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What is entanglement and why s it interesting?

e Can quantum-mechanical description of physical reality be
considered complete? [Einstein, Podolsky, Rosen (1935), Bohm (1951)]
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Bell’s

inequalities and Bell tests

[John Stewart Bell (1966)]

most popular version [Clauser, Horne, Shimony, Holt (1969)]
S =|E(a,b) — E(a,t') + E(a’,b) + E(a’,b")| <2

holds for local hidden variable theories

expectation value of product of two observables
E(a,b) = (A(a) B(b))

with possible values A = +1, B = +1.

depending on measurement settings a, a’ and b, b’ respectively
quantum mechanical bound is S < 2v/2

experimental values 2 < S < 2+/2 rule out local hidden variables
one measurement setting but at different times [Leggett, Garg (1985)]
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Entanglement at collider energies

[-.., Elze (1996), Kovner, Lublinsky (2015), Kharzeev & Levin (2017), Berges,
Floerchinger & Venugopalan (2017), Shuryak & Zahed (2017), Kovner, Lublinsky,
Serino (2018), Baker & Kharzeev (2018), Tu, Kharzeev & Ullrich (2019), Armesto,
Dominguez, Kovner, Lublinsky, Skokov (2019), .. .]

entanglement of quantum fields instead of particles
entanglement on sub-nucleonic scales

entanglement in non-Abelian gauge theory / color / confinement
discussions in mathematical physics [e. g. Witten (2018)]

connections to black holes and holography [Ryu & Takayanagi (2006)]

thermalization in closed quantum systems
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Entropy in quantum theory

[John von Neumann (1932)]

S =-Tr{plnp}

based on the quantum density operator p
for pure states p = 1) (¥)| one has S =0
for mixed states p =} p;[j)(j| one has S = -3, p;Inp; >0

unitary time evolution conserves entropy

~Tr{(UpU) In(UpUT)} = —Tr{pIn p} — S = const.

global characterization of quantum state
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Local dissipation, entropy and entanglement

@ local dissipation = local entropy production

—V,st(x) >0

o relativistic fluid dynamics in Navier-Stokes approximation

1
—Vyush = T [QUUIWUW + C(VPUP)Q]

@ can not be density of global von-Neumann entropy for closed system
@ kinetic theory for weakly coupled (quasi-) particles [Boltzmann (1890)]

3
st(x) = — / c;Tp " f(z,p)In f(z,p)}

@ how to go beyond weak coupling / quasiparticles?
o local dissipation = entanglement generation
o s*(x) must (most likely) be seen as entanglement entropy current
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The thermal model puzzle
@ elementary particle collision experiments such as e™ e~ collisions
show some thermal-like features
@ particle multiplicities well described by thermal model
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely
@ more thermal-like features difficult to understand in PYTHIA
[Fischer, Sjostrand (2017)]

@ alternative explanations needed ,
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QCD strings

==

B A B

particle production from QCD strings
Lund string model (e. g. PYTHIA)

different regions in a string are entangled

subinterval A is described by reduced density matrix

pa = Trp{p}

o reduced density matrix is of mixed state form
could this lead to thermal-like effects?
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Entropy and entanglement

@ consider a split of a quantum system into two A + B

==

B A B

o reduced density operator for system A

pa = Trp{p}

@ entropy associated with subsystem A: entanglement entropy

Sa=-Tra{palnpa}

o globally pure state S = 0 can be locally mixed S4 > 0
e coherent information Ipy4 = Sa — S can be positive
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Microscopic model

@ QCD in 141 dimensions described by 't Hooft model

_ . _ 1 »
f = 7@[)1’7“(3/1, - 'LgA/L)"/)i - mﬂ/m/)z - §tr F/LVFM

e fermionic fields 1; with sums over flavor species ¢ = 1,..., Ny
o SU(IV,) gauge fields A, with field strength tensor F,,,,

@ gluons are not dynamical in two dimensions
"]

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for N, — oo with ¢g?N, fixed
['t Hooft (1974)]
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Schwinger model
e QED in 1+1 dimension

_ . _ 1 ,
L = =iy (Op — iqAL) Vi — mii; — 1 E, F"

@ geometric confinement
U(1) charge related to string tension ¢ = /20

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

5= [ @ova] - jau0.0 - e

maqe”

5377 ¢08 (2v7o + ) }

Schwinger bosons are dipoles ¢ ~ 1))

scalar mass related to U(1) charge by M = q/v/7 = \/20/7
massless Schwinger model m = 0 leads to free bosonic theory
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Ezxpanding string solution 1

@ external quark-anti-quark pair on trajectories z = +t

e coordinates: Bjorken time 7 = /12 — 22, rapidity n = arctanh(z/t)
e metric ds? = —dr? + 12dn?

e symmetry with respect to longitudinal boosts n — n + An
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FExpanding string solution 2

@ Schwinger boson field depends only on 7

¢ =¢(7)
@ equation of motion

S _
02¢ + ;87¢+M2¢ = 0.

o Gauss law: electric field E = g¢/+/m must approach the U(1) charge
of the external quarks E — ¢, for 7 — 04

s ﬁQe

o(1) = p (1= 04)

@ solution of equation of motion [Loshaj, Kharzeev (2011)]

3(r) = @% Jo(M7)
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Gaussian states

@ theories with quadratic action often have Gaussian density matrix

o fully characterized by field expectation values

d(x) = (¢(x)), m(x) = (m(x))

and connected two-point correlation functions, e. g.

(B(2)8(y))e = (d(2)(y)) — ¢(x)d(y)

e if p is Gaussian, also reduced density matrix p4 is Gaussian
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Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

1
Sa=5Tra {DIn(D?)}

@ operator trace over region A only
@ matrix of correlation functions

(ildam @) ilo@)o(w)).
Diw.y) = (—i<w<w>w<y>>c i<w<w>¢><y>>c>

@ involves connected correlation functions of field ¢(z) and canonically
conjugate momentum field m(x)

@ expectation value ¢ does not appear explicitly

@ coherent states and vacuum have equal entanglement entropy S4
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Rapidity interval

T = const
n = const

————— region A
region B

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time

@ entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27sinh(An/2) at
fixed time ¢ = 7 cosh(An/2)

@ need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

@ entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

@ entanglement entropy density d.S/dAn for bosonized massless
Schwinger model (M = \/LE)

ds/dAn
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Conformal limat

@ For M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(Az) = gln (Az/€) + constant

with small length € acting as UV cutoff.
@ Here this implies

S(r,An) = gln (27 sinh(An/2)/¢) + constant

Additive constant not universal but entropy density is

0 c
— An) =—=coth(An/2
57 A0) =Scoth(80/2)

—>g (Anp>> 1)

Entropy becomes extensive in An !

Conformal charge ¢ = 1 for free massless scalars or Dirac fermions.
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Unwversal entanglement entropy density

o for very early times “Hubble" expansion rate dominates over masses
and interactions

1 q
H=->M=-L
7'>> fﬂ'

theory dominated by free, massless fermions

,m

@ universal entanglement entropy density
as ¢
dAn 6

with conformal charge ¢
o for QCD in 141 D (gluons not dynamical, no transverse excitations)

C:NCXNf

from fluctuating transverse coordinates (Nambu-Goto action)

c=N.xN;+2~9+2=11
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Modular or entanglement Hamiltonian 1

----- region A
region B

z

e conformal field theory
o hypersurface ¥ with boundary on the intersection of two light cones

o reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,
Huerta (2017), see also Candelas, Dowker (1979)]

1
pA:—e_K, ZA:Tre_K
Za

@ modular or entanglement Hamiltonian K
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Modular or entanglement Hamiltonian 2

@ modular or entanglement Hamiltonian is local expression

K:/ZdEH&,(:E)T‘“’(x).

@ energy-momentum tensor TH¥(x) of excitations
@ vector field
(@) = 2 lla— o) (@~ p)(a—p)
+ (z —p)" (g —2)(a —p) — (¢ —p)"(z — p)(g — )]
end point of future light cone ¢, starting point of past light cone p

@ inverse temperature and fluid velocity

ut(x)

&' (x) = () =
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Modular or entanglement Hamiltonian 3

——— 1=const
————— n = const
————— region A

region B

z

e for An — oo: fluid velocity in 7-direction, T-dependent temperature

T(r)=

T 2n7

o Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

e Hawking-Unruh temperature in Rindler wedge T'(x) = hc/(27mz)
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Physics picture

@ coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

@ on finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

e technically limits Anp — oo and M7 — 0 do not commute

e An — oo for any finite M7 gives pure state
e M7 — 0 for any finite An gives thermal state with T'=1/(277)
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Particle production in massive Schwinger model

[ongoing work with Lara Kuhn, Jiirgen Berges]

s 5
= Z
2 0 2 4 6
g

o for expanding strings
@ asymptotic particle number depends on g ~ m/q

@ exponential suppression for large fermion mass g > 1
N g 0.55_m 474822
o 0BSIATAS L 4 055 B TASYES 4

An
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Conclusions

@ entanglement at colliders is fascinating emerging topic of research
@ experimental proof for entanglement needs Bell test

@ entanglement entropy useful to describe local thermalization

@ rapidity intervals in an expanding string are entangled

@ at very early times theory effectively conformal
1
- >m,q
-
reduced density matrix is of locally thermal form with temperature

o
2rT

@ entanglement important to understand early thermalization
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Backup



Wigner distribution and entanglement

o Classical field approximation usually based on non-negative Wigner
representation of density matrix

o leads for many observables to classical statistical description

@ can nevertheless show entanglement and pass Bell test for
“improper” variables where Weyl transform of operator has values
outside of its spectrum [Revzen, Mello, Mann, Johansen (2005)]

o Bell test violation also possible for negative Wigner distribution
[Bell (1986)]



Transverse coordinates

@ so far dynamics strictly confined to 1+1 dimensions

@ transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hy, = 0, X0, X)

SnGg = /dzx\/—dethw {—0’ + .. }

~ /d%\/g{—a — gg‘“’auXi&,Xi + }

@ two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates X* with ¢ = 1,2



Temperature and entanglement entropy

o for conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

o for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

1
S(T,1) = gln (T sinh(wLT)) + const

Tl €

@ compare this to our result in expanding geometry

2
S(r,An) = gln (T sinh(An/2)> + const
€
@ expressions agree for L = 7An (with metric ds? = —d7? + 72dn?)
and time-dependent temperature

1
T=—
2T



Rapidity distribution

S asp ® UA5 53 GeV NSD ® UAS 200 GeV NSD
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o rapidity distribution dN/dn has plateau around midrapidity
@ only logarithmic dependence on collision energy



Fxperimental access to entanglement ¢

o could longitudinal entanglement be tested experimentally?
e unfortunately entropy density d.S/dn not straight-forward to access

@ measured in eTe™ is the number of charged particles per unit
rapidity dN¢/dn (rapidity defined with respect to the thrust axis)

o typical values for collision energies /s = 14 — 206 GeV in the range

ANy /dn ~ 2 — 4

@ entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/Ng, = 7.2 would give

dS/dn ~ 14 — 28

@ this is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy



Entanglement and QCD physics

@ how strongly entangled is the nuclear wave function?

@ what is the entropy of quasi-free partons and can it be understood
as a result of entanglement? [Kharzeev, Levin (2017)]

@ does saturation at small Bjorken-x have an entropic meaning?

@ entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015); Kovner, Lublinsky, Serino (2018)]

@ could entanglement entropy help for a non-perturbative extension of
the parton model?

@ entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]



