Fluctuations in the fluid dynamics of heavy ion
collisions

Stefan Florchinger (Heidelberg U.)

[Eduardo Grossi, Aleksas Maszeliauskas, Jorrit Lion, Deniz Guenduez,
Silvia Masciocchi, llya Selyuzenkov, Damir Devetak]

Functional Methods in Strongly Correlated Systems
Hirschegg, 04.04.2019

ISOQUANT

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT 1386




Little bangs in the laboratory
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Fluid dynamics

@ long distances, long times or strong enough interactions
@ matter or quantum fields form a fluid!
@ needs macroscopic fluid properties

thermodynamic equation of state p(T, u)
shear viscosity n(7T’, i)

bulk viscosity ¢(7', i)

heat conductivity (7', u)

relaxation times, ...

@ ab initio calculation of fluid properties difficult but fixed by
microscopic properties in Zqcp



Relativistic flurd dynamics
Energy-momentum tensor and conserved current
T = eu'u” + (p + mou) A" + 71
N¥ =nu* +v*

@ tensor decomposition using fluid velocity u#, A*” = g"” + utu”
o thermodynamic equation of state p = p(T', u)

Covariant conservation laws V, 7" =0 and V,N# = 0 imply
@ equation for energy density ¢

w0y + (e + p + mpu) Vyut + 7V u, =0

@ equation for fluid velocity u*

o

(6 +p+ Wbmk)u"vuu” + A”“Bﬂ(p + 7Tbu|k) + A”avlﬂr““ =

@ equation for particle number density n

uo,n +nV,ut + Vot =0



Constitutive relations

Second order relativistic fluid dynamics:
@ equation for shear stress 7"

Tshear Ppc;B uuv;ﬂraﬁ + P74+ 277 Ppo'aﬁ VQUB +...=0

with shear viscosity 7(T), i)

@ equation for bulk viscous pressure 7y
Thulk ' OpThulk + Touik + ¢ Vyut +...=0

with bulk viscosity (T, i)

@ equation for baryon diffusion current v*

T 12
Theat A%3 u“VHVB +vY + kK L?:-p] A"Bag (%) +...=0

with heat conductivity (T, )



Bjorken boost invariance

t [fm/c]
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How does the fluid velocity look like?
o Bjorkens guess: v, (t,x,y,2) = z/t
@ leads to an invariance under Lorentz-boosts in the z-direction
e use coordinates 7 = /12 — 22, x, v, 7 = arctanh(z/t)
o Bjorken boost symmetry is reasonably accurate close to mid-rapidity
n~0



Transverse expansion

O

e for central collisions (r = /2 + y?)

e=¢€(r,r)

@ initial pressure gradient leads to radial flow

()= () s



Non-central collisions

-

b

pressure gradients larger in reaction plane
leads to larger fluid velocity in this direction
more particles fly in this direction

can be quantified in terms of elliptic flow v
particle distribution

N _ N
dp 27

1 +QZ U, cos (m (¢ — YR))

symmetry ¢ — ¢ + 7 implies v; =v3 =v5 =...=0.



Two-particle correlation function

@ normalized two-particle correlation function
(4N dN

TT>events
C(¢17¢2): AN . ¢2d
<E>events<%>events

—1+ QZ v, cos(m (1 — b))

@ surprisingly va, vs, vg4, v5 and vg are all non-zero!
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[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]



FEvent-by-event fluctuations

@ deviations from symmetric initial energy density distribution from
event-by-event fluctuations

@ one example is Glauber model




Big bang — little bang analogy
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Big Bang Expansion

\
13.7 billion years ©- 0 fm/c w1 fm/c  ~ 10 fm/c v~ 10 fm/c

@ cosmol. scale: MPc= 3.1 x 10%> m e nuclear scale: fm= 10" m

o Gravity + QED + Dark sector e QCD

@ one big event @ very many events
e initial conditions not directly accessible
@ all information must be reconstructed from final state
@ dynamical description as a fluid

o fluctuating initial state



Stmalarities to cosmological fluctuation analysis

o fluctuation spectrum contains info from early times
@ many numbers can be measured and compared to theory

@ can lead to detailed understanding of evolution



What perturbations are interesting and why?

Fluid fluctuations

energy density €

fluid velocity u*

shear stress 7"

more general also: baryon number density n,
electric charge density, electromagnetic fields, ...

o Initial fluid perturbations
e governed by universal evolution equations
e can be used to constrain thermodynamic and transport properties
e contain interesting information from early times

Thermal and quantum fluid fluctuations

e needed for more detailed description
e could grow large close to critical point

o Non-fluid fluctuations
o feed down from energy loss of hard particles or jets



A program to understand initial fluid perturbations

@ characterize initial perturbations
@ propagated them through fluid dynamic regime

@ determine influence on particle spectra and harmonic flow
coefficients



Mode expansion for fluid fields

Bessel-Fourier expansion at initial time
[FIoerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen & Wolpert 2012]

o for enthalpy density w = e+ p

w(r, ¢,n) = wea(r) |1+ / w™ (k) emotikn (2™ p(r)
m,l k

@ azimuthal wavenumber m, radial wavenumber [, rapidity
wavenumber k

@ higher m and [ correspond to finer spatial resolution

@ works similar for vectors (velocity) and tensors (shear stress)



Transverse density from Glauber model
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Cosmological perturbation theory

[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov,
Weinberg, ...]

solves evolution equations for fluid 4 gravity

expands in perturbations around homogeneous background
detailed understanding how different modes evolve

very simple equations of state pP=we

viscosities usually neglected n=C=0

photons and neutrinos are free streaming



Fluid dynamic perturbation theory for heavy ion
collisions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]
@ solves evolution equations for relativistic QCD fluid
@ expands in perturbations around event-averaged solution
@ leads to linear + non-linear response formalism

@ good convergence properties
[Floerchinger et al., PLB 735, 305 (2014), Brouzakis et al. PRD 91, 065007
(2015)]



Perturbative expansion

write fluid fields x = (e, n, u*, 7", TRulk, - - )

@ at initial time 7y as

X =Xotexa

background part hg, fluctuation part € hq

@ at later time 7 > 7 as

X=Xo+exi+eExs+eExX+ ...

@ Yo is solution of full, non-linear hydro equations in symmetric
situation: azimuthal rotation and Bjorken boost invariant

@ X1 is solution of linearized hydro equations around hy,
can be solved mode-by-mode

@ X2 can be obtained by from interactions between modes etc.



Background evolution

e coupled 1+ 1 dimensional partial differential equations
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FEvolving perturbation modes

@ linearized hydro equations, use Fourier expansion

dk _ (m i(m
Xj(777'7<15,77)22/%x§. )(T,T;k))e( o+kn)

@ reduces problem to 1 4+ 1 dimensions

Se(r,r) /é(,0)
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Freeze-out surface

background and fluctuations are propagated until Ty, = 120 MeV

free streaming for later times [Cooper, Frye]

@ perturbative expansion also at freeze-out [Floerchinger, Wiedemann
(2013)]

resonance decays can be taken into account [Maszeliauskas,
Floerchinger, Grossi, Teaney (2018)]

7 [fm/c]




Cooper-Frye freeze out

@ single particle momentum distribution from local occupation number

dN: 1
EdT; = —W/dxﬂp”fj(x,p).

5

@ distribution function from fluid fields

fj = fj (p#«7 u“(gj)’ T(:E), .u“i(x)v ﬂ-IJV(x)’ ﬂ-bulk(x))

@ ideal gas approximation

fi(z,p) = -
k\T,P) = B , *) . 1
exp | =B, ()p” — 32, Q; ()| F
@ depends on BH(x) = 7?((;)) and a;(z) = Iélz((::))



Particle distribution

for single event

stingIe event ) _— -
In{——— )= InS £ N (™ gimé g
<ppoTd¢dy M ; ! o (pr)

from background

from fluctuations

(m

s ()
e each mode has an angle w, ) = |wl(m)\ e~ im¥

@ each mode has its pr-dependence Gl(m) (pr)



Harmonic flow coefficients

Double differential harmonic flow coefficient to lowest order

Imax

VA2 5 ) = > 0 (08 07 (0h) (wfwi)

l1,l2=1

@ intuite matrix expression
@ in general no factorization

@ higher order corrections important for non-central collisions



Harmonic flow coefficients for central collisions

Triangular flow for charged particles
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Two-particle correlation function 1
o Generalization of Cooper-Frye for two-particle spectrum
(non-identical particles)
dN, 1
EpEy——t =
d3pd3q  (2m)¢

/dEudE,’, P"q" fi(@,p) fe(2', q).
@ expand distribution functions
fila,p) fu(@'sq) = fifil,
of;
+Z{ ]fk|0X71 +fja |0Xn )}

af; 0
S (e

o take expectation values

(fi(@.p)fu(@, ) = fifxl,

+Z{88>fjn gii (x)Xn(:C/»C} +...

m,n



Two-particle correlation function 2

@ ratio to product of single particle spectra

dN
Cir(p.q) <EquWé§q>
kP, = dN;
<Ep aB3p ><E de>

9 d3q
v ) Of;
e s, A%, pa” { FL 8| (o (@)xn (@), |

dN; :
<EpdT£><Eq%>

@ depends on two-point correlation function of fluid fields on the
freeze-out surface

Gmn(7, x/) = <Xm(x)Xn(x/)>c



Symmetry implications

@ two-particle (momentum) correlation function can be expanded

e}

dk im k2 m
Cjk(pT,qT;AqﬁAn):H/g Yo emASTEANE (br, gri k)

m=-—o0

@ two-point correlation function on freeze-out surface can be expanded

dk = im 2 m
Gy, rr's A, ) = [ 55 57 &mae g 5 i

m=—o00

@ diagonal relation in m and k as consequence of symmetry

( ) Z Ofj Ofk o

/ /
pTaqTa T,T,T’,T’;k
aXs 8Xt )



Thermal fluctuations
o fluid dynamics describes expectation values
TH =(TH) = euru” + (p + Tpu) A* + T
Nt =(N") = nut 4+ vH

@ what about correlation functions ?

([T (z) = T (2)][T7 (y) — T (y)])

@ no reason this should vanish, already in thermal equilibrium
@ ideal fluid part can be parametrized by

T(z), =),  u(z)

@ Thermodynamic variables (¢,n) and (7, u) related by Legendre
transforms
o Legendre transforms of T#" correlation functions lead to

([T(@) - T@)[T(y) - T)]),  ete.



Correlation functions on a hypersurface 1

o generalization of “fixed time" is hypersurface
o for example chemical or kinetic freeze-out surface

@ coordinate system o’ with j = 1,2, 3, embedding z*(a) and
induced metric on hypersurface

) = g | s (@) [ e (@)

o fluctuation field x, (), e.g.

@ probability density of fluctuations on X

plx] = %e—zzm’ 7 /Dx -



Correlation functions on a hypersurface 1

@ partition function on hypersurface X
Z|J] = /DX exp |:—12[X] +/d3a\/ﬁJn(a)x(a)}
with v/h = /det(h;x) and the invariant volume element d>av/h

@ allows to obtain correlation functions

Oen(@)xm (B) = 771 ( @Mf@) ( m&f&m) 211

@ but what is the action Is[x] ?



Probability of fluctuations 1

@ probability for a thermal fluctuation in macroscopic fields

1
plx] = EG_IEM

@ determined by change in entropy

Ix[x] = —AS[x] + const.

o differential of entropy (with £, = % and o; = £)

dS = B,dP" + ) a;dN;

J



Probability of fluctuations 2

@ split into two parts
dS =dSy + dS;
:ﬁ(]wdp(l)j + ﬁlwdply + Z ij}()dN]}() + Z Olj,lde,l

J J
=AB,dP” + > Aa;dN;

J

used here conservation laws dFPy + dPy = 0 and dN; o+ dN;1 =0
have set Aﬁy = 5,,}1 — ﬂ,,’() and AOéj =051 — Q50

abbreviate dP¥ = dP} and dN; = dN;

ApB, and Aq; are linear in AP” and AN; to lowest order

allows to integrate

1 v
AS = | AB,AP +ZA%—AN]-

J



Probability of fluctuations 3

@ change in entropy

1 17
AS = | AB,AP +)  Aa;AN;

J

1 v
=-3 /dZ,L AB,AT™ +> " Aa; AN

J

@ uses surface element dZud:)’a\/Enu with normal vector n,,

@ assume that this works locally in each volume element (strong local
equilibrium assumption)

@ leads to action on hypersurface

B = -8 = 5 [ as,{ A%, @) AT (o )+ B AN @

@ ultralocal = no derivatives of fluctuating fields



Fluctuations on hypersurface

@ use ideal fluid expressions

wy o w, v g B M
T = eutu” + pAHY, N = njut,

@ obtain “action” for fluctuations AT, Ap; and Aut

1 'LLI'L 52
g [ (oAt v afi aran + X0 o )

Au ut o
+2—< AT—}—Z(D”AMJ)—&-?(e—kp)AmAupAu }

@ short range correlations

(Xn(a)xm(a'))e = ——® (a —a)oum(@)



Thermal correlation matrix

o for stationary fluid n* = u*

(9211
TTIUQ T2
oTT = 2= T
92p 8%2p 92p cy
oT? du? 0T ou
’p 2 O°p
o T T2 4B
272 82p 92p 92p 2 ey 3227
T2 on2 — \ oTop o
3*p 5 _9°p
o g —T 510, _ T* 3Top
Tp — OupT — - 2
2porp (% \®  ev OB
OT? dp? OTop
T
Oyivi = ——AY
€+ p

@ depends on thermodynamic equation of state p(T’, i)

e for T' — 0 fluctuations vanish o,,, — 0




Two-particle correlation

[D. Guenduez]

@ two-particle pion correlation from thermal fluctuations

ot

C2

)

preliminary

(

@ strong local equilibrium approximation

@ equation of state p(7, 41;) from hadron resonance gas
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Net baryon number correlations
[D. Guenduez]

@ net baryon number correlations in momentum space from local
thermal fluctuations on the freeze-out surface

(preliminary)

@ strong local equilibrium approximation

@ equation of state p(7, 11;) from hadron resonance gas
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Conclusions

o fluid dynamics of heavy ion collisions can be analyzed in “functional
manner” using a mode expansion

o fluctuations from initial state
o thermal fluctuations
o characterization of fluctuations on hypersurfaces

o relation to experimentally accessible two-particle correlation
functions

@ more information about two-point correlation functions needed

@ better understanding of close-to-equilibrium dynamics of QCD



Backup



An effective action for the ideal fluid

e consider effective action
lguus 8] = Calguns 8] = [ d'a /g U(T)

with effective potential U(T) = —p(T') and temperature
1

v = Guv BB
@ energy-momentum tensor from effective action

&[‘[glﬂ’?ﬁu] _ 1 102
59/w($) - _5\/§ <T (l‘)>

@ variation at fixed 8" lead to ideal fluid form
" = (e+ p)utu” + pg"”
where e +p=Ts = T%p is the enthalpy density
@ general covariance or covariant conservation V, T = 0 leads to
utO e+ (e+p)V,ut =0,
(e +p)u"V, u” + A"M0,p = 0.



