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Little bangs in the laboratory
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Fluid dynamics

long distances, long times or strong enough interactions

matter or quantum fields form a fluid!

needs macroscopic fluid properties

thermodynamic equation of state p(T, µ)
shear viscosity η(T, µ)
bulk viscosity ζ(T, µ)
heat conductivity κ(T, µ)
relaxation times, ...

ab initio calculation of fluid properties difficult but fixed by
microscopic properties in LQCD
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Relativistic fluid dynamics

Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p+ πbulk)∆µν + πµν

Nµ = nuµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T, µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply

equation for energy density ε

uµ∂µε+ (ε+ p+ πbulk)∇µuµ + πµν∇µuν = 0

equation for fluid velocity uµ

(ε+ p+ πbulk)uµ∇µuν + ∆νµ∂µ(p+ πbulk) + ∆ν
α∇µπµα = 0

equation for particle number density n

uµ∂µn+ n∇µuµ +∇µνµ = 0
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Constitutive relations

Second order relativistic fluid dynamics:

equation for shear stress πµν

τshear P
ρσ
αβ u

µ∇µπαβ + πρσ + 2η P ρσαβ ∇αu
β + . . . = 0

with shear viscosity η(T, µ)

equation for bulk viscous pressure πbulk

τbulk u
µ∂µπbulk + πbulk + ζ ∇µuµ + . . . = 0

with bulk viscosity ζ(T, µ)

equation for baryon diffusion current νµ

τheat ∆α
β u

µ∇µνβ + να + κ

[
nT

ε+ p

]2

∆αβ∂β

(µ
T

)
+ . . . = 0

with heat conductivity κ(T, µ)
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Bjorken boost invariance
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How does the fluid velocity look like?

Bjorkens guess: vz(t, x, y, z) = z/t

leads to an invariance under Lorentz-boosts in the z-direction

use coordinates τ =
√
t2 − z2, x, y, η = arctanh(z/t)

Bjorken boost symmetry is reasonably accurate close to mid-rapidity
η ≈ 0
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Transverse expansion

for central collisions (r =
√
x2 + y2)

ε = ε(τ, r)

initial pressure gradient leads to radial flow(
vx
vy

)
=

(
x
y

)
f(τ, r)
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Non-central collisions

pressure gradients larger in reaction plane
leads to larger fluid velocity in this direction
more particles fly in this direction
can be quantified in terms of elliptic flow v2

particle distribution

dN

dφ
=
N

2π

[
1 + 2

∑
m

vm cos (m (φ− ψR))

]

symmetry φ→ φ+ π implies v1 = v3 = v5 = . . . = 0.
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Two-particle correlation function
normalized two-particle correlation function

C(φ1, φ2) =
〈 dNdφ1

dN
dφ2
〉events

〈 dNdφ1
〉events〈 dNdφ2

〉events

= 1 + 2
∑
m

v2
m cos(m (φ1 − φ2))

surprisingly v2, v3, v4, v5 and v6 are all non-zero!

[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]
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Event-by-event fluctuations

deviations from symmetric initial energy density distribution from
event-by-event fluctuations

one example is Glauber model
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Big bang – little bang analogy

cosmol. scale: MPc= 3.1× 1022 m

Gravity + QED + Dark sector

one big event

nuclear scale: fm= 10−15 m

QCD

very many events

initial conditions not directly accessible

all information must be reconstructed from final state

dynamical description as a fluid

fluctuating initial state

10 / 39



Similarities to cosmological fluctuation analysis

fluctuation spectrum contains info from early times

many numbers can be measured and compared to theory

can lead to detailed understanding of evolution
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What perturbations are interesting and why?

Fluid fluctuations

energy density ε
fluid velocity uµ

shear stress πµν

more general also: baryon number density n,
electric charge density, electromagnetic fields, ...

Initial fluid perturbations

governed by universal evolution equations
can be used to constrain thermodynamic and transport properties
contain interesting information from early times

Thermal and quantum fluid fluctuations

needed for more detailed description
could grow large close to critical point

Non-fluid fluctuations

feed down from energy loss of hard particles or jets
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A program to understand initial fluid perturbations

1 characterize initial perturbations

2 propagated them through fluid dynamic regime

3 determine influence on particle spectra and harmonic flow
coefficients
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Mode expansion for fluid fields

Bessel-Fourier expansion at initial time
[Floerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen & Wolpert 2012]

for enthalpy density w = ε+ p

w(r, φ, η) = wBG(r)

1 +
∑
m,l

∫
k

w
(m)
l (k) eimφ+ikη Jm(z

(m)
l ρ(r))


azimuthal wavenumber m, radial wavenumber l, rapidity
wavenumber k

higher m and l correspond to finer spatial resolution

works similar for vectors (velocity) and tensors (shear stress)
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Transverse density from Glauber model
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Cosmological perturbation theory

[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov,

Weinberg, ...]

solves evolution equations for fluid + gravity

expands in perturbations around homogeneous background

detailed understanding how different modes evolve

very simple equations of state p = w ε

viscosities usually neglected η = ζ = 0

photons and neutrinos are free streaming
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Fluid dynamic perturbation theory for heavy ion
collisions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]

solves evolution equations for relativistic QCD fluid

expands in perturbations around event-averaged solution

leads to linear + non-linear response formalism

good convergence properties
[Floerchinger et al., PLB 735, 305 (2014), Brouzakis et al. PRD 91, 065007

(2015)]
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Perturbative expansion

write fluid fields χ = (ε, n, uµ, πµν , πBulk, . . .)

at initial time τ0 as

χ = χ0 + ε χ1

background part h0, fluctuation part ε h1

at later time τ > τ0 as

χ = χ0 + ε χ1 + ε2χ2 + ε3χ3 + . . .

χ0 is solution of full, non-linear hydro equations in symmetric
situation: azimuthal rotation and Bjorken boost invariant

χ1 is solution of linearized hydro equations around h0,
can be solved mode-by-mode

χ2 can be obtained by from interactions between modes etc.
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Background evolution

coupled 1 + 1 dimensional partial differential equations
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Evolving perturbation modes
linearized hydro equations, use Fourier expansion

χj(τ, r, φ, η) =
∑
m

∫
dk

2π
χ

(m)
j (τ, r; k) ei(mφ+kη)

reduces problem to 1 + 1 dimensions

Figure 11: Evolution of perturbations fields initialized in the m = 2, l = 3, k = 0 energy density

mode as a function of radius r and Bjorken time ⌧ . We show the perturbation in energy density �✏, in

radial fluid velocity �ur, azimuthal fluid velocity �u� and di↵erent shears stress components. The energy

density and shear stress perturbations have been normalized by a time-dependent factor corresponding to

the background energy density in the center of the fireball ✏̄(⌧, 0) for better visibility. The orange region

denotes where the background temperature is above the freeze-out value (taken as 120 MeV here).

– 28 –
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Freeze-out surface

background and fluctuations are propagated until Tfo = 120 MeV

free streaming for later times [Cooper, Frye]

perturbative expansion also at freeze-out [Floerchinger, Wiedemann

(2013)]

resonance decays can be taken into account [Maszeliauskas,

Floerchinger, Grossi, Teaney (2018)]
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Cooper-Frye freeze out

single particle momentum distribution from local occupation number

E
dNj
d3p

= − 1

(2π)3

∫
Σf

dΣµ p
µfj(x, p).

distribution function from fluid fields

fj = fj(p
µ, uµ(x), T (x), µi(x), πµν(x), πbulk(x))

ideal gas approximation

fk(x, p) =
1

exp
[
−βν(x)pν −

∑
j Q

(k)
j αj(x)

]
∓ 1

depends on βµ(x) = uµ(x)
T (x) and αj(x) =

µj(x)
T (x)

22 / 39



Particle distribution

for single event

ln

(
dN single event

pT dpT dφdy

)
= lnS0(pT )︸ ︷︷ ︸

from background

+
∑
m,l

w
(m)
l eimφ θ

(m)
l (pT )︸ ︷︷ ︸

from fluctuations

each mode has an angle w
(m)
l = |w(m)

l | e−imψ
(m)
l

each mode has its pT -dependence θ
(m)
l (pT )
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Harmonic flow coefficients

Double differential harmonic flow coefficient to lowest order

v2
m{2}(paT , pbT ) =

lmax∑
l1,l2=1

θ
(m)
l1

(paT ) θ
(m)
l2

(pbT ) 〈w(m)
l1

w
(m)∗
l2
〉

intuite matrix expression

in general no factorization

higher order corrections important for non-central collisions
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Harmonic flow coefficients for central collisions

Triangular flow for charged particles
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Points: ALICE, 0%-2% most central collisions [PRL 107, 032301 (2011)]

Curves: varying maximal resolution lmax [Floerchinger, Wiedemann (2014)]
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Two-particle correlation function 1
Generalization of Cooper-Frye for two-particle spectrum
(non-identical particles)

EpEq
dNjk
d3pd3q

=
1

(2π)6

∫
dΣµdΣ′ν p

µqνfj(x, p)fk(x′, q).

expand distribution functions

fj(x, p)fk(x′, q) = fjfk
∣∣
0

+
∑
n

{
∂fj
∂χn

fk
∣∣
0
χn(x) + fj

∂fk
∂χn

∣∣
0
χn(x′)

}
+
∑
m,n

{
∂fj
∂χm

∂fk
∂χn

∣∣
0
χm(x)χn(x′)

}
+ . . .

take expectation values

〈fj(x, p)fk(x′, q)〉 = fjfk
∣∣
0

+
∑
m,n

{
∂fj
∂χm

∂fk
∂χn

∣∣
0
〈χm(x)χn(x′)〉c

}
+ . . .
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Two-particle correlation function 2

ratio to product of single particle spectra

Cjk(p, q) =
〈EpEq dNjk

d3pd3q 〉

〈Ep dNjd3p 〉〈Eq
dNk
d3q 〉

=1 +

1
(2π)6

∫
Σf
dΣµdΣ′ν p

µqν
{
∂fj
∂χm

∂fk
∂χn

∣∣
0
〈χm(x)χn(x′)〉c

}
〈Ep dNjd3p 〉〈Eq

dNk
d3q 〉

depends on two-point correlation function of fluid fields on the
freeze-out surface

Gmn(x, x′) = 〈χm(x)χn(x′)〉c
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Symmetry implications

two-particle (momentum) correlation function can be expanded

Cjk(pT , qT ; ∆φ,∆η) = 1+

∫
dk

2π

∞∑
m=−∞

eim∆φ+ik∆ηc
(m)
jk (pT , qT ; k)

two-point correlation function on freeze-out surface can be expanded

Gst(τ, τ
′, r, r′; ∆ϕ,∆y) =

∫
dk

2π

∞∑
m=−∞

eim∆ϕ+ik∆ηg
(m)
st (τ, τ ′, r, r′; k)

diagonal relation in m and k as consequence of symmetry

c
(m)
jk (pT , qT ; k) ∼

∑
s,t

∂fj
∂χs

∂fk
∂χt

g
(m)
st (τ, τ ′, r, r′; k)
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Thermal fluctuations
fluid dynamics describes expectation values

T̄µν =〈Tµν〉 = ε uµuν + (p+ πbulk)∆µν + πµν

N̄µ =〈Nµ〉 = nuµ + νµ

what about correlation functions ?

〈[Tµν(x)− T̄µν(x)][T ρσ(y)− T̄ ρσ(y)]〉

no reason this should vanish, already in thermal equilibrium
ideal fluid part can be parametrized by

T̄ (x), µ̄(x), ūρ(x)

Thermodynamic variables (ε, n) and (T, µ) related by Legendre
transforms
Legendre transforms of Tµν correlation functions lead to

〈[T (x)− T̄ (x)][T (y)− T̄ (y)]〉, etc.
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Correlation functions on a hypersurface 1

generalization of “fixed time” is hypersurface Σ

for example chemical or kinetic freeze-out surface

coordinate system αj with j = 1, 2, 3, embedding xµ(α) and
induced metric on hypersurface

hjk(α) = gµν

[
∂

∂αj
xµ(α)

] [
∂

∂αk
xν(α)

]

fluctuation field χn(α), e.g.

χ1(α) = T (α)− T̄ (α), χ2(α) = µ(α)− µ̄(α)

probability density of fluctuations on Σ

p[χ] =
1

Z
e−IΣ[χ], Z =

∫
Dχ e−IΣ[χ].
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Correlation functions on a hypersurface 1

partition function on hypersurface Σ

Z[J ] =

∫
Dχ exp

[
−IΣ[χ] +

∫
d3α
√
hJn(α)χ(α)

]
with

√
h =

√
det(hjk) and the invariant volume element d3α

√
h

allows to obtain correlation functions

〈χn(α)χm(β)〉 = 1
Z[J]

(
1√
h(α)

δ
δJn(α)

)(
1√
h(β)

δ
δJm(β)

)
Z[J ]

∣∣
J=0

but what is the action IΣ[χ] ?
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Probability of fluctuations 1

probability for a thermal fluctuation in macroscopic fields

p[χ] =
1

Z
e−IΣ[χ]

determined by change in entropy

IΣ[χ] = −∆S[χ] + const.

differential of entropy (with βν = uν
T and αj =

µj
T )

dS = βνdP
ν +

∑
j

αjdNj
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Probability of fluctuations 2
split into two parts

dS =dS0 + dS1

=β0,νdP
ν
0 + β1,νdP

ν
1 +

∑
j

αj,0dNj,0 +
∑
j

αj,1dNj,1

=∆βνdP
ν +

∑
j

∆αjdNj

used here conservation laws dP ν0 + dP ν1 = 0 and dNj,0 + dNj,1 = 0

have set ∆βν = βν,1 − βν,0 and ∆αj = αj,1 − αj,0
abbreviate dP ν = dP ν1 and dNj = dNj,1

∆βν and ∆αj are linear in ∆P ν and ∆Nj to lowest order

allows to integrate

∆S =
1

2

∆βν∆P ν +
∑
j

∆αj∆Nj
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Probability of fluctuations 3
change in entropy

∆S =
1

2

∆βν∆P ν +
∑
j

∆αj∆Nj


=− 1

2

∫
dΣµ

∆βν∆Tµν +
∑
j

∆αj∆N
µ
j


uses surface element dΣµd

3α
√
hnµ with normal vector nµ

assume that this works locally in each volume element (strong local
equilibrium assumption)

leads to action on hypersurface

IΣ[χ] = −∆S =
1

2

∫
dΣµ

∆βν(x)∆Tµν(x) +
∑
j

∆αj(x)∆Nµ
j (x)


ultralocal = no derivatives of fluctuating fields
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Fluctuations on hypersurface

use ideal fluid expressions

Tµν = εuµuν + p∆µν , Nµ
j = nju

µ,

obtain “action” for fluctuations ∆T , ∆µj and ∆uµ

IΣ =
1

2

∫
dΣµ

{
uµ

T

(
∂2p
∂T2 ∆T 2 + 2

∑
j

∂2p
∂T∂µj

∆T∆µj +
∑
i,j

∂2p
∂µi∂µj

∆µi∆µj

)

+ 2
∆uµ

T

(
∂p
∂T

∆T +
∑
j

∂p
∂µj

∆µj

)
+
uµ

T
(ε+ p) ∆ρσ∆uρ∆uσ

}

short range correlations

〈χn(α)χm(α′)〉c =
1√
h(α)

δ(3)(α− α′)σnm(α)
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Thermal correlation matrix

for stationary fluid nµ = uµ

σTT =
T ∂2p
∂µ2

∂2p
∂T 2

∂2p
∂µ2 −

(
∂2p
∂T∂µ

)2 =
T 2

cV
,

σµµ =
T ∂2p
∂T 2

∂2p
∂T 2

∂2p
∂µ2 −

(
∂2p
∂T∂µ

)2 =
T 2

cV

∂2p
∂T 2

∂2p
∂µ2

,

σTµ = σµT =
−T ∂2p

∂T∂µ

∂2p
∂T 2

∂2p
∂µ2 −

(
∂2p
∂T∂µ

)2 = −T
2

cV

∂2p
∂T∂µ

∂2p
∂µ2

,

σuiuj =
T

ε+ p
∆ij

depends on thermodynamic equation of state p(T, µj)

for T → 0 fluctuations vanish σnm → 0
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Two-particle correlation

[D. Guenduez]

two-particle pion correlation from thermal fluctuations

(preliminary)

strong local equilibrium approximation

equation of state p(T, µj) from hadron resonance gas
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Net baryon number correlations

[D. Guenduez]

net baryon number correlations in momentum space from local
thermal fluctuations on the freeze-out surface

(preliminary)

strong local equilibrium approximation

equation of state p(T, µj) from hadron resonance gas
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Conclusions

fluid dynamics of heavy ion collisions can be analyzed in “functional
manner” using a mode expansion

fluctuations from initial state

thermal fluctuations

characterization of fluctuations on hypersurfaces

relation to experimentally accessible two-particle correlation
functions

more information about two-point correlation functions needed

better understanding of close-to-equilibrium dynamics of QCD

39 / 39



Backup



An effective action for the ideal fluid
consider effective action

Γ[gµν , β
µ] = ΓR[gµν , β

µ] =

∫
ddx
√
g U(T )

with effective potential U(T ) = −p(T ) and temperature

T =
1√

−gµνβµβν

energy-momentum tensor from effective action

δΓ[gµν , β
µ]

δgµν(x)
= −1

2

√
g 〈Tµν(x)〉

variation at fixed βµ lead to ideal fluid form

Tµν = (ε+ p)uµuν + pgµν

where ε+ p = Ts = T ∂
∂T p is the enthalpy density

general covariance or covariant conservation ∇µTµν = 0 leads to

uµ∂µε+ (ε+ p)∇µuµ = 0,

(ε+ p)uµ∇µuν + ∆νµ∂µp = 0.


