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Effective dissipation

o dissipation is generation of entropy

@ von Neumann definition
S =—-Trplnp

@ entropy measures information
e maximal information for pure state with S =0
o minimal information for thermal state S = max.}E AN

@ unitary evolution conserves entropy!

o what information is really accessible and relevant?




Entanglement entropy

@ consider splitting of system into two parts A + B

reduced density matrix
pa = Tre{p}

entanglement entropy

Sa=—-Tra{palnpa}

@ C-theorem & A-theorem

@ local entropy production <+ entanglement generation



Dissipation and effective field theory

@ RG equations for the dissipative terms?
o universality in the effective dissipative sector?

o what dissipative terms are relevant for dynamics close to (quantum) phase
transitions?



Close-to-equilibrium situations

@ out-of-equilibrium situations

@ close-to-equilibrium: description by field expectation values and
thermodynamic fields

@ more complete description by following more fields explicitly

o example: viscous fluid dynamics plus additional fields
@ usually discussed in terms of

o phenomenological constitutive relations
e as a limit of kinetic theory
e in AdS/CFT

@ want non-perturbative formulation in terms of QFT concepts
@ analytic continuation as an alternative to Schwinger-Keldysh

o direct generalization of equilibrium formalism



Local equilibrium states

o dissipation: energy and momentum get transferred to a heat bath

@ even if one starts with pure state 7' = 0 initially, dissipation will generate
nonzero temperature

o close-to-equilibrium situations: dissipation is local

@ convenient to use general coordinates with metric

Guv ()

o need approximate local equilibrium description with temperature T'(x) and
fluid velocity u*(x), will appear in combination

g (x) =

o global thermal equilibrium corresponds to 5" Killing vector

VuBu(z) + VuBu(z) =0



Local equilibrium
@ similarity between local density matrix and translation operator

RHOEN RINTED

—

o functional integral with periodicity in imaginary direction

o(z* —ip"(2)) = £o(z")

partition function Z[J], Schwinger functional W[.J] in Euclidean domain

Z[J] = eWel] _ /D¢ e Selel+ [, J¢

first defined on Euclidean manifold X x M at constant time

approximate local equilibrium at all times: hypersurface X can be shifted

(a) Global thermal equilibrium (b) Local thermal equilibrium
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Effective action

o defined in euclidean domain by Legendre transform
I [®] = / Ja(2)®a(z) — WalJ]

with expectation values

1 s
@) = o) 50 (@)

Wg[J]

@ quantum or 1-PI effective action has correlation functions including all
quantum fluctuations !

o euclidean field equation
0
MFE[‘I’} =V9(x) Ja(x)

resembles classical equation of motion for J =0

@ need analytic continuation to obtain a viable equation of motion



Two-point functions

o consider homogeneous background fields and global equilibrium

5 = (1.0.00)

@ propagator and inverse propagator
52

6Ja(=p)dJu(q)
52

6®@a(—p)d®y(q)

Wg[J] = Gas(iwn, P) 6(p — q)

Lg[®] = Pab(iwn, p) 6(p — q)

e from definition of effective action

Z Gab Pbc = 5ac



Spectral representation

o Kallen-Lehmann spectral representation

o 2 2

zZ—Ww

—o0

with pqp € R

correlation functions can be analytically continued in w = —u*p,,

@ branch cut or poles on real frequency axis w € R but nowhere else

o different propagators follow by evaluation of G in different regions
Im(w)
Matsubara M .
Agy (p) =Gap (an, P)
retarded Feynman AaRb(p) =G (po + i€, p)
Re(w) .
————————————————————————————————— N AL(p) =Gab (p° — i, p)
advanced
AL (p) =Gap ( O+ ie sign (po) .P)




Inverse propagator

spectral representation for G5 implies that inverse propagator P,y (w, p)

e can have zero-crossings for w = p® € R
o has in general branch-cut for w = p® € R

so far reference frame with u* = (1,0,0,0)

more general: analytic continuation with respect to

w=—u"py,

use decomposition
Pab(p) = Pr.ab(p) — is1(—=u"pu) P2.ab(p)

with sign function
si(w) = sign(lm w)

both functions Pi q5(p) and P» 45(p) are regular (no discontinuities)



Sign operator in position space

[Floerchinger, JHEP 1609 (2016) 099]

@ in position space, sign function becomes operator
s (—u"py) = sign (Im(—u"py))

= sign (Im (107 5%)) = s (Re (1 5%5)) = e (o 5%)

@ geometric representation in terms of Lie derivative

sr(Lw) or sr(Lp)

@ sign operator appears also in analytically continued quantum effective
action I'[®]



Analytically continued 1 PI effective action

[Floerchinger, JHEP 1609 (2016) 099]

analytically continued quantum effective action defined by analytic
continuation of correlation functions

quadratic part

1

F2[@] = 5 /I , Do (2) [Pl,ab(w —Y) + Prav(z — y)sr (u”%)] Dy(y)

higher orders correlation functions less understood: no spectral
representation

use inverse Hubbard-Stratonovich trick: terms quadratic in auxiliary field
can be integrated out

allows to understand analytic structures of higher order terms



FEquations of motion

@ can one obtain causal and real renormalized equations of motion from the
1 PI effective action?

@ naively: time-ordered action / Feynman ie prescription:

o

mrtime ordered [@] = \/ﬁJa(ﬂf)

@ this does not lead to causal and real equations of motion !
[e.g. Calzetta & Hu: Non-equilibrium Quantum Field Theory (2008)]



Retarded functional derivative

[Floerchinger, JHEP 1609 (2016) 099]

o real and causal dissipative field equations follow from analytically
continued effective action

oI [®] _
(5<I)a($) ret - \/EJ(:C)
@ to calculate retarded variational derivative determine
or[®]

by varying the fields §®(z) including dissipative terms

@ set signs according to

sr(u"9y) 6®(z) — —09(x), 0@ (z) sr(u"0u) = +0P(x)

@ proceed as usual

@ opposite choice of sign: field equations for backward time evolution

leads to causal equations of motion



Damped harmonic oscillator 1

@ equation of motion
mi +ct + kx =0

or
&+ 2Cwot +wiz =0

with wo = \/k/m and ¢ = ¢/vV4mk

@ what is effective action for damped oscillator? This does not work:

/(21—: %x*(w) [w2 + 2iw Cwo — wg] z(w)

@ consider inverse propagator
2 . 2
w” 4 24 s1(w) wCwo — wp

with
si(w) = sign (Imw)

zero crossings (poles in the eff. propagator) are broadened to branch cut



Damped harmonic oscillator 2

o take for effective action

INEY :/3—: %m*(w) [wa — 2is1(w) w Cwo erg] z(w)

1 . 1 o1
:/dt {fime + icac sr(O)Z + ika:Q}
where the second line uses

si(w) = sign(Imw) — sign(Im:9;) = sign(Re d;) = sr(d:)
@ variation gives up to boundary terms
or :/dt {mi or + %cém sr(O)x — %ca’csR(&)éaz + kxdx}

Set now sg(0:)6x — —dx and 6z sr(;) — dz. Defines 2& .

@ equation of motion for forward time evolution

or

=mi+ct+kr=0
ox

ret




Scalar field with O(N) symmetry

o consider effective action (with p = 1¢;¢;)
1 v
L, guv, B] = /ddmx/é{QZ(MT)g” ;O +U(p,T)

+300LT) [, se(00,)] 701

@ variation at fixed metric g, and " gives
0T = /dda:\/g{Z(p, T)g"" 0,,6¢0;0u0; + %Z’(p,T)SDm(S(pm 9" 0P 0up;
+U'(p, T)pmbpm
+ 5 T) 1565, 51 ()] 6 Do

+ 500 1) [, sr(ut0u)] B 0w 0

1
2

1
+ 50'(p,T)<pm6gom [ej,sR(u"Opu)] 6”8ue0j}

@ set now dp; sr(ut9,) — dp; and sr(u'dy) dp; — —dp;



Scalar field with O(N) symmetry

o field equation becomes

1,
~VulZ(p, T)0" 0] + 52 (0, T)i0upm0" pm
+U'(p, T)ip; + C(p, T)B" Oupj = 0

o generalized Klein-Gordon equation with additional damping term



Causality

[Floerchinger, JHEP 1609 (2016) 099]
o consider derivative of field equation (in flat space with \/g = 1)

é or é

580(y) 5%a () e 5Bu(z) """

@ inverting this equation gives retarded Green's function

0

3T Dy (z) = Ady(z,y)

@ only non-zero for x future or null to y

o Causality: Field expectation value ®,(x) can only be influenced by the
source Ji(y) in or on the past light cone v/



Where do energy & momentum go?

o modified variational principle leads to equations of motion with dissipation
@ but what happens to the dissipated energy and momentum?

and other conserved quantum numbers?

@ what about entropy production?



Energy-momentum tensor expectation value

@ analogous to field equation, obtain by retarded variation

5]'—‘[@)9}“/75#} _ 1 %
5guu(:r) ot - 75\/5 <T (x»

o leads to Einstein’s field equation when I'[®, g,..,, 8*] contains
Einstein-Hilbert term

o useful to decompose
F[©7 gH«V7 BM} = FR[(Dv gHV7 /BH] + FD [4)7 gl“’? ﬁ”]

where reduced action T'r contains no dissipative / discontinuous terms
and I'p only dissipative terms

@ energy-momentum tensor has two parts

(T") = (Tr)"" + (Tp)"”



General covariance

@ infinitesimal general coordinate transformations as a gauge transformation
of the metric

e (z)

9() , au(z) »
oxv

ozt ox* (@)

G
09y (x) = gux(x) + gu ()
o temperature / fluid velocity field transforms as vector

o' (z) 9B (x) .,
oxv ox” ¢ ()

0BG (x) = =B (x)

e also fields ®, transform in some representation, e. g. as scalars

B}
605 (z) = &(m)@%(x)

@ reduced action is invariant

Tr[® + 60, g + 095, B* + BE] = Tr[®, g, 5]



Situation without dissipation

consider first situation without dissipation I'[®, g,..., 8] = I'r[®, guv]

field equation implies (for J = 0)

1)
WFR[‘I’,gw] =0

@ gauge variation of the metric

n = [ a5 @)V (@)

o general covariance 0I'r = 0 and field equations imply covariant
energy-momentum conservation

Vi (T*\(2)) =0



Situation with dissipation
[Floerchinger, JHEP 1609 (2016) 099]
@ consider now situation with dissipation. General covariance of I'g:

oTp = /d%{i B 508 4+ /g VL (TR, ‘;I/;fwg}

reduced action not stationary with respect to field variations

oT'r oI'p = —/g(z) Mo ()

5Ba(z)  0Da(x)

ret

reduced energy-momentum tensor not conserved
Vu(Tr)"\ () = =Vu(Tp)", (2)

o dependence on 8*(z) cannot be dropped
o'r
Sy = VI Kul@)

@ general covariance implies four additional differential equations that
determine g*

Ma0x®a + VLL(TD)H,\ =Vyu [BFK\] + Kuvkﬁu



Entropy production
[Floerchinger, JHEP 1609 (2016) 099]
e contraction of previous equation with 8% gives

Mufr0s®0 + BV ,u(Tp)", = ¥V, [6“,6*10}

@ consider special case

V9 Ku(z) = 525&) = 553@) /dd:c\/f]U(T)

with grand canonical potential density U(T) = —p(T') and temperature
1

V= gu BB
e using s = Op/0T gives entropy current
ﬂ“BAKA = s" = su"

@ local form of second law of thermodynamics

Vst = Mofror®a + BV, (Tp)*, >0



Energy-momentum tensor for scalar field

@ analytic action
Clpw g ] = [ dlav/a{ 5 20, 1) o005 + V(o T)
+500T) o (u0,)] 5003
@ energy-momentum tensor
(T () =Z(p, T)0"0;0" 0,

B 1
- (g“” + U“uVTafT) {gz(p,T)g“”amﬁuw +Ul(p, T)}

o generalizes T*" for scalar field and T*" = (e + p)uru” + g"*“p for ideal
fluid with pressure p = —U and enthalpy density e + p = sT = —T(%U.

@ general covariance and covariant conservation law imply
Vu(T*"(x)) =0 = Differential eqgs. for g"(z)



Entropy production for scalar field

@ entropy current

o (1 N
st = BHBAKy = " Tor {iz(p, T)g" 0ap;0s05 + Ulp, T)}

@ generalized entropy density

o [1 a
56 = ~3r {§Z(p,T)g P 8ap; 0805 + U(p, T)}

@ entropy generation positive semi-definite for C(p,T) > 0

Vus" = C(p,T) (8" 0ups) (B"0uipj) > 0

o for fluid at rest u* = (1,0,0,0)

. Cp,T) . .
Vst =éa = (;2 )som

entropy increases when ¢; oscillates. Example: reheating after inflation



Ideal fluid

@ consider effective action
Clgues 8] = Tilgp 6] = [ a5 U(T)

with effective potential U(T) = —p(T) and temperature
1

/,gy‘uﬁpﬁu

@ variation of g, at fixed 5" lead to ideal fluid form
" = (e + p)u"u” +pg™”
where e + p=Ts = Ta%p is the enthalpy density
@ general covariance or covariant conservation V,T"” = 0 leads to
uOpe+ (e +p)Vyuu" =0,
(e +p)u"Vyuu” + A0,p = 0.



Viscous fluid
@ analytic action
Clgp 8] = | {U)+ § g (L] 20D)r" + ()M T ) }

with projector
AP = yPu” + g

and
1 1 1
o — (,AuaAuB + ZAMB AR _ AMUAHL?) Vaug
2 2 d—1
leads to
v ST [guw,BH v v v v
(1) = = Z 2 8| — (e 4+ p)uu” +pg"” — 20" — CAMV pu”

@ describes viscous fluid with shear viscosity 7(7") and bulk viscosity ¢(T")

@ entropy production

1
Vst = T [Qnawo’w + C(Vpup)Q]



Conclusions

o effective dissipation can arise in quantum field theories due to effective
local loss of information

@ equations of motion for close-to-equilibrium theories can be obtained from
analytic continuation

@ general covariance and energy-momentum conservation lead to equations
for fluid velocity and entropy production

@ local form of second law of thermodynamics is implemented on the level of
the effective action I'[D]

@ interesting applications



Outlook

o proper understanding of local dissipation in terms of entanglement entropy
[J. Berges, S. Floerchinger, R. Venugopalan, PLB 778 (2018) 442; JHEP 1804 (2018)145]

o causal dissipative relativistic fluid dynamics needs hyperbolic equations
[S. Floerchinger, E. Grossi, 1711.06687]
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Backup slides



Double time path formalism

o formalism for general, far-from-equilibrium situations: Schwinger-Keldysh
double time path

o can be formulated with two fields ® (¢>+ +o-), x =+ — P—

@ in principle for arbitrary initial density matrices, in praxis mainly Gaussian
initial states

@ allows to treat also dissipation

o useful also to treat initial state fluctuations or forced noise in classical
statistical theories

o difficult to recover thermal equilibrium, in particular non-perturbatively

Imt

t t Ret

max




FEquations of motion from the Feynman action ¢

@ consider damped harmonic oscillator as example. Time-ordered or
Feynman action is obtained from analytic action by replacing
si(w) — sign(w)

dw m ;
Ttime ordered[x} = / % 51’ (UJ) [-UJQ — 22|UJ‘ CUJO +UJ§] a:(w)

o field equation %“)I‘time ordered[Z] = J(t) would give

[fwz — 24|w| Cwo + wg] z(w) = J(w)

@ violates reality constraint z*(w) = z(—w) for J*(w) = J(—w)
@ solution not causal

x(t) = /t Ap(t—t)J(t)

because Feynman propagator Ap(t —t') not causal.

@ in contrast, retarded variation of analytic action leads to real and causal
equation of motion



Tree-like structures

@ discontinuous terms in analytic action could be of the form

Poiec[@] = / A2 /G {F10)(x) sr (v (@) 52r) g[®](z)}

@ more general, tree-like structure are possible such as

oud] = [ {f10(e) (w5t

or

Powl®] = [ {18160 50 (1 (2)525) ol](,:2) 52 (4 () 55) hl2](0)
x s (1 (2) 52¢) J1@](2) }

) gl®](z, ) 5w (u" (4) 52) RIP](v) }

o for retarded variation calculate 0I" and set sg(u"9,) — —1 if derivative
operator points towards node that is varied and sg(u”9,) — 1 if derivative
operator points in opposite direction



Analytic continuation of renormalization group equations
[Floerchinger, JHEP 1205 (2012) 021]

o consider a point p3 — 5° = m? where P;(m?) = 0.
@ one can expand around this point
Py =Z(=p} + 77 +m?) + -
Py = Z’}’Q 4.

leads to Breit-Wigner form of propagator (with 42 = mI')

1 —pj +p” +m? +is(po) mI

G(p) = .
W= 2 R+ w2+ ml

o a few parameters describe the singular structure of the propagator

/A%
0.00008

0.00006

000004

0.00002

0

~0.00002
<10 -8 6 —

2 i)



Truncation for relativistic scalar O(N) theory

. _ N T
with p = 1 >im ¢

o Goldstone propagator massless, expanded around py — p% =0

Py(po, P) = Zo (—ps + °)

o radial mode is massive, expanded around p3 — p* = m?
Py(po, §) + poPp(po, p) + Ui, + 2pUy,
~ 2o (=93 + 8 +md) — is(po) 7]



Flow of the effective potential

1 (N —1)
i1
t k(p)|p 2 po—itwn . ﬁ—pg+U'+%¢Rk

+ . }iaR
Z0[(* = i) —is(po)f] + U + 200" + LR S Zs

@ summation over Matsubara frequencies pp = i27T'n can be done using
contour integrals.

o radial mode has non-zero decay width since it can decay into Goldstone
excitations.

@ use Taylor expansion for numerical calculations

1
Uk(p) = Uk(po.k) + mi(p — pox) + 5>\k(f> — pok)’



