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The thermal model puzzle
elementary particle collision experiments such as e+ e− collisions
show some thermal-like features
particle multiplicities well described by thermal model500 Eur. Phys. J. C (2008) 56: 493–510

Fig. 4 Comparison between measured and fit multiplicities of long-lived hadronic species in e+e− collisions at
√

s = 91.25 GeV. Left: statistical
hadronization model with one temperature. Right: Hawking–Unruh radiation model

Next, we perform the corresponding hadron-resonance
gas analysis in the Hawking–Unruh formulation, introduc-
ing different temperatures determined by the string tension
σ and the strange quark mass ms . The results for long-lived
species are shown in Table 4 and Fig. 4. The resulting fit
parameters here are

σ = 0.1683 ± 0.0048 GeV2;
ms = 0.083 ± 0.004 GeV,

V = 40.3 ± 3.2 fm3;
(27)

with a χ2/dof = 22/12, somewhat better than that of the
corresponding conventional fit.

We now repeat both analyses using the entire 91.25 GeV
data set, with the results shown in table XX and XXI of the
appendix. The resulting fit values (see Tables 3 and 4) agree
well within errors with those obtained from the “golden”
data set at 91.25 GeV. As expected, because of the men-
tioned error sizes, the χ2/dof for the full 91.25 set is con-
siderably worse.

Here a comment is in order. The simple formulae (5) and
(7), in both models, rely on some side assumptions (e.g. the
special distributions for cluster charge fluctuations needed
for the introduction of the equivalent global cluster) that are
not expected to be exactly fulfilled. Therefore, those for-
mulae are to be taken as a zero-order approximation and
not as a faithful representation of the real process. Devia-
tions from the introduced assumption entail corrections to
the formulae (5) and (7) which are nevertheless very diffi-
cult to estimate. The theoretical error involved in these for-
mulae becomes important when the accuracy of measure-

Table 5 Best fit parameters for the statistical hadronization model in
e+e− collisions. The golden sample fit is marked with a ∗
√

s T [MeV] V T 3 γS χ2/dof

14 172.1 ± 5.2 8.3 ± 1.0 0.772 ± 0.094 0.9/3

22 178.7 ± 3.7 8.70 ± 0.94 0.76 ± 0.10 0.7/3

29 164.0 ± 5.4 15.0 ± 2.4 0.683 ± 0.075 33/13

35 163.3 ± 3.2 15.0 ± 1.4 0.730 ± 0.045 8.2/7

43 169 ± 10 13.5 ± 3.2 0.741 ± 0.074 2.9/3

91 161.9 ± 4.1 25.8 ± 3.4 0.638 ± 0.039 215/27

91* 164.6 ± 3.0 23.3 ± 2.2 0.648 ± 0.026 39/12

133 167.1 ± 7.5 26.0 ± 4.6 0.671 ± 0.074 0.1/2

161 153.4 ± 6.5 37.2 ± 5.9 0.72 ± 0.12 0.03/1

183 161 ± 13 35 ± 11 0.446 ± 0.098 5.0/2

189 159 ± 12 36 ± 10 0.54 ± 0.11 7.5/2

ments is comparable and, in this case, a bad χ2 is to be
expected. This is probably the case at

√
s = 91.25 GeV,

where the relative accuracy of measurements is of the or-
der of few percent for many particles. In this case, the χ2

fit is a useful tool to determine the best parameters of the
“simplified” theory but should be used very carefully as a
measure of the fit quality. As has been mentioned, in order
to take into account the uncertainty on parameters implied in
fits with χ2/dof > 1, parameter errors have been rescaled by√

χ2/dof if this is larger than 1, according to Particle Data
Group procedure [40].

For all the remaining energies we have also carried out
the corresponding analyses; the results are listed in Tables 5
and 6 for the model parameters, while the comparison be-

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

conventional thermalization by collisions unlikely
more thermal-like features difficult to understand in Pythia
[Fischer, Sjöstrand (2017)]

alternative explanations needed 1 / 34



QCD strings

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

particle production from QCD strings

Lund string model (e. g. Pythia)

different regions in a string are entangled

subinterval A is described by reduced density matrix

ρA = TrBρ

reduced density matrix is of mixed state form

could this lead to thermal-like effects?
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Entropy and entanglement

consider a split of a quantum system into two A+B

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

reduced density operator for system A

ρA = TrB{ρ}

entropy associated with subsystem A: entanglement entropy

SA = −TrA{ρA ln ρA}

globally pure state S = 0 can be locally mixed SA > 0

coherent information IB〉A = SA − S can be positive

3 / 34



Microscopic model

QCD in 1+1 dimensions described by ’t Hooft model

L = −ψ̄jγµ(∂µ − igAµ)ψj −mψ̄jψj −
1

2
trFµνF

µν

fermionic fields ψj with sums over flavor species j = 1, . . . , Nf

SU(Nc) gauge fields Aµ with field strength tensor Fµν

gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for Nc →∞ with g2Nc fixed
[’t Hooft (1974)]
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Schwinger model
QED in 1+1 dimension

L = −ψ̄jγµ(∂µ − iqAµ)ψj −mψ̄jψj −
1

4
FµνF

µν

geometric confinement

U(1) charge related to string tension q =
√

2σ

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S =

∫
d2x
√
g

{
− 1

2
gµν∂µφ∂νφ−

1

2
M2φ2

− mq eγ

2π3/2
cos
(
2
√
πφ+ θ

)}

Schwinger bosons are dipoles φ ∼ ψ̄ψ
scalar mass related to U(1) charge by M = q/

√
π =

√
2σ/π

massless Schwinger model m = 0 leads to free bosonic theory
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Transverse coordinates

so far dynamics strictly confined to 1+1 dimensions

transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hµν = ∂µX

m∂νXm)

SNG =

∫
d2x
√
−dethµν {−σ + . . .}

≈
∫
d2x
√
g
{
−σ − σ

2
gµν∂µX

i∂νX
i + . . .

}
two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates Xi with i = 1, 2
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Expanding string solution 1

z

t

external quark-anti-quark pair on trajectories z = ±t
coordinates: Bjorken time τ =

√
t2 − z2, rapidity η = arctanh(z/t)

metric ds2 = −dτ2 + τ2dη2

symmetry with respect to longitudinal boosts η → η + ∆η
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Expanding string solution 2
Schwinger boson field depends only on τ

φ̄ = φ̄(τ)

equation of motion

∂2
τ φ̄+

1

τ
∂τ φ̄+M2φ̄ = 0.

Gauss law: electric field E = qφ/
√
π must approach the U(1) charge

of the external quarks E → qe for τ → 0+

φ̄(τ)→
√
πqe

q
(τ → 0+)

solution of equation of motion [Loshaj, Kharzeev (2011)]

φ̄(τ) =

√
πqe

q
J0(Mτ)
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Gaussian states

theories with quadratic action often have Gaussian density matrix

fully characterized by field expectation values

φ̄(x) = 〈φ(x)〉, π̄(x) = 〈π(x)〉

and connected two-point correlation functions, e. g.

〈φ(x)φ(y)〉c = 〈φ(x)φ(y)〉 − φ̄(x)φ̄(y)

if ρ is Gaussian, also reduced density matrix ρA is Gaussian
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Functional representation

Schrödinger functional representation of quantum field theory

pure state |Ψ〉 has functional

Ψ[φ] = 〈φ|Ψ〉

with field “positions” φn

density matrix
ρ[φ+, φ−] = 〈φ+|ρ|φ−〉

fields and conjugate momenta

φm, πm = −i δ

δφm

canonical commutation relation

[φm, πn] = iδmn
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Symplectic transformations

combined field

χ =

(
φ
π∗

)
, χ∗ =

(
φ∗

π

)

commutation relation as symplectic metric

[χm, χ
∗
n] = Ωmn, Ω = Ω† =

(
0 i1
−i1 0

)
,

symplectic transformations Smn

χm → Smnχn, χ∗m → χ∗n(S†)nm, SΩS† = Ω,

have unitary representations on Gaussian states
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Williamson’s theorem and entropy
Covariance matrix

∆mn =
1

2
〈χmχ∗n + χ∗nχm〉c

transforms as
∆→ S∆S† 6= S∆S−1

Williamson’s theorem: can find Smn such that

∆→ diag(λ1, λ2, . . . , λ1, λ2, . . .),

symplectic eigenvalues λj > 0

Heisenbergs uncertainty principle: λj ≥ 1/2

von Neumann entropy

S =
∑
j

{(
λj +

1

2

)
ln

(
λj +

1

2

)
−
(
λj −

1

2

)
ln

(
λj −

1

2

)}

pure state: λj = 1/2, S = 0
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Entanglement entropy for Gaussian state

entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

SA =
1

2
TrA

{
D ln(D2)

}
operator trace over region A only

matrix of correlation functions

D(x, y) =

(
−i〈φ(x)π(y)〉c i〈φ(x)φ(y)〉c
−i〈π(x)π(y)〉c i〈π(x)φ(y)〉c

)

involves connected correlation functions of field φ(x) and canonically
conjugate momentum field π(x)

expectation value φ̄ does not appear explicitly

coherent states and vacuum have equal entanglement entropy SA
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Rapidity interval

p

q

τ = const
η = const

region A

region B

z

t

consider rapidity interval (−∆η/2,∆η/2) at fixed Bjorken time τ

entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

can be evaluated equivalently in interval ∆z = 2τ sinh(∆η/2) at
fixed time t = τ cosh(∆η/2)

need to solve eigenvalue problem with correct boundary conditions

14 / 34



Bosonized massless Schwinger model

entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

entanglement entropy density dS/d∆η for bosonized massless
Schwinger model (M = q√

π
)

0 5 10 15 20 25
Δη0.0

0.1

0.2

0.3

0.4
dS/dΔη

Mτ = 1, 10−1, 10−2, 10−3, 10−4, and 10−5
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Conformal limit
For Mτ → 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(∆z) =
c

3
ln (∆z/ε) + constant

with small length ε acting as UV cutoff.

Here this implies

S(τ,∆η) =
c

3
ln (2τ sinh(∆η/2)/ε) + constant

Conformal charge c = 1 for free massless scalars or Dirac fermions.

Additive constant not universal but entropy density is

∂

∂∆η
S(τ,∆η) =

c

6
coth(∆η/2)

→ c

6
(∆η � 1)

Entropy becomes extensive in ∆η !

16 / 34



Universal entanglement entropy density
for very early times “Hubble” expansion rate dominates over masses
and interactions

H =
1

τ
�M =

q√
π
,m

theory dominated by free, massless fermions

universal entanglement entropy density

dS

d∆η
=
c

6

with conformal charge c

for QCD in 1+1 D (gluons not dynamical, no transverse excitations)

c = Nc ×Nf

from fluctuating transverse coordinates (Nambu-Goto action)

c = Nc ×Nf + 2 ≈ 9 + 2 = 11
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Temperature and entanglement entropy

for conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

S(T, l) =
c

3
ln

(
1

πTε
sinh(πLT )

)
+ const

compare this to our result in expanding geometry

S(τ,∆η) =
c

3
ln

(
2τ

ε
sinh(∆η/2)

)
+ const

expressions agree for L = τ∆η (with metric ds2 = −dτ2 + τ2dη2)
and time-dependent temperature

T =
1

2πτ
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Modular or entanglement Hamiltonian 1

p

q

τ = const
η = const

region A

region B

z

t

conformal field theory

hypersurface Σ with boundary on the intersection of two light cones

reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,

Huerta (2017), see also Candelas, Dowker (1979)]

ρA =
1

ZA
e−K , ZA = Tr e−K

modular or entanglement Hamiltonian K
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Modular or entanglement Hamiltonian 2

modular or entanglement Hamiltonian is local expression

K =

∫
Σ

dΣµ ξν(x)Tµν(x).

energy-momentum tensor Tµν(x) of excitations

vector field

ξµ(x) = 2π
(q−p)2 [(q − x)µ(x− p)(q − p)

+ (x− p)µ(q − x)(q − p)− (q − p)µ(x− p)(q − x)]

end point of future light cone q, starting point of past light cone p

inverse temperature and fluid velocity

ξµ(x) = βµ(x) =
uµ(x)

T (x)

20 / 34



Modular or entanglement Hamiltonian 3

p

q

τ = const
η = const

region A

region B

z

t

for ∆η →∞: fluid velocity in τ -direction, τ -dependent temperature

T (τ) =
~

2πτ

Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

Hawking-Unruh temperature in Rindler wedge T (x) = ~c/(2πx)
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Alternative derivation: mode functions
fluctuation field ϕ = φ− φ̄ has equation of motion

∂2
τϕ(τ, η) +

1

τ
∂τϕ(τ, η) +

(
M2 − 1

τ2

∂2

∂η2

)
ϕ(τ, η) = 0

solution in terms of plane waves

ϕ(τ, η) =

∫
dk

2π

{
a(k)f(τ, |k|)eikη + a†(k) f∗(τ, |k|)e−ikη

}
mode functions as Hankel functions

f(τ, k) =

√
π

2
e
kπ
2 H

(2)
ik (Mτ)

or alternatively as Bessel functions

f̄(τ, k) =

√
π√

2 sinh(πk)
J−ik(Mτ)
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Bogoliubov transformation

mode functions are related

f̄(τ, k) =α(k)f(τ, k) + β(k)f∗(τ, k)

f(τ, k) =α∗(k)f̄(τ, k)− β(k)f̄∗(τ, k)

creation and annihilation operators are related by

ā(k) =α∗(k)a(k)− β∗(k)a†(k)

a(k) =α(k)ā(k) + β(k)ā†(k)

Bogoliubov coefficients

α(k) =

√
eπk

2 sinh(πk)
β(k) =

√
e−πk

2 sinh(πk)

vacuum |Ω〉 with respect to a(k) such that a(k)|Ω〉 = 0 contains
excitations with respect to ā(k) such that ā(k)|Ω〉 6= 0 and vice versa
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Role of different mode functions

Hankel functions f(τ, k) are superpositions of positive frequency
modes with respect to Minkowski time t

Bessel functions f̄(τ, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time t

at very early time 1/τ �M,m conformal symmetry

ds2 = τ2
[
−d ln(τ)2 + dη2

]
Hankel functions f(τ, k) are superpositions of positive and negative
frequency modes with respect to conformal time ln(τ)

Bessel functions f̄(τ, k) are superpositions of positive frequency
modes with respect to conformal time ln(τ)
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Occupation numbers
Minkowski space coherent states have two-point functions

〈ā†(k)ā(k′)〉c = n̄(k) 2π δ(k − k′) = |β(k)|2 2π δ(k − k′)
〈ā(k)ā(k′)〉c = ū(k) 2π δ(k + k′) = −α∗(k)β∗(k) 2π δ(k + k′)

〈ā†(k)ā†(k′)〉c = ū∗(k) 2π δ(k + k′) = −α(k)β(k) 2π δ(k + k′)

occupation number

n̄(k) = |β(k)|2 =
1

e2πk − 1

Bose-Einstein distribution with excitation energy E = |k|/τ and
temperature

T =
1

2πτ

off-diagonal occupation number ū(k) = −1/(2 sinh(πk)) make sure
we still have pure state
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Local description
consider now rapidity interval (−∆η/2,∆η/2)

Fourier expansion becomes discrete

ϕ(η) =
1

L

∞∑
n=−∞

ϕn e
inπ η

∆η

ϕn =

∫ ∆η/2

−∆η/2

dη ϕ(η)
1

2

[
e−inπ

η
∆η + (−1)neinπ

η
∆η

]
relation to continuous momentum modes by integration kernel

ϕn =

∫
dk

2π
sin(k∆η

2 − nπ
2 )

[
1

k − nπ
∆η

+
1

k + nπ
∆η

]
ϕ(k)

local density matrix determined by correlation functions

〈ϕn〉, 〈πn〉, 〈ϕnϕm〉c, etc.
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Emergence of locally thermal state

mode functions at early time

f̄(τ, k) =
1√
2k
e−ik ln(τ)−iθ(k,M)

phase varies strongly with k for M → 0

θ(k,M) = k ln(M/2) + arg(Γ(1− ik))

off-diagonal term ū(k) have factors strongly oscillating with k

〈ϕ(τ, k)ϕ∗(τ, k′)〉c = 2πδ(k − k′) 1

|k|
×
{[

1
2 + n̄(k)

]
+ cos [2k ln(τ) + 2θ(k,M)] ū(k)

}
cancel out when going to finite interval !

only Bose-Einstein occupation numbers n̄(k) remain
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Physics picture

coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

on finite rapidity interval (−∆η/2,∆η/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

technically limits ∆η →∞ and Mτ → 0 do not commute

∆η → ∞ for any finite Mτ gives pure state
Mτ → 0 for any finite ∆η gives thermal state with T = 1/(2πτ)
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The heavy ion limit
high energy nuclear collisions create a dense medium close-to
thermal equilibrium
hadron ratios well described by thermal models

[Andronic, Braun-Munzinger, Redlich, Stachel (2017)]

chemical freeze-out at small µB close to chiral cross-over
[Braun-Munzinger, Stachel, Wetterich (2004)]

chemical freeze-out at large µB not close to any phase transition
[Floerchinger, Wetterich (2012)]

what precisely triggers chemical freeze-out?
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Fluid dynamics

long distances, long times or strong enough interactions

quantum fields form a fluid!

needs macroscopic fluid properties

equation of state p(T, µ)
shear viscosity η(T, µ)
bulk viscosity ζ(T, µ)
heat conductivity κ(T, µ)
relaxation times, ...

ab initio calculation of transport properties difficult but in principle
fixed by microscopic properties encoded in lagrangian

relativistic fluid dynamics decribes high-energy nuclear collisions
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Bulk viscosity

bulk viscous pressure is negative for expanding fluid

πbulk = −ζ∇µuµ < 0

effective pressure peff = p+ πbulk

bulk viscosity grows large at Tc [Karsch, Kharzeev, Tuchin (2008)]220 F. Karsch et al. / Physics Letters B 663 (2008) 217–221

Fig. 1. Bulk viscosity in the high temperature phase of QCD versus temperature in units of the transition temperature. Part (a) of the figure shows various contributions to
9ω0(T )ζ/T s given in (22). In part (b) of the figure we show the bulk viscosity in units of the entropy density for ω0 = 0.5,1,1.5 GeV (top to bottom) which reflects the
uncertainty in the determination of this scale parameter.

4.2. Uncertainties of the method

Our analysis relies on lattice results for the equation of state.
Recent calculations with O(a2) improved actions yield quite con-
sistent results [5,13], however it should be noted that they are still
not extrapolated to the continuum limit and the light quark masses
used in the calculation are about a factor two larger than the phys-
ical values. Since the sum rule we use is exact (up to the terms
quadratic in light quark masses), the main source of uncertainty
is the ansatz for the spectral density. We have made the sim-
plest possible assumption about its shape consistent with general
physical requirements—in particular, the spectral function must be
linear for small frequencies. We also expect that the spectral den-
sity entering our sum rule should vanish above a certain frequency
ω0 ≫ T at which the spectral density becomes perturbative and
temperature-independent.

We have estimated this frequency using lattice results on the
temperature dependence of the running coupling [18,19]; ω0 is
taken to be the inverse distance at which this running coupling be-
comes approximately temperature-independent and runs according
to the zero temperature β-functions. Choosing this scale involves
some uncertainty. Moreover, we have to admit that there is a siz-
able uncertainty in our ansatz. A different functional form of the
spectral density would change the numerical value of extracted
bulk viscosity. Fortunately, the temperature dependence of bulk
viscosity is not sensitive to this uncertainty, and so our main con-
clusion about the rapid growth of this quantity near the phase
transition is robust. Moreover, we note that the spectral density
extracted from the analyses of correlation functions on the lattice
[3,20] is quite similar to our ansatz.

5. Universality

5.1. The case of zero baryon density

Let us discuss here a generic second order phase transition as
it might occur in the chiral limit of QCD at fixed strange quark
mass and most likely does occur in two-flavor QCD. The critical
behavior of thermodynamic quantities is in general controlled by
two external parameters, the reduced temperature and the baryon
chemical potential.

In the vicinity of the critical point the behavior of bulk thermo-
dynamic quantities is governed by thermal (yt ) and magnetic (yh)
critical exponents, which characterize the scaling behavior of the
singular part of the free energy density,

f (t,h) ≡ −T
V

ln Z = b−1 f
(
byt t,byh h

)
. (24)

Table 1
Critical exponents of 3-d O (4) [21] using β and δ as input and Z(2) [22] symmetric
spin models

Model α β γ δ

O (4) −0.21 0.38 1.47 4.82
Z(2) 0.11 0.33 1.24 4.79

Here b is an arbitrary scale factor. It is expected that the chiral
phase transition in QCD can be described by an effective, three-
dimensional theory for the chiral order parameter, which in the
case of two-flavor QCD would amount to an O (4) symmetric spin
model.

The scaling behavior of the specific heat is controlled by the
critical exponents α = (2yt −1)/yt . Exponents relevant for a dis-
cussion of other susceptibilities as well as the quark mass de-
pendence of these quantities are β = (1 −yh)/yt , γ = yt/yh and
δ = yh/(1 −yh). Their numerical values for Z(2) and O (4) sym-
metric spin models in three dimensions are given in Table 1.

Eq. (24) can be used to extract scaling laws for various quan-
tities, valid in the vicinity of the critical point. We are at present
only interested in the scaling behavior of the specific heat as func-
tion of temperature for vanishing external field

cv(t) = ct−α + const, (25)

which is obtained from Eq. (24) after taking two derivatives with
respect to t and choosing b = t−1/yt ; a constant c can be both pos-
itive and negative. In the O (4) universality class the exponent α is
negative. The specific heat thus will not diverge but will only have
a cusp. From the relations given by Eq. (19) we conclude that sim-
ilarly the bulk viscosity will not diverge but will have a maximum
at Tc and the velocity of sound will not vanish but will only attain
a minimum.

5.2. Chiral critical point

The situation may be different at the chiral critical point, i.e.,
the second-order phase transition point that might exist in the
QCD phase diagram at non-vanishing chemical potential [23]. If it
exists, this critical point belongs to the universality class of the 3-d
Ising model, which has a positive specific heat exponent α. The sit-
uation here, however, is a bit more complicated as the energy-like
and magnetization-like directions of the effective Ising model do
not coincide with the temperature and symmetry breaking (quark
mass) directions of QCD, nor is the latter controlled by the baryon
chemical potential. Derivatives of the partition function with re-
spect to temperature, which give the specific heat, thus will usually
be related to mixed derivatives with respect to the energy-like

cavitation: possible instability for peff < 0
[Torrieri & Mishustin (2008), Rajagopal & Tripuraneni (2010), . . . ]

what precisely happens at the instability?
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What happens at negative effective pressure?

stability argument

Ε

peff HΕL

Ε1 Ε2
Ε

peff HΕL

Ε2
Ε

peff HΕL

Ε2
Ε

peff HΕL

if there is a vacuum with ε = peff = 0, phases with peff < 0 cannot
be mechanically stable (but could be metastable)

non-equilibrium phase transition could trigger chemical freeze-out
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Dissipation and entanglement

dissipation = entropy productions

e.g. for relativistic Navier-Stokes

∇µsµ =
1

T

[
2η σρλσ

ρλ + ζ(∇ρuρ)2
]

can sµ be understood as entanglement entropy current ?

dissipation = entanglement generation

aim: improved understanding of relativistic fluid dynamics based on
underlying quantum dynamics
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Conclusions

rapidity intervals in an expanding string are entangled

at very early times theory effectively conformal

1

τ
� m, q

entanglement entropy extensive in rapidity dS
d∆η = c

6

determined by conformal charge c = Nc ×Nf + 2

reduced density matrix for conformal field theory is of locally thermal
form with temperature

T =
~

2πτ

entanglement could be important ingredient to understand apparent
“thermal effects” in e+e− and other collider experiments

entanglement could also help to better understand relativistic fluids
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Figure 11. Left panel: comparison of η (p + p(p̄)) and yT distributions (e+e−) at different
energies. The variable yT is the rapidity with respect to the thrust axis of the e+e− collision. Right
panel: the width λ of the η distributions (p + p(p̄)) and yT distributions (e+e−) as a function of√

s. Note that the difference between inelastic and non-single diffractive collisions is neglected
by fitting the combined p + p(p̄) data with λ = a + b ln

√
s. In the case of the Landau model

⟨Nch⟩/(dNch/dy |y =0) =
√

2πL where L = ln(
√

s/(2mp)) is shown. Data points for e+e− from
[8, 62, 110–114].

which √
spp ≈ (2 ÷ 3)

√
see. For the shown cases the dNch/dη distribution in p + p(p̄) are

broader than the dNch/dyT distributions. This might indicate the contribution from beam-
particle fragmentation in p + p(p̄). Note, however, that based on the Landau hydrodynamic
picture a simple relation between dNch/dη|p+p,

√
s

η=0 and dNch/dyT |e
+e−,

√
s/3

yT =0 was suggested
in [103, 105]. The width λ of the distribution defined as λ = ⟨Nch⟩/dNch/dη|η=0 and
λ = ⟨Nch⟩/dNch/dyT |yT =0, respectively, is shown in the right panel of figure 11. Based on the
QCD calculation in [106], λ is expected to scale linearly with

√
ln s. As shown in figure 11

this form does not describe the p+p(p̄) data which are well parameterized with λ = a +b ln s.
The Landau hydrodynamic model also predicts a linear

√
ln s dependence of λ [107–109] and

hence also fails to describe the p + p(p̄) data.
It will be interesting to see whether this universality of multiplicities in e+e− and p +p(p̄)

collisions also holds at LHC energies. This universality appears to be valid at least up to
Tevatron energies despite its rather weak theoretical foundation (see section 2.6). Under
the assumptions that K2 remains constant at about 0.35 also at LHC energies and that the
extrapolation of the e+e− data with the 3NLO QCD form is still reliable at

√
s ≈ 5 TeV

one can use the fit of p + p(p̄) data to predict the multiplicities at the LHC. This yields
⟨Nch⟩ ≈ 70.9 at 7 TeV, ⟨Nch⟩ ≈ 79.7 at 10 TeV and ⟨Nch⟩ ≈ 88.9 at 14 TeV. Extrapolating
the ratio λ = ⟨Nch⟩/(dNch/dη)η=0 with the form λ = a + b ln

√
s (see figure 11), these

multiplicities correspond to dNch/dη|η=0 ≈ 5.5 at 7 TeV, dNch/dη|η=0 ≈ 5.9 at 10 TeV and
dNch/dη|η=0 ≈ 6.4 at 14 TeV.

3.6. Moments

The moments of the multiplicity distributions as defined in section 2.2 will now be used to
identify general trends as a function of

√
s and to study the validity of KNO scaling. First
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[open (filled) symbols: e+e− (pp), Grosse-Oetringhaus & Reygers (2010)]

rapidity distribution dN/dη has plateau around midrapidity

only logarithmic dependence on collision energy



Experimental access to entanglement ?

could longitudinal entanglement be tested experimentally?

unfortunately entropy density dS/dη not straight-forward to access

measured in e+e− is the number of charged particles per unit
rapidity dNch/dη (rapidity defined with respect to the thrust axis)

typical values for collision energies
√
s = 14− 206 GeV in the range

dNch/dη ≈ 2− 4

entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/Nch = 7.2 would give

dS/dη ≈ 14− 28

this is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy


