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Little bangs in the laboratory
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Microscopic description
Lagrangian
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particle content
o N2 — 1 = 8 real massless vector bosons: gluons

@ N. X Ny massive Dirac fermions: quarks

quark masses

Up 2.3 MeV | Charm 1275 MeV | Top 173 GeV
Down 4.8 MeV | Strange 95 MeV | Bottom 4180 MeV




Asymptotic freedom
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e coupling constant small at high momentum transfer / energy scale

o high-temperature QCD should be weakly coupled

o low-temperature QCD should be strongly coupled




Confinement - deconfinement
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o for low temperature / density: quarks and gluons confined to hadrons

o for high temperature / density: deconfined quarks and gluons

@ in between no sharp phase transition but continuous crossover



Fluid dynamics

o long distances, long times or strong enough interactions

@ matter or quantum fields form a fluid!

@ needs macroscopic fluid properties

thermodynamic equation of state p(T, u)
shear viscosity n(T, )

bulk viscosity ¢(T', )

heat conductivity «(T, u)

relaxation times, ...

@ ab initio calculation of fluid properties difficult but fixed by microscopic
properties in Zqcp




Relativistic fluid dynamics
Energy-momentum tensor and conserved current

T = euu” 4 (p + mouk) A" + 7

NH =nu” + %

@ tensor decomposition using fluid velocity u", A" = g"* + utu”

e thermodynamic equation of state p = p(T, p1)

Covariant conservation laws V,T"” =0 and V,N" = 0 imply
@ equation for energy density €

u"Ope+ (e + p + mou) Vypu! + 7 V,u, =0

@ equation for fluid velocity u"

(€4 p + moun)u! Vyu” + A0, (p 4 mouk) + AV, V™ =0

@ equation for particle number density n

uOun +nVut + Vot =0



Constitutive relations

Second order relativistic fluid dynamics:

@ equation for shear stress 7"
Tahear P77, 5 ut'V 4+ 777 4+ 20 PP, Vou® +...=0

with shear viscosity n(7', )

@ equation for bulk viscous pressure mpyik
Toulk U Oy Tbuik + Toulk + ¢ Vpu! 4+ ...=0

with bulk viscosity (7', 1)

@ equation for baryon diffusion current v*

T 2
Theat Aaﬁ UMVMVB +v¥+ kK |: n :| A‘)‘B@g (%) +...=0

€e+p

with heat conductivity (7T, 1)



Bjorken boost invariance
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How does the fluid velocity look like?

Bjorkens guess: v, (t,z,y,2) = z/t
leads to an invariance under Lorentz-boosts in the z-direction
o use coordinates 7 = /1?2 — 22, x, y, n = arctanh(z/t)

Bjorken boost symmetry is reasonably accurate close to mid-rapidity n ~ 0



Transverse expansion

o for central collisions (r = \/z2 + y?)

e=¢(r,r)

@ initial pressure gradient leads to radial flow

()= () s



Non-central collisions

@ pressure gradients larger in reaction plane

o leads to larger fluid velocity in this direction
@ more particles fly in this direction

@ can be quantified in terms of elliptic flow v2
@ particle distribution

dN
dé

@ symmetry ¢ — ¢ + m impliesvi =v3 =v5 = ...

é\;r 1+22 vm cos (m (¢ — Yr))

=0.



Two-particle correlation function

@ normalized two-particle correlation function
(4N 4N

P T)events
- b1 dda - —142 Z va, cos(m (¢1 — ¢2))
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@ surprisingly va, vs, v4, vs and ve are all non-zero!
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[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]




FEvent-by-event fluctuations

o deviations from symmetric initial energy density distribution from
event-by-event fluctuations

@ one example is Glauber model




Big bang — little bang analogy
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@ cosmol. scale: MPc= 3.1 x 10?2 m @ nuclear scale: fm= 10" m
o Gravity + QED + Dark sector e QCD

@ one big event @ very many events

@ initial conditions not directly accessible
o all information must be reconstructed from final state
@ dynamical description as a fluid

o fluctuating initial state



Similarities to cosmological fluctuation analysis

o fluctuation spectrum contains info from early times
@ many numbers can be measured and compared to theory

@ can lead to detailed understanding of evolution



Cosmological perturbation theory

[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov, Weinberg, ...

solves evolution equations for fluid + gravity

expands in perturbations around homogeneous background
detailed understanding how different modes evolve

very simple equations of state p=we

viscosities usually neglected n=¢=0

photons and neutrinos are free streaming



Fluid dynamic perturbation theory for heavy ion collisions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]
@ solves evolution equations for relativistic QCD fluid
@ expands in perturbations around event-averaged solution
@ leads to linear + non-linear response formalism

@ good convergence properties
[Floerchinger et al., PLB 735, 305 (2014), Brouzakis et al. PRD 91, 065007 (2015)]

@ comparison to cosmology rather direct




Fluid dynamic simulations

@ second order relativistic fluid dynamics simulated numerically
o fluctuating initial conditions

@ 1/s is varied to find experimentally favored value

0.2 T T 0.14 T T T

Vo — | ATLAS 10%—-20%, EP 012 | V2 — | ALICE data v,{2}, pr>0.2 GeV
: Vg - n/s=0.2

v, 2>|/2
n
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50

centrality percentile

[Gale, Jeon, Schenke, Tribedy, Venugopalan (2013)]




Collective behavior in large and small systems
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o flow coefficients from higher order cumulants va{n} agree:
— collective behavior

o elliptic flow signals also in pPb and pp!

@ can fluid approximation work for pp collisions?




Questions and puzzles

@ how universal are collective flow and fluid dynamics?

@ what determines density distribution of a proton?

@ do we really understand elementary particle collision physics?
e multi-parton interactions?

@ more elementary systems such as ep or eTe™?



The thermal model puzzle

o elementary eTe™ collision experiments show thermal-like features

@ particle multiplicities well described by thermal model
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]
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@ conventional thermalization by final state interactions unlikely

@ alternative explanations needed



QCD strings and entanglement

[Berges, Floerchinger, Venugopalan (2017)]

===

B A B

particle production from QCD strings

Lund model (Pythia)

different regions in a string are entangled

subinterval A has reduced density matrix of mixed form even if p is pure

pa = Tre{p}

@ could this lead to thermal-like effects?
@ characterization by entanglement entropy

Sa=—Tra{paln(pa)}

o globally pure state S = 0 can be locally mixed S4 > 0
o coherent information Ipy4 = Sa — S can be positive



Schwinger model

e QED in 1+1 dimension

L = —Qﬁi’Y“ (6u - Zun)¢ mlwlwl - F;U/FHU

@ geometric confinement
o U(1) charge related to string tension ¢ = /20

o for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

1, 1
5= [ @aya{ - o o000 - jare?

- cosavmo ) |

o Schwinger bosons are dipoles ¢ ~ 1)

@ mass is related to U(1) charge by M = g/\/m = /20/7
@ massless Schwinger model m = 0 leads to free bosonic theory



FEzxpanding string solution

o quark-anti-quark pair on trajectories z = ¢
@ coordinates: Bjorken time 7 = /{2 — 22, rapidity n = arctanh(z/t)
o Bjorken boost symmetry n — n + An

28/35



Coherent field evolution

Schwinger boson field expectation value depends only on 7

¢ = (¢) = o(7)

equation of motion
1 - _
2p + ~0rp+ M?¢=0

Gauss law: electric field E = q¢/+/7 must approach U(1) charge
(1) = /1 (for 7 — 04)

@ solution of equation of motion [Loshaj, Kharzeev (2011)]

¢() = v/mJo(Mr)



Gaussian states

o theories with quadratic action often have Gaussian density matrix
o fully characterized by field expectation values

$(x) =

(o(2)), 7i(z) = (r(z))

and connected two-point correlation functions, e. g.

(D(2)9(y))e =

(6(2)8(v)) — d(x)b(y)

o if p is Gaussian, also reduced density matrix p4 is Gaussian



Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, 1712.09362]

Sa =3 Ta {DIn(D?)}

@ operator trace over region A only
@ matrix of correlation functions

i@ i(6@)o))e
Dlay) = (—i<w<x>w<y>>c i<w(x>¢<y>>c)

@ involves connected correlation functions of field ¢(z) and canonically
conjugate momentum field 7(x)

@ expectation value ¢ does not appear explicitly

@ coherent states and vacuum have equal entanglement entropy Sa



Rapidity interval

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time 7

@ entanglement entropy does not change by unitary time evolution with
endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27 sinh(An/2) at fixed
time t = 7 cosh(An/2)

@ need to solve eigenvalue problem with correct boundary conditions




Bosonized massless Schwinger model

@ entanglement entropy understood numerically for free massive scalars
[Casini, Huerta (2009)]

@ entanglement entropy density d.S/dAn for bosonized massless Schwinger
model (M = %)

dS/dAn
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Conformal limit

e For Mt — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(Az) = % In (Az/€) + constant

with small length € acting as UV cutoff.

Here this implies

S(r,An) = gln (27 sinh(An/2)/e) + constant

Conformal charge ¢ = 1 for free massless scalars or Dirac fermions.

Additive constant not universal but entropy density is

19} c

%g (An>1)

Entropy becomes extensive in An !



Universal entanglement entropy density

o for very early times “Hubble” expansion rate dominates over masses and

interactions

1
H=->M=-L n
T

NG

@ theory dominated by free, massless fermions

@ universal entanglement entropy density

as c

dAn 6
with conformal charge ¢

o for QCD in 141 D (gluons not dynamical, no transverse excitations)

C:NCXNf

o from fluctuating transverse coordinates (Nambu-Goto action)

c=NcxNf+2=9+2=11



Temperature and entanglement entropy

@ for conformal fields, entanglement entropy has also been calculated at
non-zero temperature.

o for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

S(T,1) = %ln (i sinh(ﬂLT)) + const

@ compare this to our result in expanding geometry
S(r,An) = gln (2—7— sinh(An/2)) + const
€

o expressions agree for L = 7An (with metric ds* = —dr? 4 72dn?) and
time-dependent temperature



Modular or entanglement Hamiltonian

—— 1=const
————— n = const
----- region A
region B

e conformal field theory [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta

(2017), see also Candelas, Dowker (1979)]

Za=Tre ¥

@ modular or entanglement Hamiltonian local expression

K= /E A%, &0 (2) T (2)

@ energy-momentum of excitations around coherent field 7" (z)

32/35



Time-dependent temperature

ut(z)
T (x)

e for An — oo: fluid velocity in T-direction & time-dependent temperature
[Berges, Floerchinger, Venugopalan (2017)]

@ combination of fluid velocity and temperature £¥(z) =

T(r) =

T onr

o Entanglement between rapidity intervals leads to local thermal
density matrix at very early times !

he
27x

o Hawking-Unruh temperature in Rindler wedge T'(z) =




Physics picture

@ coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

o on finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

o technically limits Anp — oo and M7 — 0 do not commute

o An — oo for any finite M7 gives pure state
e M7 — 0 for any finite An gives thermal state with T'= 1/(277)



Conclusions

@ high energy nuclear collisions produce a relativistic QCD fluid!

@ interesting parallels between cosmology and heavy ion collisions

@ similar physics of evolving fluid fluctuations

o experimental hints for collective flow also in pPb and pp collisions

o expanding QCD strings: entanglement between rapidity intervals can lead
to thermal-like effects!



Backup slides



QCD in two dimensions

@ QCD in 141 dimensions described by 't Hooft model

_ . _ 1 v
¥ = _wiWM(a# — ZgAM)dJi — mﬂ/}zwl — Etl’FuyFM

o fermionic fields 1; with sums over flavor species ¢ = 1,..., Ny
@ SU(N.) gauge fields A, with field strength tensor F,,,

@ gluons are not dynamical in two dimensions

o gauge coupling g has dimension of mass

@ non-trivial, interacting theory, cannot be solved exactly

@ spectrum of excitations known for N. — oo with 2N, fixed
['t Hooft (1974)]



Alternative derivation: mode functions

o fluctuation field ¢ = ¢ — ¢ has equation of motion

52 1 s 1 97 B
TsO(T,nH;@rso(T,n)Jr M “Zap @(1,m) =0

@ solution in terms of plane waves

dk‘ ikm * —1kn
plrim = [ G {al) £ KD +al () £ (r, Ib)e ™7}

@ mode functions as Hankel functions
. T kx 2
k) = %e £ H (M)
or alternatively as Bessel functions

_ T e
fr k) = 2 sinh(7k) Tk (M7)



Bogoliubov transformation

@ mode functions are related

F(r k) =a(k)f(7.k) + Bk) [ (7, k
f(r k) =a" (k) f

@ creation and annihilation operators are related by

a(k) =a* (k)a(k) — B*(k)a' (k)
a(k) =a(k)a(k) + B(k)a' (k)

o Bogoliubov coefficients

ek e~k
ak) = 2 sinh(mk) Blk) = 2 sinh(mk)

e vacuum [Q)) with respect to a(k) such that a(k)|Q2) = 0 contains
excitations with respect to a(k) such that a(k)|(2) # 0 and vice versa



Role of different mode functions

o Hankel functions f(7, k) are superpositions of positive frequency modes
with respect to Minkowski time ¢

o Bessel functions f(r, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time ¢

e at very early time 1/7 > M, m conformal symmetry

ds®> = 7% [~dIn(7)* + dn?]

o Hankel functions f(7, k) are superpositions of positive and negative
frequency modes with respect to conformal time In(7)

o Bessel functions f(r, k) are superpositions of positive frequency modes
with respect to conformal time In(7)



Occupation numbers

@ Minkowski space coherent states have two-point functions
kEa(k'))e = n(k)2r6(k — k') = |ﬂ(l€)|2 21 §(k — k)
a(k)a(k'))e = u(k)2n6(k + k') = —a*(k)B" (k) 2m 6 (k + k')
(k)&T(k/»c =a"(k)2r6(k+ k) = —a(k)B(k)2rnd(k + k')

@ occupation number

Ak = 1B =

o Bose-Einstein distribution with excitation energy E = |k|/7 and
temperature

o off-diagonal occupation number @(k) = —1/(2sinh(7k)) make sure we
still have pure state



Local description

o consider now rapidity interval (—An/2, An/2)

o Fourier expansion becomes discrete

1 = inr L
plm) =7 > ene"mE

n=—oo

An/2 1 —inT AL InT AL
pn= [ dnon) g [R5 + (-ayren ]
An/2 2

@ relation to continuous momentum modes by integration kernel

dk . xa - 1 1
wn:/gsm( 2”"2)[ _M+k+nﬂ'

An An

(k)

@ local density matrix determined by correlation functions

<4,07L>7 <7T7L>7 <907L(pm>c> etc.



Emergence of locally thermal state

@ mode functions at early time
= 1 ikin(r)—io(k,M)
f(r k) = —e ’
(1, k) o
@ phase varies strongly with k£ for M — 0

O(k, M) = kIn(M/2) + arg("(1 — ik))

o off-diagonal term @(k) have factors strongly oscillating with k

(p(r k)™ (r K Y)e = 2m8(k — k') 7

x {[% + A(k)] + cos 2k In(T) + 20(k, M)] u(k)}

cancel out when going to finite interval !

o only Bose-Einstein occupation numbers (k) remain



