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Heavy ions at the HL-LHC

Ongoing discussion, see for example:

Jan-Fiete Grosse-Oetringhaus, talk at Workshop on the physics of
HL-LHC, 30.10.2017: https://indico.cern.ch/event/647676/timetable/
Andrea Dainese, talk at ECFA High Luminosity LHC Experiments
Workshop, 04.10.2016: https://indico.cern.ch/event/524795 /timetable/
J. M. Jowett, M. Schaumann and R. Versteegen, Heavy-lon Operation of
HL-LHC: https://cds.cern.ch/record /1977371

Antonio Uras, Heavy-lons at the High-Luminosity LHC:
http://inspirehep.net/record /1589642

preparation of a CERN yellow report chapter on Heavy ions at the
HL-LHC, working group meeting: https://indico.cern.ch/event/717641/

existing CERN yellow report chapter on Heavy lons at the Future Circular
Collider: http://inspirehep.net/record /14557877 In=de

I will not attempt to reflect the full ongoing discussion, but rather present my
own point of view (as a theorist).



Little bangs in the laboratory
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A great challenge

o quantum fields at finite energy density and temperature
o fundamental gauge theory: QCD

@ strongly interacting

@ non-equilibrium dynamics

o experimentally driven field of research

@ big motivation for theory development



Fluid dynamics

o long distances, long times or strong enough interactions

@ matter or quantum fields form a fluid!

@ needs macroscopic fluid properties

thermodynamic equation of state p(T, u)
shear viscosity n(T, )

bulk viscosity ¢(T', )

heat conductivity «(T, u)

relaxation times, ...

@ ab initio calculation of fluid properties difficult but fixed by microscopic
properties in Zqcp



Relativistic fluid dynamics
Energy-momentum tensor and conserved current

T = euu” 4 (p + mouk) A" + 7

NH =nu” + %

@ tensor decomposition using fluid velocity u", A" = g"* + utu”

e thermodynamic equation of state p = p(T, p1)

Covariant conservation laws V,T"” =0 and V,N" = 0 imply
@ equation for energy density €

u"Ope+ (e + p + mou) Vypu! + 7 V,u, =0

@ equation for fluid velocity u"

(€4 p + moun)u! Vyu” + A0, (p 4 mouk) + AV, V™ =0

@ equation for particle number density n

uOun +nVut + Vot =0



Constitutive relations

Second order relativistic fluid dynamics:

@ equation for shear stress 7"

Tehear P77, 5 w4 77 4 2 PP Vaou” + ...

with shear viscosity n(7', )

@ equation for bulk viscous pressure mpyik

Thulk U O Thulk + Thuik + €

with bulk viscosity (7', 1)

@ equation for baryon diffusion current v*

T
Theat A% u*V 1% + 1% + 1 { L

€e+p

with heat conductivity (7T, 1)

Vuu' +...=0

]ZAaﬁaﬁ(;)Jr...



Thermodynamics
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and higher order understood

@ progress in computing power

o thermodynamic equation of state p(T') rather well understood now

@ also moments of conserved charges like

((Ng — Ng)*)

VT3



Quantum fields and information

@ surprising relations between quantum field theory and information theory
o well understood in thermal equilibrium

@ currently investigated out-of-equilibrium

fluid dynamics / entanglement entropy / black hole physics (AdS/CFT)

o shear viscosity to entropy density ratio n/s > h/(47ks)
[Kovtun, Son, Starinets (2003)]

Minimal Surface
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[Ryu, Takayanagi (2006)] [Berges, Floerchinger, Venugopalan (2017)]




Non-central collisions

@ pressure gradients larger in reaction plane

o leads to larger fluid velocity in this direction
@ more particles fly in this direction

@ can be quantified in terms of elliptic flow v2
@ particle distribution

dN
dé

@ symmetry ¢ — ¢ + m impliesvi =v3 =v5 = ...

é\;r 1+22 vm cos (m (¢ — Yr))

=0.



Two-particle correlation function

@ normalized two-particle correlation function
(4N 4N

P T)events
- b1 dda - —142 Z va, cos(m (¢1 — ¢2))
<E>events<%>eve"ts m

C(¢1,¢2) =

@ surprisingly va, vs, v4, vs and ve are all non-zero!
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[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]



FEvent-by-event fluctuations

o deviations from symmetric initial energy density distribution from
event-by-event fluctuations

@ one example is Glauber model




Big bang — little bang analogy
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@ cosmol. scale: MPc= 3.1 x 10?2 m @ nuclear scale: fm= 10" m
o Gravity + QED + Dark sector e QCD

@ one big event @ very many events

@ initial conditions not directly accessible
o all information must be reconstructed from final state
@ dynamical description as a fluid

o fluctuating initial state



Similarities to cosmological fluctuation analysis

fluctuation spectrum contains info from early times

o detailed correlation functions are compared to theory

can lead to detailed understanding of evolution

Mode-by-mode fluid dynamics for heavy ion collisions
[Floerchinger, Wiedemann (2014)]



The dark matter fluid

high energy nuclear collisions

ZLaco —  fluid properties

o late time cosmology

fluid properties —  Zark matter

until direct detection of dark matter it can only be observed via gravity
GM =8rGn TH

so all we can access is
v
dark matter

@ strong motivation to study heavy ion collisions and cosmology together!



Collective behavior in large and small systems
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o flow coefficients from higher order cumulants va{n} agree:
— collective behavior

o elliptic flow signals also in pPb and pp !

@ can fluid approximation work for pp collisions?




Questions and puzzles

@ how universal are collective flow and fluid dynamics?

e as a limit of kinetic theory / perturbation theory / multi-parton interactions
e non-perturbative understanding / entanglement

@ what determines density distribution of a proton?

e constituent quarks or interacting gluon cloud?
o generalized PDFs

@ more elementary collision systems? [News at Quark Matter 2018!]

—>
Pb Pb Pb p p p p e- e+ e-

@ role of electromagnetic fields and vorticity for fluid dynamics

o role of quantum anomalies (e. g. chiral magnetic effect)



Chemical freeze-out

[Andronic, Braun-Munzinger, Redlich, Stachel (2017)]
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o chemical freeze-out close to chiral crossover transition for large /s
o chiral transition should be visible in higher moments ((Ng — N)™)
@ traces of the evolving chiral condensate / pion condensate ?

@ more insights at large up expected from FAIR

17/26



Quarkonium and how it gets modified
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@ all T states are suppressed by medium effects, excited states even more
@ more detailed understanding of heavy quark bound states in a medium
@ also at LHC: regeneration and flow of charmed mesons

o future: also bottom




Jet quenching
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@ asymmetry between reconstructed jet energies

Er1 — Er2

Aj=——"72,
" " Eri + B

Ap >m/2

partons/jets loose energy to the quark gluon plasma
@ jet structure can be investigated in detail

@ more possible: b-jets, t-jets

interplay of microscopic partons / jets and macroscopic QCD fluid



Light-by-light scattering

[ATLAS, Nature Phys. 13, 852 (2017)]
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o ultra-peripheral ion collisions produce strong electromagnetic fields

@ beam of quasi-real photons (equivalent photon approximation)

Halpern scattering vy — 7y observed, more detailed studies possible

also ultra-peripheral: nuclear PDFs

30



Theory development

@ many interesting experimental results available or in reach
@ precise studies need interplay of theory and experiment

o more dedicated theory development needed

o we need to develop and maintain a standard model

@ heavy ion collisions and QCD dynamics can be understood much better !



Plans for heavy ions at runs 2-4 at the LHC

[J.-F. Grosse-Oetringhaus, CERN, 30.10.2017]

* Run2:
— Pb-Pb: few nb-! (0.7 nb' in 2015, ~1 nb-' in 2018) at \/sNN =5TeV Ghadr,pbpb = 8 barn !
— p-Pbat5and 8 TeV (185 nb™' in 2016)
— pp reference at Pb-Pb energy (5 TeV, Nov 2017)
« LS2:
— LHC injector upgrades; bunch spacing reduced to 50 ns
— Pb-Pb interaction rate up to 50 kHz (now <10 kHz)

— Experiments’ upgrades (also LS3)
* Runs 3+4:
— Request for Pb-Pb: >10 nb-!

(ALICE: 10 nb* at 0.5T + 3 nb-" at 0.2T) Run2 : LERCEY g = 1.0 b~ Run3: LP8-P2 = 6.0 mb~t
— Inline with projections by machine:
3.1 nb/month (Chamonix 2017) et i e e

e 111

Rund : LEECRE ) = 7.0mb~

HL-LHC for heavy ions begins in Run 3!




Foreseen detector upgrades

[J.-F. Grosse-Oetringhaus, CERN, 30.10.2017]

0 20pmat1Gev
CERN Detector Upgrades | oumatiGe
> most relevant to heavy-ion physics H : @C”"e"t
o “\pgrade
« ALICE (LS2) ALCE

— New inner tracker: precision and efficiency at low pr T w e
— New pixel forward muon tracker: precise tracking and vertexing for p

— TPC upgrade + readout + online data reduction x100 faster readout (continuous) ;5 e i{&?ﬁ:ﬁ:‘g‘gs'ﬁﬂ@gﬁ.’x {,::L)\;
- ATLAS (LS2/LS3) Com .

— Fast tracking trigger (LS2): high-multiplicity tracking ossp e+ "le™ e

— Calorimeter and muon upgrades (LS2): electron, y, muon triggers g 'W °l

— ZDC replacement planned (LS2): radiation hardness, granularity ol acceptance

— Completely new tracker (LS3): tracking and b-tag up to n=4 L T I e e

* CMS (mainly LS3)
— Extension of forward muon system (LS2): muon acceptance
— Completely new tracker (LS3): tracking and b-tag up to n=4
— Upgrade forward calorimeter (LS3): forward jets in HI

Current
Upgrade

E
290 LHCb simulation
g

o6, /p)

Current |3 60

* LHCb (LSZ) acceptance i+ = 50
R
— Triggerless readout, full software trigger, higher granularity 30
detectors: impact on tracking performance in Pb-Pb being studied 1o i LHCb

— Fixed-target programme with SMOG + possible extensions e T 5
Trackn Up, [GeVe]




Higher energies

[Dainese, Wiedemann (ed.) et al. (2017)]
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Larger collision energy

o higher initial energy density and temperature

higher multiplicity Ncy
o larger lifetime and volume of fireball

o better probes of collective physics

thermal charm quarks

@ more hard probes




A dedicated detector for low pp ?

@ advances in detector technology might allow to construct dedicated
detector for low pr spectrum

e down to pr ~ 10 MeV & 55 7
@ low momentum di-leptons
— excellent understanding of charmonia and bottomonia (P-wave)

@ probe macroscopic properties of QCD fluid: very soft pions, kaons,
protons, di-leptons
— dynamics of chiral symmetry restoration
— pion condensates / disoriented chiral condensates ?

o understand thermalization and dissipation in detail
— spectrum also at pr < Tinetic freeze-out = 120 MeV



Conclusions

@ high energy nuclear collisions produce a relativistic QCD fluid!

@ interesting parallels between cosmology and heavy ion collisions

@ heavy ion collisions provide chance to understand a relativistic fluid from
first principles

@ experimental hints for collective flow also in pPb and pp collisions

@ QCD fluid can be understood in much more detail with combined effort of
theory and experiment!

o [ had to skip many interesting topics, please see also other presentations
mentioned on the first slide.



