) δ(3)(p− a(τ)mu(τ,x))

Gaussian approximation

cumulant generating function

C(τ,x; l) = c(0)(τ,x) + lic
(1)
i (τ,x) +

1

2
liljc

(2)
ij (τ,x)

distribution function

f(τ,x,p) =
ρ(τ,x)√

(2π)3 det (σ)
exp

[
−1

2
(pi − amui)

σ−1
ij

a2m2
(pj − amuj)

]
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Equations of motion for cumulants

for density contrast

δ̇ + ui δ,i + (1 + δ)ui,i = 0

for fluid velocity

u̇i +Hui + uj ui,j + σij,j + σij ln(1 + δ),j + φ,i = 0

for velocity dispersion tensor

σ̇ij + 2H σij + uk σij,k + σjk ui,k + σik uj,k = −πijk,k − πijk ln(1 + δ),k

single stream / ideal fluid approximation

σij = 0

apparent self-consistency of single stream: σij = 0 is fixed point

but could in fact be unstable fixed point
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Evolution of background fields

from continuity equation or covariant energy conservation

˙̄ρ+ 3H ρ̄ = 0

depends on expectation values or background fields only

solution simple dilution ρ̄(τ) ∼ 1/a(τ)3

from second moment of Vlasov equation

˙̄σ(τ) + 2H(τ)σ̄(τ) +
1

3
〈ςii,j(τ,x)uj(τ,x)〉+

2

3
〈ςij(τ,x)ui,j(τ,x)〉 = 0

depends on two-point correlations or integrals of equal time spectra of
fluctuation fields (“backreaction”)

decrease of σ̄(τ) ∼ 1/a(τ)2 if Hubble rate H(τ) dominates

fluctuation fields could dominate at late time and modify this
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Scalar, vector, tensor decomposition 1

go to Fourier space as usual

Ψ(τ,x) =

∫
k

eik·x Ψ(τ,k)

decomposition of velocity field into irreducible representations of SO(3)

uj(τ,k) = − ikj
k2

θ(τ,k) + εjkl
ikk
k2

ωl(τ,k)

with velocity divergence (scalar field)

θ(τ,k) ≡ ikj uj(τ,k)

and vorticity (solenoidal vector field)

ωj(τ,k) ≡ εjkl ikk ul(τ,k)
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Scalar, vector, tensor decomposition 2

fluctuating part of velocity divergence can be decomposed into irreducible
representations of SO(3) like

ςij(τ,k) =δij ς(τ,k) +
3

2

(
kikj
k2
− δij

3

)
ϑ(τ,k)

− (εikl kj + εjkl ki) kk
k2

ϑl(τ,k) + ϑij(τ,k)

two scalar fields
ς(τ,k), ϑ(τ,k)

one solenoidal vector field
ϑj(τ,k)

one symmetric, transverse and traceless tensor field

ϑij(τ,k)
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Power spectra and backreation to velocity dispersion

introduce the mixed equal time power spectra

(2π)3 δ
(3)
D (k + k′)Pςθ(τ, k) =

〈
ς(τ,k) θ(τ,k′)

〉
(2π)3 δ

(3)
D (k + k′)Pϑθ(τ, k) =

〈
ϑ(τ,k) θ(τ,k′)

〉
(2π)3 δ

(3)
D (k + k′) ∆ij(k)Pϑω(τ, k) =

〈
ϑi(τ,k) ωj(τ,k

′)
〉

allows to write evolution equation for velocity dispersion background

˙̄σ(τ) + 2H(τ)σ̄(τ)−Q(τ) = 0

with integral over wave numbers

Q(τ) =
1

3

∫
q

[
Pςθ(τ, q)− 2Pςθ(τ, q)− 4Pϑω(τ, q)

]

integral typically UV dominated

need to evolve the additional power spectra in time
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New time variable and rescaled fields

new time variable

η(τ) = ln

(
D+(τ)

D+(τin)

)
f(τ) =

∂ ln(D+(τ))

∂ ln(a(τ))

with linear growth factor in single stream approximation D+(τ)

combined and rescaled field vector

Ψ(η,k) ≡



δ(η,k)

−θ(η,k)/ (f(η)H(η))

ς(η,k)/ (f(η)H(η))2

ϑ(η,k)/ (f(η)H(η))2

ωi(η,k)/ (f(η)H(η))

ϑi(η,k)/ (f(η)H(η))2

ϑij(η,k)/ (f(η)H(η))2


need to rescale also velocity dispersion background field

σ̂(η) =
σ̄(η)

f2(η)H2(η)
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Evolution equations

time evolution

∂ηΨa(η,k) + Ωab(η, k) Ψb(η,k) + Ia(η,k) + Ja(η,k) = 0

linear evolution matrix for scalars (similar for vectors and tensors)

Ωab(η, k) =


0 −1 0 0

− 3
2

Ωm(η)

f2(η)
+ k2σ̂(η) 3

2
Ωm(η)

f2(η)
− 1 k2 k2

0 − 2
3
σ̂(η) 3 Ωm(η)

f2(η)
− 2 0

0 − 4
3
σ̂(η) 0 3 Ωm(η)

f2(η)
− 2


new scalar modes ς and ϑ generated from δ and θ by linear mixing

eigenvalues of Ωab(η, k) determine growth / decay for given η and k

quadratic and cubic mode coupling terms Ia and Ja
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Linear scalar growth factors
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Figure 1. Scalar field growth factors s
(n)
s (⌘, k) as a function of the combination k2 �̂(⌘). The growth

factors seem to admit only a single growing solution in the range 0  k2 �̂(⌘) < 3/2. See text for
further discussion.

and e�
3
2
(⌘�⌘in) [103] while the latter decay proportional to e�(⌘�⌘in). The growth factors

s
(1)
s (⌘, 0) and s

(2)
s (⌘, 0) can be identified with the single-stream approximation solutions,

whereas s
(3)
s (⌘, 0) and s

(4)
s (⌘, 0) correspond to the two new decaying solutions.

For finite values of k2 �̂(⌘) the picture is more complicated. In figure 1 we show the
real and imaginary parts of the scalar field growth factors as a function of the combination

k2 �̂(⌘). The natural extension of the single-stream approximation growth factor s
(1)
s (⌘, k) is

the only positive growth factor in the range 0  k2 �̂(⌘) < 3/2 and turns negative for larger

values of k2 �̂(⌘). While s
(1)
s (⌘, k) and s

(4)
s (⌘, k) are real for all k2 �̂(⌘) the growth factors

s
(2)
s (⌘, k) and s

(3)
s (⌘, k) develop an imaginary part at some k2 �̂(⌘) > 0 from where on their

real parts stay negative and coincide.
We emphasis that due to the time dependence of ⌦ab(⌘, k) the retarded linear propagator

is not time translation invariant and thus the eigenvectors generally di↵er from those of
⌦ab(⌘, k). Therefore exciting a solution proportional to an eigenvector (3.15) at initial time ⌘in

naturally evolves to a superposition of di↵erent eigenvectors at time ⌘. Further, the full time
dependence of a solution is determined by the growth factors as well as their corresponding
eigenvectors.

In the following we concentrate on the growing solution characterised by the growth

factor s
(1)
s (⌘, k). We assume that initially only the growing solution is present and the

corresponding eigenvector determines the initial scalar field configuration, i.e.

was(k) = v(1)
as

(⌘in, k) . (3.16)

Before solving the system of equations (3.2) and (3.4) by numerical means, it is sensible

to infer some properties of the solution. The growth factor s
(1)
s (⌘, k) is a monotonically

decreasing function of k and has a zero-crossing at the comoving free-streaming wave number

kfs(⌘) ⌘
s

3

2 �̂(⌘)
, (3.17)
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eigenvalues of Ωab(η, k)

for k = 0 one growing mode and three decaying modes

for large k or at small scales imaginary parts develop (oscillations)

velocity dispersion background sets a new scale kfs ∼ 1/
√
σ̂
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Non-linear background but linear perturbations around it

evolution equations for background σ̂(η) and fluctuation fields Ψ(η,k) are
coupled through non-linear terms

also fluctuation fields evolve non-linearly

for first study: neglect non-linear interactions among fluctuating fields
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Two dark matter models: sterile neutrinos and WIMPS

compare two dark matter candidates

sterile neutrinos
mass m ≈ 1 keV
free-streaming wave number at matter-rad. eq. kfs,eq ≈ 10 h/Mpc

velocity dispersion background at matter-rad. eq. σ̂eq ≈ 10−2 Mpc2/h2

weakly interacting massive particles
mass m ≈ 100 GeV
free-streaming wave number at matter-rad. eq. kfs,eq ≈ 107 h/Mpc

velocity dispersion background at matter-rad. eq. σ̂eq ≈ 10−15 Mpc2/h2

initial power spectrum for WIMPS extends further into the UV

will lead to substantial difference for evolution of velocity dispersion
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Velocity dispersion background evolution
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Figure 3. Evolution of the velocity dispersion background �̂(⌘) in time for sterile neutrino (left panel)
and WIMP (right panel) dark matter. For sterile neutrino dark matter the numerical solution (solid
yellow lines) is well approximated by the analytical approximation (dashed black lines) because the
free-streaming suppression suppresses the power spectrum at small scales. For WIMP dark matter
we see a strong growth and deviation from the analytical approximation at late times.
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Figure 4. Time evolution of the linear growth functions gR
a (⌘, k) in the limit k ! 0. For sterile

neutrino dark matter the scalar fluctuations obey growing solutions while the vector and tensor fluc-
tuations decay in time. For WIMP dark matter the scalar and n = 1 mode vector velocity dispersion
fluctuations are enhanced by the velocity dispersion background and obey a strongly growing solution
at later times.

initial value while for WIMP dark matter it undergoes an immense growth at late times. For
the latter we only show the evolution for a(⌧)  2/3 because at times where �̂(⌘) & 1/k2

fs,eq

the validity of the analytical approximation breaks down and the source function Q̂(⌘) in-
volves an integral over strongly oscillating power spectra which become di�cult to control.
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Figure 3. Evolution of the velocity dispersion background �̂(⌘) in time for sterile neutrino (left panel)
and WIMP (right panel) dark matter. For sterile neutrino dark matter the numerical solution (solid
yellow lines) is well approximated by the analytical approximation (dashed black lines) because the
free-streaming suppression suppresses the power spectrum at small scales. For WIMP dark matter
we see a strong growth and deviation from the analytical approximation at late times.
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Figure 4. Time evolution of the linear growth functions gR
a (⌘, k) in the limit k ! 0. For sterile

neutrino dark matter the scalar fluctuations obey growing solutions while the vector and tensor fluc-
tuations decay in time. For WIMP dark matter the scalar and n = 1 mode vector velocity dispersion
fluctuations are enhanced by the velocity dispersion background and obey a strongly growing solution
at later times.

initial value while for WIMP dark matter it undergoes an immense growth at late times. For
the latter we only show the evolution for a(⌧)  2/3 because at times where �̂(⌘) & 1/k2

fs,eq

the validity of the analytical approximation breaks down and the source function Q̂(⌘) in-
volves an integral over strongly oscillating power spectra which become di�cult to control.
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at early times σ̂ decreases due to cosmological expansion

at later times increase due to backreaction

analytic approximation works very well for sterile neutrinos

double exponential growth of σ̂ observed at late times for WIMPs
(difficult to resolve numerically)
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Growths functions for k = 0
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Figure 3. Evolution of the velocity dispersion background �̂(⌘) in time for sterile neutrino (left panel)
and WIMP (right panel) dark matter. For sterile neutrino dark matter the numerical solution (solid
yellow lines) is well approximated by the analytical approximation (dashed black lines) because the
free-streaming suppression suppresses the power spectrum at small scales. For WIMP dark matter
we see a strong growth and deviation from the analytical approximation at late times.
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Figure 4. Time evolution of the linear growth functions gR
a (⌘, k) in the limit k ! 0. For sterile

neutrino dark matter the scalar fluctuations obey growing solutions while the vector and tensor fluc-
tuations decay in time. For WIMP dark matter the scalar and n = 1 mode vector velocity dispersion
fluctuations are enhanced by the velocity dispersion background and obey a strongly growing solution
at later times.

initial value while for WIMP dark matter it undergoes an immense growth at late times. For
the latter we only show the evolution for a(⌧)  2/3 because at times where �̂(⌘) & 1/k2

fs,eq

the validity of the analytical approximation breaks down and the source function Q̂(⌘) in-
volves an integral over strongly oscillating power spectra which become di�cult to control.
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and WIMP (right panel) dark matter. For sterile neutrino dark matter the numerical solution (solid
yellow lines) is well approximated by the analytical approximation (dashed black lines) because the
free-streaming suppression suppresses the power spectrum at small scales. For WIMP dark matter
we see a strong growth and deviation from the analytical approximation at late times.
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Figure 4. Time evolution of the linear growth functions gR
a (⌘, k) in the limit k ! 0. For sterile

neutrino dark matter the scalar fluctuations obey growing solutions while the vector and tensor fluc-
tuations decay in time. For WIMP dark matter the scalar and n = 1 mode vector velocity dispersion
fluctuations are enhanced by the velocity dispersion background and obey a strongly growing solution
at later times.

initial value while for WIMP dark matter it undergoes an immense growth at late times. For
the latter we only show the evolution for a(⌧)  2/3 because at times where �̂(⌘) & 1/k2

fs,eq

the validity of the analytical approximation breaks down and the source function Q̂(⌘) in-
volves an integral over strongly oscillating power spectra which become di�cult to control.
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Growth function in the long wavelength limit k → 0

analytic approximation works well for sterile neutrinos

velocity dispersion perturbations partly grow
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Transfer functions for density contrast
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Figure 5. The density linear growth function for sterile neutrino (left panel) and WIMP (right panel)
dark matter normalised to the zero mode as a function of k/kfs,eq for three di↵erent redshifts z(⌧).
The density fluctuations are suppressed for larger wave numbers and lower redshift. Sterile neutrino
dark matter is only weakly suppressed while WIMP dark matter shows oscillations on top of a strong
suppression for wave numbers k  kfs,eq.

In figure 4 we show how fluctuations evolve in the large-scale limit k ! 0. Here the
density and velocity-divergence growth functions (red) as well as the vorticity n = 1 mode
growth function (blue) exactly obey the dynamics of the perfect pressureless fluid approx-
imation and thus obey a growing and decaying solution, respectively.7 The scalar velocity
dispersion growth functions (yellow) are growing in time, but depend on the evolution of the
velocity dispersion background. For sterile neutrino dark matter the growth of the scalar
velocity dispersion is smaller than for the density and velocity-divergence fluctuations while
for WIMP dark matter the former exceeds the growth of the latter by many orders of magni-
tude, originating from the immense growth of �̂(⌘). Similarly, the vector n = 1 mode velocity
dispersion growth function (purple) is decaying in time for sterile neutrino dark matter while
for WIMP dark matter the enhancement from �̂(⌘) allows for a growing behaviour at later
times. Finally, the vector n = 1 mode and tensor velocity dispersion growth functions (red)
are independent of the velocity dispersion background and simply decay in time for both
dark matter candidates.

Knowing how the zero modes evolve in time we now turn to the scale dependence of the
fluctuations. To this end figures 5, 6 and 7 display the growth functions normalised to their
zero mode as a function of k/kfs,eq. From the discussion of the growth factors in section 3.3
we expect fluctuations to be suppressed at wave numbers k & kfs(⌘) due to free-streaming.
For sterile neutrino dark matter kfs(⌘) > kfs,eq because �̂(⌘) < �̂in at all times and therefore
the growth functions depend weakly on redshift. For WIMP dark matter on the other hand
kfs(⌘) ⌧ kfs,eq at late times because �̂(⌘) � �̂in and concordantly the growth functions
are sensible to small changes in redshift. For sterile neutrino dark matter we show results at
redshift z(⌧) = 0 (green line), z(⌧) = 40 (yellow line) and z(⌧) = 80 (red line) while for WIMP
dark matter we choose z(⌧) = 0.5 (green line), z(⌧) = 1 (yellow line) and z(⌧) = 5 (red line).

In figure 5 we show the density linear growth function. These are stronger suppressed
at lower redshift and, as expected from the above discussion, for larger wave numbers. Sterile
neutrino dark matter is weakly suppressed while WIMP dark matter is heavily suppressed for
wave numbers k  kfs,eq. We observe oscillations on top of the suppression for WIMP dark

7In the limit k ! 0 the n = 2 mode of the vorticity field is not excited.

– 24 –

J
C
A
P
0
6
(
2
0
1
9
)
0
3
9

���� ���� ���� �

����

����

����

����

��-� ��-� ��-� �

��-�

��-�

�

Figure 5. The density linear growth function for sterile neutrino (left panel) and WIMP (right panel)
dark matter normalised to the zero mode as a function of k/kfs,eq for three di↵erent redshifts z(⌧).
The density fluctuations are suppressed for larger wave numbers and lower redshift. Sterile neutrino
dark matter is only weakly suppressed while WIMP dark matter shows oscillations on top of a strong
suppression for wave numbers k  kfs,eq.

In figure 4 we show how fluctuations evolve in the large-scale limit k ! 0. Here the
density and velocity-divergence growth functions (red) as well as the vorticity n = 1 mode
growth function (blue) exactly obey the dynamics of the perfect pressureless fluid approx-
imation and thus obey a growing and decaying solution, respectively.7 The scalar velocity
dispersion growth functions (yellow) are growing in time, but depend on the evolution of the
velocity dispersion background. For sterile neutrino dark matter the growth of the scalar
velocity dispersion is smaller than for the density and velocity-divergence fluctuations while
for WIMP dark matter the former exceeds the growth of the latter by many orders of magni-
tude, originating from the immense growth of �̂(⌘). Similarly, the vector n = 1 mode velocity
dispersion growth function (purple) is decaying in time for sterile neutrino dark matter while
for WIMP dark matter the enhancement from �̂(⌘) allows for a growing behaviour at later
times. Finally, the vector n = 1 mode and tensor velocity dispersion growth functions (red)
are independent of the velocity dispersion background and simply decay in time for both
dark matter candidates.

Knowing how the zero modes evolve in time we now turn to the scale dependence of the
fluctuations. To this end figures 5, 6 and 7 display the growth functions normalised to their
zero mode as a function of k/kfs,eq. From the discussion of the growth factors in section 3.3
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In figure 5 we show the density linear growth function. These are stronger suppressed
at lower redshift and, as expected from the above discussion, for larger wave numbers. Sterile
neutrino dark matter is weakly suppressed while WIMP dark matter is heavily suppressed for
wave numbers k  kfs,eq. We observe oscillations on top of the suppression for WIMP dark

7In the limit k ! 0 the n = 2 mode of the vorticity field is not excited.
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k-dependence of transfer functions for density contrast

suppression for large k due to velocity dispersion

oscillations for large k and at late times
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Transfer functions for velocity
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Figure 6. The velocity linear growth functions for sterile neutrino (left panel) and WIMP (right
panel) dark matter normalised to the zero mode as a function of k/kfs,eq for three di↵erent redshifts
z(⌧). The velocity fluctuations are suppressed for lower redshift. The velocity-divergence and n = 1
mode vorticity fluctuations are suppressed while the n = 2 mode vorticity fluctuations are enhanced
for larger wave numbers. Sterile neutrino dark matter is only weakly suppressed or enhanced while
WIMP dark matter shows oscillations on top of a strong suppression or enhancement for wave numbers
k  kfs,eq.

matter, which are not accounted for in the growing solution growth factor nor eigenvector.
As mentioned in section 3.3 the eigenvectors of ⌦ab(⌘, k) and gR

ab(⌘, k) are in general not
identical and thus the solution dynamically evolves away from being characterised by a single
growth factor. The superposition of solutions of di↵erent growth factors lead to the observed
oscillations which are due to the imaginary parts of the growth factors shown in figure 1.

Figure 6 displays the velocity-divergence (upper panel), the vorticity n = 1 mode (mid-
dle panel) and the vorticity n = 2 mode (lower panel) growth functions. Since the vorticity
n = 2 mode growth function vanishes in the k ! 0 limit, we show it not normalised.
The velocity-divergence and vorticity n = 1 mode growth functions are stronger suppressed
for lower redshift and larger wave numbers. The vorticity n = 2 mode growth function
is suppressed for lower redshift and smaller wave numbers. This behaviour qualitatively

matches the behaviour of the growth factors s
(1)
s (⌘, k) and s

(1)
v (⌘, k) which are suppressed

for larger wave numbers while s
(2)
v (⌘, k) is enhanced. Interestingly, on top of the suppressive

and oscillatory behaviour of the WIMP dark matter fluctuations discussed above we ob-
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Figure 6. The velocity linear growth functions for sterile neutrino (left panel) and WIMP (right
panel) dark matter normalised to the zero mode as a function of k/kfs,eq for three di↵erent redshifts
z(⌧). The velocity fluctuations are suppressed for lower redshift. The velocity-divergence and n = 1
mode vorticity fluctuations are suppressed while the n = 2 mode vorticity fluctuations are enhanced
for larger wave numbers. Sterile neutrino dark matter is only weakly suppressed or enhanced while
WIMP dark matter shows oscillations on top of a strong suppression or enhancement for wave numbers
k  kfs,eq.

matter, which are not accounted for in the growing solution growth factor nor eigenvector.
As mentioned in section 3.3 the eigenvectors of ⌦ab(⌘, k) and gR

ab(⌘, k) are in general not
identical and thus the solution dynamically evolves away from being characterised by a single
growth factor. The superposition of solutions of di↵erent growth factors lead to the observed
oscillations which are due to the imaginary parts of the growth factors shown in figure 1.

Figure 6 displays the velocity-divergence (upper panel), the vorticity n = 1 mode (mid-
dle panel) and the vorticity n = 2 mode (lower panel) growth functions. Since the vorticity
n = 2 mode growth function vanishes in the k ! 0 limit, we show it not normalised.
The velocity-divergence and vorticity n = 1 mode growth functions are stronger suppressed
for lower redshift and larger wave numbers. The vorticity n = 2 mode growth function
is suppressed for lower redshift and smaller wave numbers. This behaviour qualitatively

matches the behaviour of the growth factors s
(1)
s (⌘, k) and s

(1)
v (⌘, k) which are suppressed

for larger wave numbers while s
(2)
v (⌘, k) is enhanced. Interestingly, on top of the suppressive

and oscillatory behaviour of the WIMP dark matter fluctuations discussed above we ob-
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k-dependence of transfer functions for velocity divergence and vorticity

suppression for large k due to velocity dispersion

oscillations for large k and at late times (large contributions to integrals)
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Conclusions & Outlook

velocity dispersion background / expectation value σ̄(τ) evolves

decays at early times but grows strongly due to non-linear backreaction at
later times

statistical field theory description of cosmological structure formation can
include velocity dispersion to address small scales

velocity dispersion might allow to distinguish between dark matter models

vector and tensor perturbations get generated by velocity dispersion +
non-linear terms

1-PI effective action + renormalization group approach can now be
extended to smaller scales and later times
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Backup slides



Non-linear corrections

beyond our current implementation, non-linear modifications for
fluctuation fields must be taken into account

leads to suppression of propagator

suppressions cancels again approximately for equal time power spectrum

backreaction effect on σ̂(η) could be even larger



Shell crossing
matter streams can cross and they typically will at late times

particle velocity becomes locally multiple-valued

caustic-like singularities

velocity dispersion jumps discontinuously to

σij 6= 0,
∑
j

σjj > 0

singular behavior gets regulated when one has

σ̄ =
1

3

∑
j

〈σjj〉 > 0



Analytic approximation

free-streaming wave number kfs cuts the power spectrum in the UV

for small enough kfs an analytic approximation becomes available

transfer functions can be approximated by k = 0 behavior

density contrast and velocity divergence have standard growth functions

D̃1(η) = eη−ηin , D̃2(η) = eη−ηin

scalar velocity dispersion modes have

D̃3(η) =
2

3C1
tanh(H1(η)) , D̃4(η) =

4

3C1
tanh(H1(η))

with
H1(η) ≡ C1 (eη−ηin − 1) + artanh(C2)

and

C1 ≡
√

2σ2
d

3
, C2 ≡

√
24σ2

d

3 +
√

9 + 24σ2
d

allows to find also σ̂(η)


