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Why s velocity dispersion interesting

@ goes beyond ideal fluid / single stream approximation
o regularizes shell crossing singularities

@ could help to describe cosmological fluid at smaller scales and later times
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Viasov-Poisson system

@ description of dark matter as classical particles on trajectories

d—X: p , d—p:—amvxqﬁ
dr

am dr
@ number of particles in phase space volume

fx,p)d’zd’p

@ Vlasov equation (collision-less Boltzmann equation)

O f+ L Vif—amVip Vpf =0
am

@ supplemented by FRW equation for scale factor a(r)

o Newtonian potential ¢(7,x) from Poisson equation

Am:%HQQmé
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Mass density field

@ mass density as integral or zero'th moment of distribution function

p(ﬂX) = GT(T)/RSd pf(’T,X,p)

@ spatially homogeneous expectation value (determines Q. (7))

p(r) = {p(1,%))

@ spatially varying density contrast field

T,X)
p(T)

5(r,x) = 2 p(7)
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Peculiar velocity or fluid velocity field

o velocity field as first moment or first cumulant of distribution function

1 m i
w(ro) = s [ dtp P )
R.

p(7,%) a(7)? a(r)m

@ expectation value excluded by symmetries
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Velocity dispersion tensor

e second cumulant of distribution function is velocity dispersion tensor

1 ' iDj
Uij(7-7 X) = m% /]RS d3p% f(T7 X, p) - ui(7—7 X) U]‘(T, X)

@ quantifies deviation of particle velocity from velocity field u; (7, x)

@ symmetries allow expectation value

(03 (1,%)) = di5 5(T)

@ expectation value positive semi-definite 5(7) > 0
@ & = 0 in single stream approximation

@ deviation from expectation values defines fluctuation field

Gij (T,%) = 045(1,X) — 0i5 7(T)
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Generating functions 1

@ moment generating function

M(r,x;1) = W/m@ d®p exp (al;p )f(T,x,p)

such that moments of distribution are

n T 0
m§1?uin (1,%) = {H 8l¢} M (7, x; l)|1:0
j=1 "%

o first few moments
m O (r,x) =1+ 6(r,x)
m® (7,%) = [1+ 8(7, %)]ui (7, x)
m (7,%) = [1+ 8(7,%)] [wi (7, x)u; (7, %) + 045 (7, %))

7/ 24



Generating functions 2

e cumulant generating function
C(r,x;1) = In(M(7,%;1))

such that cumulants are given by

o™ (%) = {H
j=1

C(t,x; 1)|1:0

i)
al,

o first few cumulants

9 (r,x) = In(1 + §(r,x))
CZ(-I)(T, x) = u;i(7, %)

o)

i (7_7 X) = 0ij (Tv X)

@ Vlasov equation for cumulant generating function
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Truncations
single stream / ideal cold fluid approximation

e cumulant generating function

C(r,x;1) = O (1, x) + licl(-l)(r7 X)

@ distribution function

a(r)’

f(7—7 X, p) = p(T, X) 5(3)(1) - a(T)mu(Tv X))

Gaussian approximation

@ cumulant generating function

Crs) = & r3) + Ll (7.3) + S (.30

o distribution function
—1

(7, %) 1 ij
exp ) (pi — amus;) GT;,LQ (pj — amuy)

frxp) = s )
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FEquations of motion for cumulants

o for density contrast

5+ui6,i+(1+5)ui,i=0

o for fluid velocity

Ui +Hui +ujuig +0ij;+ 0 In(149);+¢:=0

for velocity dispersion tensor

Gij + 2H 0ij + Uk Tijk + Ojk Wik + Oik Uj o = —Tijkke — Tigk (14 6) k

single stream / ideal fluid approximation

Uq;j:()

@ apparent self-consistency of single stream: ¢;; = 0 is fixed point

but could in fact be unstable fixed point
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FEvolution of background fields

o from continuity equation or covariant energy conservation

p+3Hp=0

@ depends on expectation values or background fields only

e solution simple dilution p(7) ~ 1/a(7)?

o from second moment of Vlasov equation

5(r) + 2H()T(7) + 5 (630 (7, X) 05 (7,3)) + 2 (35 (7,%) i (7, %)) = 0

@ depends on two-point correlations or integrals of equal time spectra of
fluctuation fields (“backreaction”)

o decrease of 5(7) ~ 1/a(7)? if Hubble rate H(7) dominates

o fluctuation fields could dominate at late time and modify this
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Scalar, vector, tensor decomposition 1

@ go to Fourier space as usual

U(r,x) = /k e (1, k)

e decomposition of velocity field into irreducible representations of SO(3)
uj(1,k) = —k—; 0(1,k) + €k 53 wi (7, k)
with velocity divergence (scalar field)
9(7’, k) = ikj u]'(T, k)

and vorticity (solenoidal vector field)

wj(T, k) = Ejkl ik:k UL(T, k)
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Scalar, vector, tensor decomposition 2

o fluctuating part of velocity divergence can be decomposed into irreducible
representations of SO(3) like

3 (kik; 0y
Cﬁ@Vk)=5u<U3k)+'§<:k;"ff>1%rJQ

(eirt kj + €50 ki) ke
_ P

9i(7, k) + 945(7, k)

@ two scalar fields
s(r. k), I(r, k)

@ one solenoidal vector field
’l9j (7’, k)

@ one symmetric, transverse and traceless tensor field

Viz(7, k)
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Power spectra and backreation to velocity dispersion

@ introduce the mixed equal time power spectra

2m)° 65 (k + K') Poo (7, k) = (s(7,Kk) 0(7,K))
(21)% 88 (k + K') Poo (7, k) = (9(,k) 6(7, X))
(21)% 65 (k + k') A (K) Pow (1, k) = (9i(1,k) w;(7, k')

o allows to write evolution equation for velocity dispersion background

o(1) + 2H(r)a(r) — Q(r) =0

@ with integral over wave numbers

Q) = 5 [ [Potro) =2 Patr.a) — 4 Poctr )

o integral typically UV dominated

@ need to evolve the additional power spectra in time
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New time variable and rescaled fields

@ new time variable

_ Dy (1) _ 0In(D4 (1))
“”‘J“(waa) £) = B ata()

with linear growth factor in single stream approximation D (7)

@ combined and rescaled field vector

6(n,k)
—0(n,k)/ (f(n) H(n))
s(n, )/ (f(n) H(n))?
U(n,k) = | 9(n,k)/ (f(n)H(n)*
wi(n,k)/ (f(n) H(n))
3i(n, k) / (f(n) H(n))?

Vij(n, %)/ (f(n) H(n))?

@ need to rescale also velocity dispersion background field

o an)
o) =t et
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FEvolution equations

@ time evolution

877\1]@(775 k) + Qab(ﬁ, k) \Ilb(n7k) + Ia(777 k) + Ja(77: k) =0

o linear evolution matrix for scalars (similar for vectors and tensors)

0 ~1 0 0
Qun(o k) = | 2 P TR S 1 e K

0 ~25(m) 35 -2 0

0 —465(n) 0 39700 — 2

@ new scalar modes ¢ and ¥ generated from § and 6 by linear mixing
o eigenvalues of Qq4(n, k) determine growth / decay for given 1 and k
@ quadratic and cubic mode coupling terms I, and J,
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Linear scalar growth factors

1.0

0.5
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5™ (n, k)

—0.5}

-10
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o eigenvalues of Qg5 (7, k)
o for k = 0 one growing mode and three decaying modes

for large k or at small scales imaginary parts develop (oscillations)

velocity dispersion background sets a new scale kg ~ 1/\/5
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Non-linear background but linear perturbations around it

@ evolution equations for background &(n) and fluctuation fields ¥ (7, k) are
coupled through non-linear terms

@ also fluctuation fields evolve non-linearly

o for first study: neglect non-linear interactions among fluctuating fields
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Two dark matter models: sterile neutrinos and WIMPS

@ compare two dark matter candidates
o sterile neutrinos

e mass m =~ 1 keV

o free-streaming wave number at matter-rad. eq. kfs eq ~ 10 h/Mpc

o velocity dispersion background at matter-rad. eq.  Geq ~ 10~2 Mpc?/h?
o weakly interacting massive particles

e mass m =~ 100 GeV

o free-streaming wave number at matter-rad. eq.

Kfs.eq ~ 107 h/Mpc
o velocity dispersion background at matter-rad. eq.  Geq ~ 10~ % Mpc2/h?
@ initial power spectrum for WIMPS extends further into the UV

o will lead to substantial difference for evolution of velocity dispersion
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Velocity dispersion background evolution

6(n())/61

10!

Sterile neutrinos

num. sol.

|

analyt. approx.

0.6 08 1.0

WIMPs
108} L
10
=
«& A
= a
S 104} S
102}
, num. sol.
1 '," --+ analyt. approx.
02 04 06 08 10
a(T)

o at early times & decreases due to cosmological expansion

@ at later times increase due to backreaction

@ analytic approximation works very well for sterile neutrinos

o double exponential growth of & observed at late times for WIMPs
(difficult to resolve numerically)
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Growths functions for k=0

Sterile neutrinos

(1(7in), 0)|
(1(7), 0)]|

R
a

)

= 52
~ ~
= =)
PES PES
£ =
= E
5 =

o Growth function in the long wavelength limit kK — 0
@ analytic approximation works well for sterile neutrinos

o velocity dispersion perturbations partly grow
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Transfer functions for density contrast

Sterile neutrinos WIMPs

Density Density

(n(7),0)|

R
1

10-1F

—z(1) =05
102 z(r)=1
—2(1)=5

(). k)/g

R
1

lg

10-3 102 10!
k/kls.cq k/kfs,nq

o k-dependence of transfer functions for density contrast
@ suppression for large k due to velocity dispersion

@ oscillations for large k£ and at late times
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Transfer functions for velocity

Sterile neutrinos
Velocity

o k-dependence of transfer functions for velocity divergence and vorticity

k/ktseq

Velocity-divergence

ode n =1

Vortic

Vorticity mode n = 2

WIMPs
Velocity

Velocity-divergence

— (1) =05
0 =1

—=x(r)=5

@ suppression for large k due to velocity dispersion

e oscillations for large k and at late times (large contributions to integrals)

mode n =1

V

Vorticity mode n = 2

k/Ksea

23/24



Conclusions € Outlook

o velocity dispersion background / expectation value 5(7) evolves

o decays at early times but grows strongly due to non-linear backreaction at
later times

o statistical field theory description of cosmological structure formation can
include velocity dispersion to address small scales

o velocity dispersion might allow to distinguish between dark matter models

@ vector and tensor perturbations get generated by velocity dispersion +
non-linear terms

o 1-PI effective action + renormalization group approach can now be
extended to smaller scales and later times
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Backup slides



Non-linear corrections

beyond our current implementation, non-linear modifications for
fluctuation fields must be taken into account

leads to suppression of propagator

@ suppressions cancels again approximately for equal time power spectrum

backreaction effect on 6(n) could be even larger



Shell crossing

@ matter streams can cross and they typlcally will at Iate times

|

I
Vo ']/ N\ |
\ | / \\\\ YA |
‘ i //// -“N\E\“\\\ W
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particle velocity becomes locally multiple-valued
caustic-like singularities
velocity dispersion jumps discontinuously to

O'ij#o, ZG]']'>0
J

singular behavior gets regulated when one has

7= %Z(%‘j) >0

J



Analytic approzimation

o free-streaming wave number kg cuts the power spectrum in the UV
o for small enough k¢ an analytic approximation becomes available
o transfer functions can be approximated by £ = 0 behavior

@ density contrast and velocity divergence have standard growth functions

Di(n) =" Do(n) = "~

@ scalar velocity dispersion modes have

tanh(Hi(n)) . Da(n) = —= tanh(H (1))

Ds(n) =30

2
- 30y
with

Hi(n) = Cq ("™ — 1) 4 artanh(C>)

\/2403
3++/9+2402

and
202
Cl = Td ) 02 =

@ allows to find also 6(n)



