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Little bangs in the laboratory
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Fluid dynamics

o long distances, long times or strong enough interactions

@ matter or quantum fields form a fluid!

@ needs macroscopic fluid properties

thermodynamic equation of state p(T, u)
shear viscosity n(T, )

bulk viscosity ¢(T', )

heat conductivity «(T, u)

relaxation times, ...

@ ab initio calculation of fluid properties difficult but fixed by microscopic
properties in Zqcp



Thermodynamics of QCD

from lattice gauge theory

LN B

16T

3p/T4
o4 Il
3s/4T3

T [MeV]

oY T T T T R B S A U

130 170 210 250 290 330 370

[Bazavov et al. (HotQCD) (2014)]
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e thermodynamic equation of state p(T") rather well understood now

@ also p # 0 is being explored

@ progress in computing power
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Transport coefficients

o from perturbation theory / effective kinetic theory at leading order
[Arnold, Moore, Yaffe (2003)]
T3
n(T) =k——7~,
g*log(1/g)
@ next-to-leading order also understood now
[Ghiglieri, Moore, Teaney (2015-2018)]
o form AdS/CFT correspondence (very strong coupling)
[Kovtun, Son, Starinets (2003)]
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@ more transport properties and intermediate coupling regime to be
understood



Fluid dynamics in heavy ion collisions
[ALICE, 1805.04390 (2018)]
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Fluid dynamics for smaller systems 1

CMS
T T
0.0 PP \F_13 TeV o v, IAni>2}+ PPb {Syy=5TeV 4 PbPb {5,,=276 TeV —
m v,{4} .
+ v,{6) .
O v{8} °
0 vfLYZ} ,o CRUAATD
~
>
0.05 e T |- ‘_. ! T 1
B .* "‘ [ ] ' ‘ Q. ‘ L]
L]
5 n .+ .
L]
0.3<pT<3.0 GeVic 03<p <3.0GeVic 03<p <3.0GeVic
. ‘ <24 ) \ ‘ |n|<24 ) \ ‘ |n|<g4 )
0 50 100 150 0 100 200 300 0 100 200 300
Naﬂlme Noﬂlme Nomme

trk trk trk

o flow coefficients from higher order cumulants va{n} agree:
— collective behavior

o elliptic flow signals also in pPb and pp!

@ can fluid approximation work for pp collisions?



Fluid dynamics for smaller systems 2

[B. Schenke, Quark Matter 2018]
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o rather good agreement between data and theory for large multiplicity

o fluid approximation + initial state model works best for PbPb but still
reasonable for pPb and pp



Questions and puzzles

@ how universal are collective flow and fluid dynamics?
or: when does it break down and how?

@ what determines density distribution in a proton?
@ role of multi-parton interactions

@ more elementary systems such as ep or eTe™ [News at Quark Matter 2018!]
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Idea behind relativistic fluid dynamics

@ General principle: macroscopic physics governed by conservation laws

o Energy-momentum tensor and conserved current

T" = euu” + (p + mou) A" + 7

N* =nut + 0"

@ tensor decomposition using fluid velocity u*, A*” = ¢"" 4+ uFu”

thermodynamic equation of state p = p(T', )

thermal equilibrium = ideal fluid approximation
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Conservation laws

Covariant conservation laws V,T"” =0 and V,N* = 0 imply

@ equation for energy density €

udu e+ (e + p+ mou) Vpu" + 7' Vyu, =0

@ equation for fluid velocity u*

(E +p+ ﬂ—b“”‘)uuvuuy + A”#aﬂ (p + 7Tbu|k) + Ayavuﬂua =0

@ equation for particle number density n

uOun +nVut + Vot =0

Relativistic dynamics
@ covariance

o causality
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Standard derivative or Chapman-Enskog expansion

o take fluid velocity u" and thermodynamic fields 7', 1 as degrees of freedom
@ express “viscous stresses” in terms of derivatives

@ bulk viscous pressure

Touk = —C Vyut + ...

@ shear stress

2
o = —n [M‘lvau" + AV ut — gA””Vaua] + ...

o diffusion current

v = —k |::f;7:|2Aaﬁ(95 (%) + ...

o restricted to small gradients (large systems)

o does not lead to relativistically causal evolution equations



Israel-Stewart type theories

Evolution equations instead of constraints

@ equation for shear stress 7"
Tahear P77, 5 ut'V 4+ 777 4+ 20 PP, Vou® +...=0

with shear viscosity n(7', )

@ equation for bulk viscous pressure mpyik
Toulk U Oy Tbuik + Toulk + ¢ Vpu! 4+ ...=0

with bulk viscosity (7', 1)

@ equation for baryon diffusion current v*

T 2
Theat Aaﬁ UMVMVB +v¥+ kK |: n :| A‘)‘B@g (%) +...=0

€e+p

with heat conductivity (7T, 1)



Transverse expansion

for central collisions € = (7, r)
@ initial pressure gradient leads to radial flow

o fluid evolution equations for Israel-Stewart type theories

0 0
A (@, T, T)E‘I’j + Bij(®, T, 7“)5‘1).7‘ +Ci(®,7,7) = 0.

o mathematically set of quasi-linear, first order partial differential equations



Characteristic velocities

[Floerchinger, Grossi (2017)]

o characteristic velocities A™ follow from det (B — )\(”)A) =0as

A\ vte \@_v=¢€ A3 @ _\6) _
14+év’ 1—év’
e equations hyperbolic if A(™ € R
@ causal signal propagation for ¢ < 1
o modified velocity of sound
c=+/cZ+d
@ ideal fluid velocity of sound
2= dp
T De
@ viscous correction
4n §
d— 3Tshear Thulk

6+p+7l’bu|k—7Tg—7T:7]



Domains of influence and dependence

[Floerchinger, Grossi (2017)]
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@ causality cones are space-, time- and state dependent !

@ causality poses a bound to applicability of relativistic fluid dynamics
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Causality as bound to fluid approximation

[Floerchinger, Grossi (2017)]

o Navier-Stokes initial conditions at Tinitiat = 0.6 fm/c
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o Navier-Stokes initial conditions at Tinitiat = 0.1 fm/c
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@ causality violations for too large gradients!
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The hydro “attractor”

Israel-Stewart theory

@ ratio of longitudinal to transverse “pressure” in

1.07

8§ 10 12 14

6

7 [fm/c]

@ approach to attractor governed by Tihear

@ causality: non-hydrodynamic modes needed!
@ also negative longitudinal “pressure” allowed by causailty constraint



Mode-by-mode fluid dynamics
[Floerchinger, Wiedemann (2014), work in progress with E. Grossi, J. Lion]

o evolution of background & perturbations
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o detailed understanding of perturbations
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Conclusions

@ high energy nuclear collisions produce a relativistic QCD fluid!

o fluid dynamics seems surprisingly universal

o experimental hints for collective flow also in pPb and pp collisions
@ improved understanding of relativistic fluid dynamics

@ causality: one must go beyond strict derivative expansion

@ non-hydrodynamic modes needed

@ bound on applicability posed by causality



