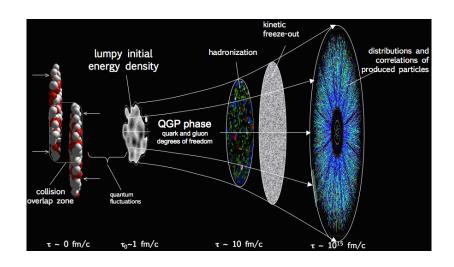
Collectivity in small systems and in heavy-ion collisions: theoretical overview

Stefan Floerchinger (Uni Heidelberg)

Sixth Annual Conference on Large Hadron Collider Physics, Bologna, 05.06.2018

Little bangs in the laboratory

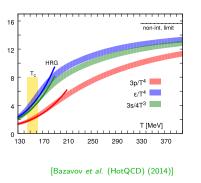


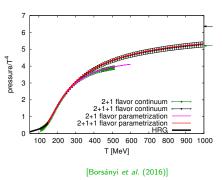
Fluid dynamics

- long distances, long times or strong enough interactions
- matter or quantum fields form a fluid!
- needs macroscopic fluid properties
 - thermodynamic equation of state $p(T, \mu)$
 - shear viscosity $\eta(T,\mu)$
 - bulk viscosity $\zeta(T,\mu)$
 - heat conductivity $\kappa(T,\mu)$
 - understand times
 - relaxation times, ...
- \bullet ab initio calculation of fluid properties difficult but fixed by <code>microscopic</code> properties in $\mathcal{L}_{\rm QCD}$

Thermodynamics of QCD

from lattice gauge theory





- \bullet thermodynamic equation of state p(T) rather well understood now
- also $\mu \neq 0$ is being explored
- progress in computing power

$Transport\ coefficients$

 from perturbation theory / effective kinetic theory at leading order [Arnold, Moore, Yaffe (2003)]

$$\eta(T) = k \frac{T^3}{g^4 \log(1/g)},$$

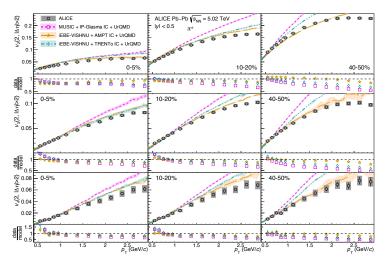
- next-to-leading order also understood now [Ghiglieri, Moore, Teaney (2015-2018)]
- form AdS/CFT correspondence (very strong coupling)
 [Kovtun, Son, Starinets (2003)]

$$\frac{\eta}{s} \ge \frac{\hbar}{4\pi}$$

 more transport properties and intermediate coupling regime to be understood

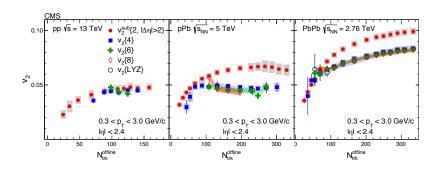
Fluid dynamics in heavy ion collisions

[ALICE, 1805.04390 (2018)]



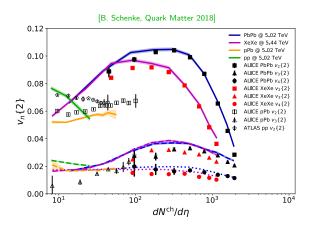
- ullet $v_n(p_T)$ for pions in PbPb collisions well described by fluid dynamics
- initial conditions matter

Fluid dynamics for smaller systems 1



- flow coefficients from higher order cumulants $v_2\{n\}$ agree: \rightarrow collective behavior
- elliptic flow signals also in pPb and pp!
- can fluid approximation work for pp collisions?

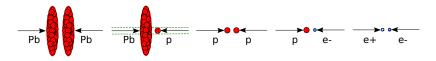
Fluid dynamics for smaller systems 2



- rather good agreement between data and theory for large multiplicity
- fluid approximation + initial state model works best for PbPb but still reasonable for pPb and pp

Questions and puzzles

- how universal are collective flow and fluid dynamics?
 or: when does it break down and how?
- what determines density distribution in a proton?
- role of multi-parton interactions
- more elementary systems such as ep or e⁺e⁻ [News at Quark Matter 2018!]



Idea behind relativistic fluid dynamics

- General principle: macroscopic physics governed by conservation laws
- Energy-momentum tensor and conserved current

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + (p + \pi_{\text{bulk}})\Delta^{\mu\nu} + \pi^{\mu\nu}$$
$$N^{\mu} = n u^{\mu} + \nu^{\mu}$$

- tensor decomposition using fluid velocity u^{μ} , $\Delta^{\mu\nu}=g^{\mu\nu}+u^{\mu}u^{\nu}$
- thermodynamic equation of state $p = p(T, \mu)$
- thermal equilibrium = ideal fluid approximation

$$\pi_{\mathsf{bulk}} = \pi^{\mu\nu} = \nu^{\mu} = 0.$$

Conservation laws

Covariant conservation laws $\nabla_{\mu}T^{\mu\nu}=0$ and $\nabla_{\mu}N^{\mu}=0$ imply

ullet equation for energy density ϵ

$$u^{\mu}\partial_{\mu}\epsilon + (\epsilon + p + \pi_{\text{bulk}})\nabla_{\mu}u^{\mu} + \pi^{\mu\nu}\nabla_{\mu}u_{\nu} = 0$$

ullet equation for fluid velocity u^{μ}

$$(\epsilon+p+\pi_{\rm bulk})u^{\mu}\nabla_{\mu}u^{\nu}+\Delta^{\nu\mu}\partial_{\mu}(p+\pi_{\rm bulk})+\Delta^{\nu}{}_{\alpha}\nabla_{\mu}\pi^{\mu\alpha}=0$$

• equation for particle number density n

$$u^{\mu}\partial_{\mu}n + n\nabla_{\mu}u^{\mu} + \nabla_{\mu}\nu^{\mu} = 0$$

Relativistic dynamics

- covariance
- causality

Standard derivative or Chapman-Enskog expansion

- ullet take fluid velocity u^μ and thermodynamic fields T,μ as degrees of freedom
- express "viscous stresses" in terms of derivatives
- bulk viscous pressure

$$\pi_{\mathsf{bulk}} = -\zeta \; \nabla_{\mu} u^{\mu} + \dots$$

shear stress

$$\pi^{\mu\nu} = -\eta \left[\Delta^{\mu\alpha} \nabla_{\alpha} u^{\nu} + \Delta^{\nu\alpha} \nabla_{\alpha} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} \nabla_{\alpha} u^{\alpha} \right] + \dots$$

diffusion current

$$\nu^{\alpha} = -\kappa \left[\frac{nT}{\epsilon + p} \right]^2 \Delta^{\alpha\beta} \partial_{\beta} \left(\frac{\mu}{T} \right) + \dots$$

- restricted to small gradients (large systems)
- does not lead to relativistically causal evolution equations

Israel-Stewart type theories

Evolution equations instead of constraints

ullet equation for shear stress $\pi^{\mu\nu}$

$$\tau_{\mathsf{shear}}\,P^{\rho\sigma}_{\alpha\beta}\,u^{\mu}\nabla_{\mu}\pi^{\alpha\beta} + \pi^{\rho\sigma} + 2\eta\,P^{\rho\sigma\alpha}_{\beta}\,\nabla_{\alpha}u^{\beta} + \ldots = 0$$

with shear viscosity $\eta(T,\mu)$

ullet equation for **bulk viscous pressure** π_{bulk}

$$\tau_{\text{bulk}} u^{\mu} \partial_{\mu} \pi_{\text{bulk}} + \pi_{\text{bulk}} + \zeta \nabla_{\mu} u^{\mu} + \ldots = 0$$

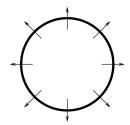
with **bulk viscosity** $\zeta(T,\mu)$

ullet equation for baryon diffusion current u^{μ}

$$au_{\mathsf{heat}} \, \Delta^{lpha}_{\,\,\,\,\,\,\,\,\,\,\,\,\,} u^{\mu}
abla_{\mu}
u^{eta} +
u^{lpha} + \kappa \left[rac{nT}{\epsilon + p}
ight]^2 \Delta^{lphaeta} \, \partial_{eta} \left(rac{\mu}{T}
ight) + \ldots = 0$$

with heat conductivity $\kappa(T,\mu)$

Transverse expansion



- for central collisions $\epsilon = \epsilon(\tau,r)$
- initial pressure gradient leads to radial flow
- fluid evolution equations for Israel-Stewart type theories

$$A_{ij}(\Phi, \tau, r) \frac{\partial}{\partial \tau} \Phi_j + B_{ij}(\Phi, \tau, r) \frac{\partial}{\partial r} \Phi_j + C_i(\Phi, \tau, r) = 0.$$

• mathematically set of quasi-linear, first order partial differential equations

Characteristic velocities

[Floerchinger, Grossi (2017)]

 \bullet characteristic velocities $\lambda^{(n)}$ follow from $\det \left(B - \lambda^{(n)} A \right) = 0$ as

$$\lambda^{(1)} = \frac{v + \tilde{c}}{1 + \tilde{c}v}, \qquad \lambda^{(2)} = \frac{v - \tilde{c}}{1 - \tilde{c}v}, \qquad \lambda^{(3)} = \lambda^{(4)} = \lambda^{(5)} = v$$

- ullet equations hyperbolic if $\lambda^{(n)} \in \mathbb{R}$
- ullet causal signal propagation for $ilde{c} \leq 1$
- modified velocity of sound

$$\tilde{c} = \sqrt{c_s^2 + d}$$

• ideal fluid velocity of sound

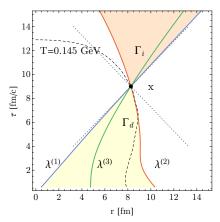
$$c_s^2 = \frac{\partial p}{\partial \epsilon}$$

viscous correction

$$d = \frac{\frac{4\eta}{3\tau_{\mathsf{shear}}} + \frac{\zeta}{\tau_{\mathsf{bulk}}} + \dots}{\epsilon + p + \pi_{\mathsf{bulk}} - \pi^{\phi}_{\phi} - \pi^{\eta}_{\eta}}$$

Domains of influence and dependence

[Floerchinger, Grossi (2017)]

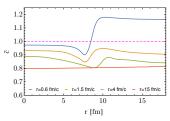


- causality cones are space-, time- and state dependent !
- causality poses a bound to applicability of relativistic fluid dynamics

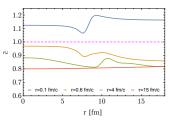
Causality as bound to fluid approximation

[Floerchinger, Grossi (2017)]

ullet Navier-Stokes initial conditions at $au_{
m initial}=0.6~{
m fm/c}$



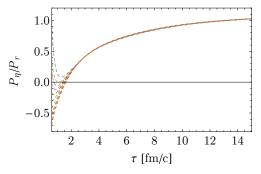
• Navier-Stokes initial conditions at $\tau_{\text{initial}} = 0.1 \text{ fm/c}$



• causality violations for too large gradients!

The hydro "attractor"

• ratio of longitudinal to transverse "pressure" in Israel-Stewart theory

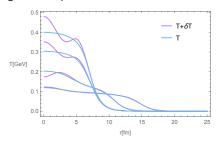


- \bullet approach to attractor governed by τ_{shear}
- causality: non-hydrodynamic modes needed!
- also negative longitudinal "pressure" allowed by causailty constraint

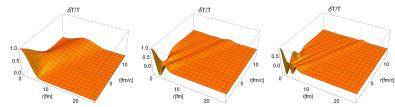
$Mode\mbox{-}by\mbox{-}mode\mbox{ fluid } dynamics$

[Floerchinger, Wiedemann (2014), work in progress with E. Grossi, J. Lion]

• evolution of background & perturbations



• detailed understanding of perturbations



Conclusions

- high energy nuclear collisions produce a relativistic QCD fluid!
- fluid dynamics seems surprisingly universal
- experimental hints for collective flow also in pPb and pp collisions
- improved understanding of relativistic fluid dynamics
- causality: one must go beyond strict derivative expansion
- non-hydrodynamic modes needed
- bound on applicability posed by causality