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Entropy and information

[Claude Shannon (1948)]
@ consider a random variable = with probability distribution p(x)

@ information content or “surprise” associated with outcome z
i(x)

. 6
i(2) = ~Inp(a) .
2
0.0 0.2 04 06 08 1.0 P()

o Entropy is expectation value of information content

S = Zp YInp(x

S=0 S =1n(2) S =2In(2)
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Entropy at thermal equilibrium

@ micro canonical ensemble: maximal entropy S for given conserved
quantities £, N in given volume V'

@ universality at equilibrium

starting point for development of thermodynamics ...

1 Iz P
E,N = _dE — ZdN + =
S(E,N,V), dS = ZdE — =dN + ZdV

@ ... grand canonical ensemble with density operator ...

1 1
= — _T(H_MN)
P=7z°

o ... Matsubara formalism for quantum fields ...
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Ideal fluid dynamics

o thermal equilibrium

™ = eufu” + p(ufu” + g""), N* = nut, sP = sut

o fluid velocity u*

thermodynamic equation of state p(7', u) with dp = sdT + ndu
local thermal equilibrium approximation: u#(z), T(x), pu(x)
neglect gradients: lowest order of a derivative expansion

evolution of u#(z), T(x) and u(x) from conservation laws

V. T"(zx) =0, V,NMz)=0.

@ entropy current also conserved

Vst (xz) = 0.
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Out-of-equilibrium

@ quantum field theory out-of-equilibrium is less well understood
@ interesting topic of current research

@ is non-equilibrium dynamics also governed by information?

@ approach to equilibrium

@ universality
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Entropy in quantum theory

[John von Neumann (1932)]

S=—-Trplnp

based on the quantum density operator p
for pure states p = 1) (¥)| one has S =0
for mixed states p =} p;[j)(j| one has S = -3, p;Inp; >0

unitary time evolution conserves entropy

~Tr(UpUN In(UpUT) = —=Trplnp — S = const.

global characterization of quantum state
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Entropy and entanglement

e consider a split of a quantum system into two A + B

==

B A B

reduced density operator for system A

pa = Trp{p}

entropy associated with subsystem A

Sa=—-Tra{palnpa}

@ pure product state p = p4 ® pp leads to S4 =0
e pure entangled state p # py ® pp leads to Sy > 0
@ S, is called entanglement entropy
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Classical statistics

consider system of two random variables = and y

joint probability p(x,y) , joint entropy

S =— Zp(x, y)Inp(z,y)

T,y

reduced or marginal probability p(z) = Zy p(z,y)

reduced or marginal entropy

Sy = Zp YInp(x

@ one can prove: joint entropy is greater than or equal to reduced
entropy
S>S,

globally pure state S = 0 is also locally pure S, =0
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Quantum statistics

consider system with two subsystems A and B

combined state p , combined or full entropy

S =-Tr{plnp}

reduced density matrix p4 = Tre{p}
reduced or entanglement entropy

Sa=—Tra{palnpa}

for quantum systems entanglement makes a difference

S# 54

coherent information Ipy4 = S4 — S can be positive!
globally pure state S = 0 can be locally mixed S4 > 0
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The thermal model puzzle

@ elementary particle collision experiments such as e e~ collisions
show thermal-like features

@ particle multiplicities well described by thermal model

Z0 k.. e
= e'e’ Vs =912 GeV P
z KK’
21 F on o
= .
= P
EJS|
210 F
02k . T=164.6£3.0 MeV
= V=40.2+5.7 fm
5 7,20.648+0.026
0 F oo X’=39/12 dof
A . . . .
3 - -
107 107 0! 1 10
Multiplicity (therm. model)
= 4 F
4
- [
S2E ctigg 8 togd
2 $—+¢ 2+ ¢ T
sa L i i
o 1 1
ZE P KKn oep wo ASEIEQ

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely
@ alternative explanations needed
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QCD strings

==

B A B

particle production from QCD strings

e. g. Lund model (Pythia)

different regions in a string are entangled

subinterval A is described by reduced density matrix of mixed form

pa = Trpp

@ characterization by entanglement entropy

Sa=—Tr{paln(pa)}

could this lead to thermal-like effects?
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Microscopic model

@ QCD in 141 dimensions described by 't Hooft model

_ . _ 1 »
f = 7@[)1’7“(3/1, - 'LgA/L)"/)i - mﬂ/m/)z - §tr F/LVFM

e fermionic fields 1; with sums over flavor species ¢ = 1,..., Ny
o SU(IV,) gauge fields A, with field strength tensor F,,,,

@ gluons are not dynamical in two dimensions
"]

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for N, — oo with ¢g?N, fixed
['t Hooft (1974)]
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Schwinger model
e QED in 1+1 dimension

_ . _ 1 ,
L = =iy (Op — iqAL) Vi — mii; — 1 E, F"

@ geometric confinement
U(1) charge related to string tension ¢ = /20

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

5= [ @ova] - jau0.0 - e

maqe”

5377 ¢08 (2v7o + ) }

Schwinger bosons are dipoles ¢ ~ 1))

mass is related to U(1) charge by M = ¢q/\/m = \/20/7
massless Schwinger model m = 0 leads to free bosonic theory
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Ezxpanding string solution

@ external quark-anti-quark pair on trajectories z = +t

e coordinates: Bjorken time 7 = /12 — 22, rapidity n = arctanh(z/t)
e metric ds? = —dr? + 12dn?

e symmetry with respect to longitudinal boosts n — n + An
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Coherent field evolution

@ Schwinger boson field depends only on 7

¢ =¢(7)
@ equation of motion

S _
02¢ + ;87¢+M2¢ = 0.

o Gauss law: electric field E = g¢/+/m must approach the U(1) charge
of the external quarks E — ¢, for 7 — 04

s ﬁQe

o(1) = p (1= 04)

@ solution of equation of motion [Loshaj, Kharzeev (2011)]

3(r) = @% Jo(M7)
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Gaussian states

@ theories with quadratic action typically have Gaussian density matrix

o fully characterized by field expectation values

d(x) = (¢(x)), m(x) = (m(x))

and connected two-point correlation functions, e. g.

(B(2)8(y))e = (d(2)(y)) — ¢(x)d(y)

e if p is Gaussian, also reduced density matrix p4 is Gaussian
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Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, 1712.09362]

1
Sa=5Tra {DIn(D?)},

@ operator trace over region A only
@ matrix of correlation functions

(@) i@)ow).
Dia,y) = (—i<w<x>w<y>>c i<w<x>¢<y>>c> :

@ involves connected correlation functions of field ¢(z) and canonically
conjugate momentum field m(x)

@ expectation value ¢ does not appear explicitly

@ coherent states and vacuum have equal entanglement entropy S4
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Rapidity interval

T =const
n = const
————— region A
region B
z

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time 7

@ entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27 sinh(An/2) at
fixed time ¢t = 7 cosh(An/2)
@ need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

@ entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

@ entanglement entropy density d.S/dAn for bosonized massless
Schwinger model (M = \/L;)

ds/dan
0.4
0.3

0.2

0.1

0.0 . An

0 5 10 15 20 25

Mr=1,10"1% 1072, 1072, 107%, and 107°

[Berges, Floerchinger, Venugopalan (2017)]
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Conformal limat

o for M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994); Calabrese, Cardy (2004)]

S(Az) = gln (Az/€) + constant

with small length e acting as UV cutoff
@ here this implies

S(r,An) = gln (27 sinh(An/2)/¢) + constant

conformal charge ¢ = 1 for free massless scalars or Dirac fermions

additive constant not universal but entropy density is

0 c
— An) =—=coth(An/2
5a-S(r. An) =gcoth(An/2)

—>g (Anp>> 1)

entropy becomes extensive in An !
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Unwversal entanglement entropy density

o for very early times “Hubble" expansion rate dominates over masses
and interactions

1 q
H=->M=-L
7'>> fﬂ'

theory dominated by free, massless fermions

,m

@ universal entanglement entropy density
as ¢
dAn 6

with conformal charge ¢
o for QCD in 141 dimensions (gluons not dynamical)

C:NCXNf

from fluctuating transverse coordinates (Nambu-Goto action)

c=N.xN;+2~9+2=11
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Modular or entanglement Hamiltonian

@ conformal field theory [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,
Huerta (2017), see also Candelas, Dowker (1979)]

1
pA:—e*K, Zy=Tre X
Za

@ modular or entanglement Hamiltonian local expression

K:/ZdZH &y (z) TH ()
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Time-dependent temperature

@ energy-momentum of excitations around coherent field T (x)

combination of fluid velocity and temperature £#(z) = 1;,?((;))

fluid velocity in T-direction & time-dependent temperature
[Berges, Floerchinger, Venugopalan (2017)]
h
T(r)= —

DY

Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

Hawking-Unruh temperature in Rindler wedge T'(z) = 2’;‘;
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Physics picture

@ alternative derivation via mode functions & Bogoliubov transforms
[Berges, Floerchinger, Venugopalan, 1712.09362]

@ coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

@ on finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

o technically limits Anp — oo and M7 — 0 do not commute

o An — oo for any finite M7 gives pure state
o M7 — 0 for any finite An gives thermal state with T'=1/(277)
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Particle production in massive Schwinger model

[ongoing work with Lara Kuhn, Jiirgen Berges]

N/An

@ asymptotic particle number depends on g ~ m/q
@ exponential suppression for large fermion mass g > 1

N m _ m 20
o o 0BSIATAS L 4 055 4T ABET 4

An
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Entanglement dynamics in cold atom experiments

@ entanglement can be directly accessed in cold atom experiments
[Oberthaler group, Greiner group]
@ expanding geometries can be realized by interplay of

e longitudinal expansion
o time dependent change of sound velocity vs(t)
o time dependent gap or mass M?(t)

r Decelerating Universes bl Coasting Universe Accelerating Universe
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Dissipation

dissipation can be defined as (effective) entropy generation

d
$S>0

for extensive entropy S = fz dx,,s" one has locally

Vst >0

related to effective loss of information

second law of thermodynamics: entropy gets produced, not
destroyed

.7 .
local dissipation = entanglement generation
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Dissipation and the quantum effective action

dissipation usually discussed on the level of equations of motion
one would like to have a formulation in terms of an effective action

o fluctuations & correlation functions
e renormalization

o effective field theories

e coupling to gravity

@ one possibility: Schwinger-Keldysh double time path formalism

another possibility: analytic continuation of the 1P| effective action
[Floerchinger, JHEP 1609, 099 (2016)]
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Local equilibrium & partition function
[Floerchinger, JHEP 1609, 099 (2016)]

(a) Global thermal equilibrium (b) Local thermal equilibrium

I {]T ‘“a.'
x T

local equilibrium with T'(z) and u*(x)
_ u(z)
pH(x) = Fo

@ similarity between local density matrix and translation operator

.

B (@) P, PN RN

@ represent partition function as functional integral with periodicity
ozt —if"(z)) = +o(a")
partition function Z[J], Schwinger functional W[J] in Euclidean

Z[J] = eWelJl — /ng e~ Seldl+[, J¢
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One-particle vrreducible or quantum effective action

@ in Euclidean domain T'[¢] defined by Legendre transform

Tg[®] = / Jo(2)Po(x) — Wg[J]

with expectation values

L

o) = i) 574 (x)

o Euclidean field equation

1)
MFE[‘I)] = /9() Jo(x)

resembles classical equation of motion for J =0

o need analytic continuation to obtain a viable equation of motion
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Analytic continuation
e for homogeneous background field and in global equilibrium
52
dJa(—p)dJu(q)
62
6@ (—p)dPu(q)

WelJ] = Gas(p) (27)*6“ (p - q)
I5[®] = Puy(p) (21)*6“ (p - q)

o from definition of effective action
Z Gab(p)Pbc(p) = 5ac
b

e correlation functions can be analytically continued in w = —u*p,,
@ branch cut on real frequency axis w € R

Im(w)

Matsubara

retarded Feynman

advanced
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Variational principle with effective dissipation

[Floerchinger, JHEP 1609, 099 (2016)]

@ decompose inverse two-point function

Pab(p) == Pl,ab(p) - isl(fuupu) P2,ab(p)
with $(w) = sign(Im w)

@ in position space, replace

81 (—u*pu) = sign (Im(—u*p,))

— sign (Im (iu“%)) = sign (Re (u“%)) = SR (u”%)

o this symbol appears also in T'[®]
o real and causal field equations follow from

ST[®]

- : - "o
with certain algebraic rules for sg (u# %) — £1

31/39



Entropy production

[Floerchinger, JHEP 1609, 099 (2016)]

@ analysis of general covariance leads to entropy production law

ret )

L
o VG 6Pg Iret

29T
V390G

VMS# 6)\8/\(I)a + ﬁuvl/ (

@ should be positive by second law of thermodynamics
@ so far only understood close-to-equilibrium
e e.g. for viscous fluid

1
Vst = T [Znalwcr’“’ + C(Vpup)ﬂ
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Fluid dynamics

Bl

@ long distances, long times or strong enough interactions

@ quantum fields form a fluid!
@ needs macroscopic fluid properties
e equation of state p(7T', i)
o shear viscosity n(T, u)
o bulk viscosity ¢(T, )
e heat conductivity k(T u)
o relaxation times, ...
@ ab initio calculation of transport properties difficult but in principle
fixed by microscopic properties encoded in lagrangian
o standard model of high energy nuclear collisions based on relativistic
dissipative fluid dynamics
@ ongoing experimental and theoretical effort to understand this better
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Big bang — little bang analogy

Dark Energy
Accelerated Expansion
Afterglow Light 3
Pattern  Dark Ages Development of
380,000yrs.

Galaxies, Planets, etc.

Quantum
Filuctuations &

st Stars
about 400 million yrs.

Big Bang Expansion
13.7 billion years
kinetic
freeze-out
lumpy initial hadronization distributions and

: correlations of
energy density roduced particles

\

e ps

e a4

I

GP phase

‘quark and gluon
of froedom

I

collsion ¥
overtap zone

<~ 0fm/c T~1 fm/c © ~ 10 fm/c

e cosmol. scale: MPc= 3.1 x 1022 m e nuclear scale: fm= 1071 m

e Gravity + QED + Dark sector e QCD
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Fluid dynamic perturbation theory for heavy ions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]

[ongoing work with E. Grossi, J. Lion, A. Mazeliauskas]

Muttipole moment, £
so a0 sw w0

o goal: determine QCD fluid properties from experiments
@ so far: numerical fluid simulations e.g. [Heinz & Snellings (2013)]

@ new idea: solve fluid equations for smooth and symmetric
background and order-by-order in perturbations

@ less numerical effort — more systematic studies

@ good convergence properties [Floerchinger et al., PLB 735, 305 (2014),
Brouzakis et al. PRD 91, 065007 (2015)]

@ similar to cosmological perturbation theory
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Fluid dynamics with Mode expansion (FluiduM)

[S. Floerchinger, E. Grossi, J. Lion, 1811.01870]

ideal

0.4f ]
1=0.4 fm/c

0.3¢ 1=2. fmic — n/s=0.1 & bulk|

s(rﬂo. fm/c — n/s=0.2 & bulk

0.2f X 1=18. fm/c 1

30

10 15

r [fm]

20 25

0.30
0.25
0.20
0.1 HRG
0.10

0.05

LQCD

0.00

0.0 0.1

0.2
T [GeV]

0.3 04

0.8

04

P>
1=18. fmly\
0.6

/r=2. fmic

0.2
—
0.0 {.1=1; fmic | I I f
0 5 10 15 20 25 30 35
r [fm]

@ solve first evolution equations for smooth and symmetric event
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Fluid dynamics with Mode expansion (FluiduM)

@ use complete set of basis functions to characterize perturbations

= 15 = =
< g 08 < os
s 10 = 06 S 04
o 5 04 ol
S 05 5 o2 5 02
0.0 0.0
TRt S e
s -05 s 04 S 04
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r/R r/R r/R

@ propagate them through the fluid regime

de(r,)/e(7,0) ou'(r,r)

15

7 [fm/c] ©  [fm/c]

10

S [fm]
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Fast resonance decays
[A. Mazeliauskas, S. Floerchinger, E. Grossi, D. Teaney, 1809.11049]

600 T T T
= 7t total
500 F = +gr+ thﬁrmal —
400 - T 0_>:+7;—7T7r0) : B
2§300 | THERMINATOR 2 +— |
SN
= A
2200 = NN q
100 | S g
B%AAA—Af
0 I
0 02 04 06 08 1
7 (GeV)

@ calculate resonance decays semi-analytically as decay map

dN
Ey dsb :/me(% )Eqdd]sva

@ or as modified distribution function
3 a
o) =3 [ it D) ' (o).
@ so that particle spectrum after resonance decays is

Ep ‘flgb = (271-)3 /dzﬂgb z, p)
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Conclusions

@ quantum field theory & information theory are entangled !
@ could be essential element for universal non-equilibrium theory

@ entanglement helps to understand “thermal effects” in eTe™ and
other collider experiments

e at very early times theory effectively conformal % > m,q
e entanglement entropy extensive in rapidity ddASn =g

e reduced density matrix for excitations at early times thermal T' =

h
27T

@ high energy nuclear collisions allow to study fluid regime of QCD

@ understand relation between microscopic and macroscopic
descriptions
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Dissipation in cosmology
[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]
Evolution of energy density in first order viscous fluid dynamics
uOye + (e + p)V,ut — (O — 200t 0, =0

with
@ bulk viscosity (

@ shear viscosity 7

For 72 < c? and Newtonian potentials ®, ¥ < 1

é+T-Ve+ (e+Dp) (3§+ﬁ-ﬁ>

—

. 2 o
= % {3% + V- U:| + g {8{()]‘81‘@]' + 8i1)j8j’l)i - %(V : 17)2



Fluid dynamic backreaction
[Floerchmger Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Expectation value of energy density € = ()
e+ 3H (e+p—3CH) =
with dissipative backreaction term
D=2 [8-%8-@]- + 0iv;0;v; — 20;v;0;v;])
+ a5 (V- 7%) + 5TV (p — 6CH))

@ D vanishes for unperturbed homogeneous and isotropic universe

@ D has contribution from shear & bulk viscous dissipation and
thermodynamic work done by contraction against pressure gradients

@ dissipative terms in D are positive semi-definite
o for spatially constant viscosities and scalar perturbations only

D= C+377/d3q P@@( )




Dissipation of perturbations

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

o Dissipative backreaction does not need negative effective pressure

%é+3H(€+ﬁeff) =D

e D is an integral over perturbations, could become large at late times.

o Can it potentially accelerate the universe?

Need additional equation for scale parameter a

o Use trace of Einstein's equations R = 87GNT",
%H +2H? = 4”0“‘ (€ — 3PDesr)

does not depend on unknown quantities like {(€ + pes)u*u”)

To close the equations one needs equation of state Pefr = Peff(€)
and dissipation parameter D



Deceleration parameter
[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

@ assume now vanishing effective pressure pess = 0

@ obtain for deceleration parameter ¢ = —1 — %
d 1\ _ 4xGyD
_dlr?a + 2(q - 1) (q - 5) - EH’\";

e for D = 0 attractive fixed point at g, = 3 (deceleration)

e for D > 0 fixed point shifted towards ¢, < 0 (acceleration)
6

3H3

47w Gn D
+ N
— N W A W

dg
dlna

“10 —05 00 05 10
deceleration parameter ¢



Coarse graining etc.

@ entropy in quantum system can emerge when

e system is divided into pieces with reduced density matrix
o subsystems are composed again as mixed states

cuts may divide
o different regions
e high-momentum and low-momentum
o “system” and “bath”

entropy in classical systems from coarse graining phase space

entropy in kinetic theory from neglecting two-particle correlations
(Boltzmann's “Stosszahlansatz")



Transverse coordinates

@ So far dynamics strictly confined to 141 dimensions

@ Transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hy, = 0, X0, X)

SnGg = /dzx\/—dethw {—0’ + .. }

~ /d%\/g{—a — gg‘“’auXi&,Xi + }

e Two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates X* with 1 =1, 2.



Free massive fermions
o Entanglement entropy can also be calculated for free Dirac fermions

of mass m

dS/dAn
0.4,

0.3+

0.2+F

0.1+

0.0

. An
0 5 10 15 20 25

mr=1,10"1,10"2,1073, 107%, and 107°
@ Same universal plateau ¢/6 with ¢ =1 at early time

@ Conformal limit corresponds to non-interacting fermions

@ Consistent with or without bosonization



Rapidity distribution

B a5 ® UA5 53 GeV NSD

® UAS 200 GeV NSD

d

>

°
T
T

© 14 GeV, Tasso o 55 GeV, AMY

<]
(]
° 0e® do.

N
w ¢
o
T
T

B o T
1,00l ® UAS 546 GeV NsD|® .. E|e P238630 GeVNSD | T
- ° m CDF 630 GeV NSD o
0.5F o 183 GeV, Aleph F| o 206 GeV, Aleph o
T T T

L T T

1 2 3 4

5 5
nty) n(y,)

[open (filled) symbols: eTe™ (pp), Grosse-Oetringhaus & Reygers (2010)]

o Rapidity distribution dN/dn has plateau around midrapidity

@ Only logarithmic dependence on collision energy



Fxperimental access to entanglement ¢

@ Could longitudinal entanglement be tested experimentally?
o Unfortunately entropy density d.S/dn not straight-forward to access.

@ Measured in eTe™ is the number of charged particles per unit
rapidity dN¢/dn (rapidity defined with respect to the thrust axis)

@ Around mid-rapidity logarithmic dependence on the collision energy.

o Typical values for collision energies /s = 14 — 206 GeV in the range

ANz /dn ~ 2 — 4

o Entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/N., = 7.2 would give

dS/dn ~ 14 — 28

@ This is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy.



Temperature and entanglement entropy

e For conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

o For static interval of length [ [Calabrese, Cardy (2004)]

1
S(T,1) = gln (77Te sinh(wlT)) + const

o Compare this to our result in expanding geometry
c 2T .
S(r,An) = 3 In [ — sinh(An/2) ) 4 constant
€
o Expressions agree for [ = 7An (with metric ds? = —d7? + 72dn?)
and time-dependent temperature

1
T=—
2rT



Alternative derivation: mode functions

e Fluctuation field ¢ = ¢ — ¢ has equation of motion

2 1 s 10 _
7 p(T,m) + Taﬂp(ﬂ n+ (M 20 o(r,m) =0

@ Solution in terms of plane waves

o(r, / DKL) £, D™ + at () £ (. [k}

@ Mode functions as Hankel functions
. T kr
£k = YTt B (a17)
or alternatively as Bessel functions

Y. o
f(r k) = 2sinh(7k) J-iw(M7)



Bogoliubov transformation

@ Mode functions are related

f(r k) =a(k) (7, k) + B(k) [ (7, k
f(r, ) =a" (k) f(r.k) = B(k) "

@ Bogoliubov coefficients

ek e—Tk
alk) = 2sinh(7k) Blk) = 2sinh(7k)

e Vacuum |(2) with respect to a(k) such that a(k)[€2) = 0 contains
excitations with respect to a(k) such that a(k)|€2) # 0 and vice versa



Role of different mode functions

o Hankel functions f(7, k) are superpositions of positive frequency
modes with respect to Minkowski time ¢

e Bessel functions f(7, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time ¢

o At very early time 1/7 > M conformal symmetry

ds* = 7% [=dIn(7)* + dn’]

o Hankel functions f(7, k) are superpositions of positive and negative
frequency modes with respect to conformal time In(7)

o Bessel functions f(7, k) are superpositions of positive frequency
modes with respect to conformal time In(7)



Occupation numbers
@ Minkowski space coherent states have two-point functions

(@'(k)a(k")e = n(k) 2w 6(k — k') = |B(k)[* 27 6(k — K)
(@(k)a(k'))e = a(k) 27 6(k + k') = —a* (k)B* (k) 2w 6 (k + k')
(@'(k)a' (k') = a* (k) 2m 8(k + k') = —a(k)B(k) 27 6(k + k')

@ Occupation number

Ak = 1P =

@ Bose-Einstein distribution with excitation energy E = |k|/7 and
temperature

o Off-diagonal occupation number @(k) = —1/(2sinh(wk)) make sure
we still have pure state



Local description
o Consider now rapidity interval (—An/2, An/2)

@ Fourier expansion becomes discrete

1 o0
inﬂin
e =17 D gae"?

n=—oo

An/2 1 ) " ) "
On = / dn o(n) [ef””rﬂ + (—1)"61"“7}
—An/2 2

@ Relation to continuous momentum modes by integration kernel

_ dk kAn nmw 1 1
99n7/27TSHl(2 5) k:—%;—’—k-i-%

o(k)

o Local density matrix determined by correlation functions

<507L>7 <7Tn>7 <<,0n,(,0m>c, etc.



Emergence of locally thermal state

@ Mode functions at early time

Flr k) = 1 —ikin(r)—i0 (kM)

V2k

@ Phase varies strongly with k& for M — 0

O(k, M) =kIn(M/2) + arg(I'(1 — ik))

o Off-diagonal term @ (k) have factors strongly oscillating with &

(o(1, k)" (1, K))e = 2m6(k — k’)ﬁ
x {[3 + (k)] + cos [2kIn(7) + 20(k, M)] u(k)}

cancel out when going to finite interval !

@ Only Bose-Einstein occupation numbers 7(k) remain



Entanglement and deep inelastic scattering

@ How strongly entangled is the nuclear wave function?

o What is the entropy of quasi-free partons and can it be understood
as a result of entanglement? [Kharzeev, Levin (2017)]

S = In[zG(x)]

o Does saturation at small Bjorken-z have an entropic meaning?

o Entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015)]

o Could entanglement entropy help for a non-perturbative extension of
the parton model?

o Entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]



