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Little bangs in the laboratory
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Fluid dynamics

long distances, long times or strong enough interactions

matter or quantum fields form a fluid!

needs macroscopic fluid properties
thermodynamic equation of state p(T, µ)
shear viscosity η(T, µ)
bulk viscosity ζ(T, µ)
heat conductivity κ(T, µ)
relaxation times, ...

ab initio calculation of fluid properties difficult but fixed by microscopic
properties in LQCD

2 / 36



Relativistic fluid dynamics

Energy-momentum tensor and conserved current

Tµν = ε uµuν + (p+ πbulk)∆µν + πµν

Nµ = nuµ + νµ

tensor decomposition using fluid velocity uµ, ∆µν = gµν + uµuν

thermodynamic equation of state p = p(T, µ)

Covariant conservation laws ∇µTµν = 0 and ∇µNµ = 0 imply

equation for energy density ε

uµ∂µε+ (ε+ p+ πbulk)∇µuµ + πµν∇µuν = 0

equation for fluid velocity uµ

(ε+ p+ πbulk)uµ∇µuν + ∆νµ∂µ(p+ πbulk) + ∆ν
α∇µπµα = 0

equation for particle number density n

uµ∂µn+ n∇µuµ +∇µνµ = 0
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Constitutive relations

Second order relativistic fluid dynamics:

equation for shear stress πµν

τshear P
ρσ
αβ u

µ∇µπαβ + πρσ + 2η P ρσαβ ∇αu
β + . . . = 0

with shear viscosity η(T, µ)

equation for bulk viscous pressure πbulk

τbulk u
µ∂µπbulk + πbulk + ζ ∇µuµ + . . . = 0

with bulk viscosity ζ(T, µ)

equation for baryon diffusion current νµ

τheat ∆α
β u

µ∇µνβ + να + κ

[
nT

ε+ p

]2

∆αβ∂β
( µ
T

)
+ . . . = 0

with heat conductivity κ(T, µ)
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Bjorken boost invariance
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How does the fluid velocity look like?

Bjorkens guess: vz(t, x, y, z) = z/t

leads to an invariance under Lorentz-boosts in the z-direction

use coordinates τ =
√
t2 − z2, x, y, η = arctanh(z/t)

Bjorken boost symmetry is reasonably accurate close to mid-rapidity η ≈ 0
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Transverse expansion

for central collisions (r =
√
x2 + y2)

ε = ε(τ, r)

initial pressure gradient leads to radial flow(
vx
vy

)
=

(
x
y

)
f(τ, r)
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Non-central collisions

pressure gradients larger in reaction plane

leads to larger fluid velocity in this direction

more particles fly in this direction

can be quantified in terms of elliptic flow v2

particle distribution

dN

dφ
=
N

2π

[
1 + 2

∑
m

vm cos (m (φ− ψR))

]

symmetry φ→ φ+ π implies v1 = v3 = v5 = . . . = 0.
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Two-particle correlation function

normalized two-particle correlation function

C(φ1, φ2) =
〈 dN
dφ1

dN
dφ2
〉events

〈 dN
dφ1
〉events〈 dNdφ2

〉events

= 1 + 2
∑
m

v2
m cos(m (φ1 − φ2))

surprisingly v2, v3, v4, v5 and v6 are all non-zero!

[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]
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Event-by-event fluctuations

deviations from symmetric initial energy density distribution from
event-by-event fluctuations

one example is Glauber model
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Big bang – little bang analogy

cosmol. scale: MPc= 3.1× 1022 m

Gravity + QED + Dark sector

one big event

nuclear scale: fm= 10−15 m

QCD

very many events

initial conditions not directly accessible

all information must be reconstructed from final state

dynamical description as a fluid

fluctuating initial state
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Similarities to cosmological fluctuation analysis

fluctuation spectrum contains info from early times

many numbers can be measured and compared to theory

can lead to detailed understanding of evolution
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The dark matter fluid

heavy ion collisions

LQCD → fluid properties

late time cosmology

fluid properties → Ldark matter

until direct detection of dark matter it can only be observed via gravity

Gµν = 8πGN T
µν

so all we can access is
Tµνdark matter

strong motivation to study heavy ion collisions and cosmology together!
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What perturbations are interesting and why?

Initial fluid perturbations:
energy density ε
fluid velocity uµ

shear stress πµν

more general also: baryon number density n,
electric charge density, electromagnetic fields, ...

governed by universal evolution equations

can be used to constrain thermodynamic and transport properties

contain interesting information from early times
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A program to understand fluid perturbations

1 characterize initial perturbations

2 propagated them through fluid dynamic regime

3 determine influence on particle spectra and harmonic flow coefficients

4 take also perturbations from non-hydro sources (jets) into account
[see work with K. Zapp, EPJC 74 (2014) 12, 3189]
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Mode expansion for fluid fields

Bessel-Fourier expansion at initial time
[Floerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen & Wolpert 2012]

for enthalpy density w = ε+ p

w(r, φ, η) = wBG(r)

1 +
∑
m,l

∫
k

w
(m)
l (k) eimφ+ikη Jm(z

(m)
l ρ(r))


azimuthal wavenumber m, radial wavenumber l, rapidity wavenumber k

higher m and l correspond to finer spatial resolution

works similar for vectors (velocity) and tensors (shear stress)
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Transverse density from Glauber model
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Cosmological perturbation theory

[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov, Weinberg, ...]

solves evolution equations for fluid + gravity

expands in perturbations around homogeneous background

detailed understanding how different modes evolve

very simple equations of state p = w ε

viscosities usually neglected η = ζ = 0

photons and neutrinos are free streaming
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Fluid dynamic perturbation theory for heavy ion collisions

[Floerchinger & Wiedemann, PLB 728, 407 (2014)]

solves evolution equations for relativistic QCD fluid

expands in perturbations around event-averaged solution

leads to linear + non-linear response formalism

good convergence properties
[Floerchinger et al., PLB 735, 305 (2014), Brouzakis et al. PRD 91, 065007 (2015)]

comparison to cosmology rather direct
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Perturbative expansion

write fluid fields h = (ε, n, uµ, πµν , πBulk, . . .)

at initial time τ0 as

h = h0 + ε h1

background part h0, fluctuation part ε h1

at later time τ > τ0 as

h = h0 + ε h1 + ε2h2 + ε3h3 + . . .

h0 is solution of full, non-linear hydro equations in symmetric situation:
azimuthal rotation and Bjorken boost invariant

h1 is solution of linearized hydro equations around h0,
can be solved mode-by-mode

h2 can be obtained by from interactions between modes etc.
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Background evolution

coupled 1 + 1 dimensional partial differential equations
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Evolving perturbation modes

linearized hydro equations

use Fourier expansion

hj(τ, r, φ, η) =
∑
m

∫
dk

2π
h

(m)
j (τ, r; k) ei(mφ+kη)

reduces problem to 1 + 1 dimensions
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Freeze-out surface

background and fluctuations are propagated until Tfo = 120 MeV

free streaming for later times [Cooper, Frye]

perturbative expansion also at freeze-out [Floerchinger, Wiedemann 2013]

resonance decays can be taken into account
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Particle distribution

for single event

ln

(
dN single event

pT dpT dφdy

)
= lnS0(pT )︸ ︷︷ ︸

from background

+
∑
m,l

w
(m)
l eimφ θ

(m)
l (pT )

︸ ︷︷ ︸
from fluctuations

each mode has an angle w
(m)
l = |w(m)

l | e−imψ
(m)
l

each mode has its pT -dependence θ
(m)
l (pT )
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Harmonic flow coefficients for central collisions

Triangular flow for charged particles
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Points: ALICE, 0%-2% most central collisions [PRL 107, 032301 (2011)]

Curves: varying maximal resolution lmax [Floerchinger, Wiedemann (2014)]
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Fluid dynamic simulations

second order relativistic fluid dynamics simulated numerically

fluctuating initial conditions

η/s is varied to find experimentally favored value

u!T
!"
CYM ¼ "u", using the fact that u! is a timelike eigen-

vector of T!"
CYM and satisfies u2 ¼ 1.

Other important details of our analysis are as follows.
Unless otherwise noted, #switch ¼ 0:2 fm=c. We employ
the s95p-PCE equation of state, obtained from fits to
lattice quantum chromodynamics (QCD) results and a
hadron resonance gas model [30], with partial chemical
equilibrium (PCE) setting in below a temperature TPCE ¼
150 MeV. Kinetic freeze-out occurs at TFO ¼ 120 MeV.
At this temperature, we implement the Cooper-Frye pre-
scription [31] for computing particle spectra. Unless other-
wise noted, shown results include decays from resonances
of masses up to 1.3 GeV.

A novel feature of our study is the determination of
centrality classes using the multiplicity distribution of
gluons much like the procedure followed by the heavy
ion experiments [32]. The gluon multiplicity distribution
is shown in Fig. 1. Centrality classes are determined from
the fraction of the integral over this distribution, beginning
with integrating from the right. As a consequence of
implementing this centrality selection, we properly
account for impact parameter and multiplicity fluctuations.

Because entropy is produced during the viscous hydro-
dynamic evolution, we need to adjust the normalization of
the initial energy density commensurately to describe the
final particle spectra [33]. The obtained pT spectra of

pions, kaons, and protons are shown for 0%–5% central
collisions at

ffiffiffi
s

p ¼ 2:76 TeV=nucleon, using the shear vis-
cosity to entropy density ratio $=s ¼ 0:2, in Fig. 2, and
compared to data from ALICE [34]. The results are for
averages over only 20 events in this case, but statistical
errors are smaller than the linewidth for the spectra.
Overall, the agreement with experimental data is good.
However, soft pions at pT < 300 MeV are underestimated.
We determine v1 to v5 in every event by first determin-

ing the exact event plane [35,36]

c n ¼
1

n
arctan

hsinðn%Þi
hcosðn%Þi ; (1)

and then computing

vnðpTÞ ¼ hcosðnð%$ c nÞÞi

%
R
d%fðpT;%Þ cosðnð%$ c nÞÞR

d%fðpT;%Þ ; (2)

where fðpT;%Þ are the thermal distribution functions with
viscous corrections obtained in the Cooper-Frye approach
(with additional contributions from resonance decays).
We first present the root-mean-square (rms) vnðpTÞ for

10%–20% central collisions and compare to experimental
data from the ATLAS Collaboration [4] in Fig. 3.
Agreement for v2–v5 is excellent. Note that the vn from
the experimental event-plane method used by ATLAS
agree well with the rms values [37]. We also find excellent
agreement over the whole studied centrality range when
comparing the pT-integrated rms v2, v3, and v4 to the
available vnf2g (obtained from two-particle correlations,
corresponding to the rms values) from the ALICE
Collaboration [3], as shown in Fig. 4.
We studied the effect of initial transverse flow included

in our framework by also computing vnðpTÞ with u! set to
zero at time #switch. The effect on hadron anisotropic flow
turns out to be extremely weak—results agree within sta-
tistical errors. Because photons are produced early on in
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FIG. 1 (color online). Gluon multiplicity distribution in the
IP-Glasma model.
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FIG. 2 (color online). Identified particle transverse momentum
spectra including all resonances up to 2 GeV compared to
experimental data from the ALICE Collaboration [34].
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FIG. 3 (color online). Root-mean-square anisotropic flow co-
efficients hv2

ni1=2 as a function of transverse momentum, com-
pared to experimental data by the ATLAS Collaboration using
the event plane (EP) method [4] (points). 200 events. Bands
indicate statistical errors. Experimental error bars are smaller
than the size of the points.
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the collision, we expect a greater effect on photon aniso-
tropic flow; this will be examined in a subsequent work.
We emphasize that preequilibrium dynamics that is not
fully accounted for may still influence the amount of initial
transverse flow.

The effect of changing the switching time from !switch ¼
0:2 fm=c to !switch ¼ 0:4 fm=c is shown in Fig. 5. Results
agree within statistical errors, but tend to be slightly lower
for the later switching time. The nonlinear interactions of
classical fields become weaker as the system expands and
therefore Yang-Mills dynamics is less effective than hydro-
dynamics in building up flow at late times. Yet it is reassur-
ing that there is a window in time where both descriptions
produce equivalent results.

Because a constant "=s is at best a rough effective mea-
sure of the evolving shear viscosity to entropy density ratio,
we present results for a parametrized temperature dependent
"=s, following [38]. We use the same parametrization (HH-
HQ) as in Ref. [38,39] with a minimum of ð"=sÞðTÞ ¼ 0:08
at T ¼ 180 MeV, approximately at the crossover from
quark-gluon plasma to hadron gas in the used equation of

state. The result, compared to "=s ¼ 0:2 is shown for
20%–30% central collisions in Fig. 6. The results are indis-
tinguishable when studying just one collision energy. The
insensitivity of our results to two very different functional
forms may suggest that the development of flow is strongly
affected at intermediate times when"=s is very small. Also,
since second order viscous hydrodynamics breaks down
when!#$ is comparable to the ideal terms, our framework
may be inadequate for too large values of "=s.
We compare results for top RHIC energies, obtained

using a constant "=s ¼ 0:12, which is about 40% smaller
than the value at LHC, to experimental data fromSTAR [40]
and PHENIX [1] in Fig. 7. The data arewell described given
the systematic uncertainties in both the experimental and
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FIG. 6 (color online). Comparison of vnðpTÞ using constant
"=s ¼ 0:2 and a temperature dependent ð"=sÞðTÞ as parame-
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Collaboration using the EP method [4] (points). Bands indicate
statistical errors.
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parametrized in Ref. [38]. Experimental data by the PHENIX [1]
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[Gale, Jeon, Schenke, Tribedy, Venugopalan (2013)]
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Collective behavior in large and small systems
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flow coefficients from higher order cumulants v2{n} agree:
→ collective behavior

elliptic flow signals also in pPb and pp!

can fluid approximation work for pp collisions?
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Questions and puzzles

how universal are collective flow and fluid dynamics?

what determines density distribution of a proton?
constituent quarks?
interacting gluon cloud?
generalized parton distribution functions?

do we really understand elementary particle collision physics?

multi-parton interactions?

more elementary systems such as ep or e+e−?

PbPbPb p p p p e- e+ e-
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The thermal model puzzle

elementary e+e− collision experiments show thermal-like features

particle multiplicities well described by thermal model
500 Eur. Phys. J. C (2008) 56: 493–510

Fig. 4 Comparison between measured and fit multiplicities of long-lived hadronic species in e+e− collisions at
√

s = 91.25 GeV. Left: statistical
hadronization model with one temperature. Right: Hawking–Unruh radiation model

Next, we perform the corresponding hadron-resonance
gas analysis in the Hawking–Unruh formulation, introduc-
ing different temperatures determined by the string tension
σ and the strange quark mass ms . The results for long-lived
species are shown in Table 4 and Fig. 4. The resulting fit
parameters here are

σ = 0.1683 ± 0.0048 GeV2;
ms = 0.083 ± 0.004 GeV,

V = 40.3 ± 3.2 fm3;
(27)

with a χ2/dof = 22/12, somewhat better than that of the
corresponding conventional fit.

We now repeat both analyses using the entire 91.25 GeV
data set, with the results shown in table XX and XXI of the
appendix. The resulting fit values (see Tables 3 and 4) agree
well within errors with those obtained from the “golden”
data set at 91.25 GeV. As expected, because of the men-
tioned error sizes, the χ2/dof for the full 91.25 set is con-
siderably worse.

Here a comment is in order. The simple formulae (5) and
(7), in both models, rely on some side assumptions (e.g. the
special distributions for cluster charge fluctuations needed
for the introduction of the equivalent global cluster) that are
not expected to be exactly fulfilled. Therefore, those for-
mulae are to be taken as a zero-order approximation and
not as a faithful representation of the real process. Devia-
tions from the introduced assumption entail corrections to
the formulae (5) and (7) which are nevertheless very diffi-
cult to estimate. The theoretical error involved in these for-
mulae becomes important when the accuracy of measure-

Table 5 Best fit parameters for the statistical hadronization model in
e+e− collisions. The golden sample fit is marked with a ∗
√

s T [MeV] V T 3 γS χ2/dof

14 172.1 ± 5.2 8.3 ± 1.0 0.772 ± 0.094 0.9/3

22 178.7 ± 3.7 8.70 ± 0.94 0.76 ± 0.10 0.7/3

29 164.0 ± 5.4 15.0 ± 2.4 0.683 ± 0.075 33/13

35 163.3 ± 3.2 15.0 ± 1.4 0.730 ± 0.045 8.2/7

43 169 ± 10 13.5 ± 3.2 0.741 ± 0.074 2.9/3

91 161.9 ± 4.1 25.8 ± 3.4 0.638 ± 0.039 215/27

91* 164.6 ± 3.0 23.3 ± 2.2 0.648 ± 0.026 39/12

133 167.1 ± 7.5 26.0 ± 4.6 0.671 ± 0.074 0.1/2

161 153.4 ± 6.5 37.2 ± 5.9 0.72 ± 0.12 0.03/1

183 161 ± 13 35 ± 11 0.446 ± 0.098 5.0/2

189 159 ± 12 36 ± 10 0.54 ± 0.11 7.5/2

ments is comparable and, in this case, a bad χ2 is to be
expected. This is probably the case at

√
s = 91.25 GeV,

where the relative accuracy of measurements is of the or-
der of few percent for many particles. In this case, the χ2

fit is a useful tool to determine the best parameters of the
“simplified” theory but should be used very carefully as a
measure of the fit quality. As has been mentioned, in order
to take into account the uncertainty on parameters implied in
fits with χ2/dof > 1, parameter errors have been rescaled by√

χ2/dof if this is larger than 1, according to Particle Data
Group procedure [40].

For all the remaining energies we have also carried out
the corresponding analyses; the results are listed in Tables 5
and 6 for the model parameters, while the comparison be-

[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

PbPbPb p p p p e- e+ e-

conventional thermalization by final state interactions unlikely

alternative explanations needed
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QCD strings and entanglement
[Berges, Floerchinger, Venugopalan (2017)]

-------------------	I------------------	I--------------------	
B	 	 A	 	 B	 	

particle production from QCD strings

Lund model (Pythia)

different regions in a string are entangled

subinterval A has reduced density matrix of mixed form even if ρ is pure

ρA = TrB{ρ}

characterization by entanglement entropy

SA = −TrA {ρA ln(ρA)}

could this lead to thermal-like effects?
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Schwinger model

QED in 1+1 dimension

L = −ψ̄iγµ(∂µ − iqAµ)ψi −miψ̄iψi −
1

4
FµνF

µν

geometric confinement

U(1) charge related to string tension q =
√

2σ

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

S =

∫
d2x
√
g

{
− 1

2
gµν∂µφ∂νφ−

1

2
M2φ2

− mq eγ

2π3/2
cos
(
2
√
πφ+ θ

)}

Schwinger bosons are dipoles φ ∼ ψ̄ψ
mass is related to U(1) charge by M = q/

√
π =

√
2σ/π

massless Schwinger model m = 0 leads to free bosonic theory
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Expanding string solution

z

t

quark-anti-quark pair on trajectories z = ±t
coordinates: Bjorken time τ =

√
t2 − z2, rapidity η = arctanh(z/t)

Bjorken boost symmetry η → η + ∆η
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Coherent field evolution

Schwinger boson field expectation value depends only on τ

φ̄ = 〈φ〉 = φ̄(τ)

equation of motion

∂2
τ φ̄+

1

τ
∂τ φ̄+M2φ̄ = 0

Gauss law: electric field E = qφ/
√
π must approach U(1) charge

φ̄(τ)→
√
π (for τ → 0+)

solution of equation of motion [Loshaj, Kharzeev (2011)]

φ̄(τ) =
√
πJ0(Mτ)
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Reduced density matrix and early time limit

p

q

τ = const
η = const

region A

region B

z

t

rapidity interval (−∆η/2,∆η/2)

excitations around coherent field

φ(τ, η) = φ̄(τ) + δφ(τ, η)

early times: expansion rate dominates

1

τ
�M =

q√
π
,m

emergent conformal symmetry
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Modular or entanglement Hamiltonian

p

q

τ = const
η = const

region A

region B

z

t

conformal field theory [Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta

(2017), see also Candelas, Dowker (1979)]

ρA =
1

ZA
e−K , ZA = Tr e−K

modular or entanglement Hamiltonian local expression

K =

∫
Σ

dΣµ ξν(x)Tµν(x)

energy-momentum of excitations around coherent field Tµν(x)
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Time-dependent temperature

z

t

combination of fluid velocity and temperature ξµ(x) = uµ(x)
T (x)

for ∆η →∞: fluid velocity in τ -direction & time-dependent temperature
[Berges, Floerchinger, Venugopalan (2017)]

T (τ) =
~

2πτ

Entanglement between rapidity intervals leads to local thermal
density matrix at very early times !

Hawking-Unruh temperature in Rindler wedge T (x) = ~c
2πx
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Conclusions

high energy nuclear collisions produce a relativistic QCD fluid!

interesting parallels between cosmology and heavy ion collisions

similar physics of evolving fluid fluctuations

experimental hints for collective flow also in pPb and pp collisions

expanding QCD strings: entanglement between rapidity intervals can lead
to thermal-like effects!
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Detailed studies of the ridge in pPb
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Mode interactions

non-linear terms in the evolution equations lead to mode interactions

quadratic and higher order in initial perturbations

can be determined from iterative solution

convergence can be tested with numerical solution of full hydro equations



Statistics of initial density perturbations

Independent point-sources model (IPSM)

w(~x) =

[
1

τ0

dWBG

dη

]
1

N

N∑
j=1

δ(2)(~x− ~xj)

random positions ~xj , independent and identically distributed

probability distribution p(~xj) reflects collision geometry

possible to determine correlation functions analytically for central and
non-central collisions [Floerchinger & Wiedemann (2014)]

Long-wavelength modes (small m and l) that don’t resolve differences
between point-like and extended sources have
universal statistics.



Fluctuations around vanishing baryon number

Evolution of baryon number density

uµ∂µn+ n∇µuµ +∇µνµ = 0

with diffusion current να determined by heat conductivity κ

να = −κ
[
nT

ε+ p

]2

∆αβ∂β
( µ
T

)

Consider situation with 〈n(x)〉 = 〈µ(x)〉 = 0
but event-by-event fluctuation δn 6= 0

Concentrate now on Bjorken flow profile for uµ

∂τδn+
1

τ
δn− κ

[
nT

ε+ p

]2(
∂(µ/T )

∂n

)
ε

(
∂2
x + ∂2

y +
1

τ2
∂2
η

)
δn = 0

Structures in transverse and rapidity directions are “flattened out” by heat
conductive dissipation



Baryon number correlations experimentally
Two-particle correlation function of baryons minus anti-baryons

CBaryon(φ1 − φ2, η1 − η2) = 〈n(φ1, η1)n(φ2, η2)〉c

In Fourier representation

CBaryon(∆φ,∆η) =
∞∑

m=−∞

∫
dq

2π
C̃Baryon(m, q) eim∆φ+iq∆η

heat conductivity leads to exponential suppression

C̃Baryon(m, q) = e−m
2I1−q2I2 C̃Baryon(m, q)

∣∣
κ=0

I1 and I2 can be approximated as

I1 ≈
∫ τf

τ0

dτ
2

R2
κ

[
nT

ε+ p

]2 (∂(µ/T )

∂n

)
ε

I2 ≈
∫ τf

τ0

dτ
2

τ2
κ

[
nT

ε+ p

]2 (∂(µ/T )

∂n

)
ε

I2 � I1 would lead to long-range correlations in rapidity direction
(”baryon number ridge”)



Remarks on baryon number fluctuations

Initial (”primordial”) baryon number fluctuations are poorly understood so
far but presumably non-vanishing.

Heat conductivity of QCD also poorly understood theoretically so far
from perturbation theory [Danielewicz & Gyulassy, PRD 31, 53 (1985)]

κ ∼
T 4

µ2α2
s lnαs

(µ� T )

from AdS/CFT [Son & Starinets, JHEP 0603 (2006)]

κ = 8π2 T

µ2
η = 2π

sT

µ2
(µ� T )

More refined study needed to take transverse expansion properly into
account.

Seems to be interesting topic for further experimental and theoretical
studies.



Bulk viscosity in heavy ion physics

In heavy ion physics people start now to consider bulk viscosity.

Becomes relevant close to chiral crossover

[Denicol, Gale & Jeon (2015)]

Is there a first-order phase transition triggered by the expansion?

What is the relation to chemical and kinetic freeze-out?

More detailed understanding needed, both for heavy ion physics and
cosmology



Symmetries in a statistical sense

concrete realization breaks symmetry

statistical properties are symmetric

Cosmology

cosmological principle: universe homogeneous and isotropic

3D translation and rotation

→ 3D Fourier expansion

Heavy ion collisions

1D azimuthal rotation for central collisions

1D Bjorken boost (approximate)

→ Bessel-Fourier expansion [Floerchinger & Wiedemann (2013)]



Initial conditions in cosmology

Perturbations are classified into scalars, vectors, tensors

Vector modes are decaying, need not be specified

Tensor modes are gravitational waves, can be neglected for most purposes

Decaying scalar modes also not relevant

Growing scalar modes are further classified by wavelength

For relevant range of wavelength: close to Gaussian probability distribution

Almost scale invariant initial spectrum

〈δ(k) δ(k′)〉 = P (k) δ(3)(k + k′)

with

P (k) ∼ kns−1 ns = 0.968± 0.006 [Planck (2015)]



Gravitational growth of perturbations

Small initial density perturbations

δ =
∆ε

ε̄
� 1

At photon decoupling (CMB)

δ ≈ 10−5

Structure growth due to attractive
gravitational interaction

Perturbative treatment possible up to

δ ≈ 1

For late times and small wavelengths

δ � 1

Dark matter Visible galaxies

© 2006 Nature Publishing Group 

 

larger than the value required by cosmology. Postulating instead a con-
nection to the energy scale of quantum chromodynamics would still 
leave a discrepancy of some 40 orders of magnitude. A cosmological 
dark energy field that is so unnaturally small compared with these par-
ticle physics scales is a profound mystery. 

The evidence for an accelerating universe provided by type Ia super-
novae relies on a purely phenomenological calibration of the relation 
between the peak luminosity and the shape of the light curve. It is this 
that lets these supernovae be used as an accurate standard candle. Yet 
this relation is not at all understood theoretically. Modern simulations 
of thermonuclear explosions of white dwarfs suggest that the peak lumi-
nosity should depend on the metallicity of the progenitor star66,67. This 
could, in principle, introduce redshift-dependent systematic effects, 
which are not well constrained at present. Perhaps of equal concern is the 
observation that the decline rate of type Ia supernovae correlates with 
host galaxy type68,69, in the sense that the more luminous supernovae 
(which decline more slowly) are preferentially found in spiral galaxies. 

Interestingly, it has also been pointed out that without the evidence 
for accelerated expansion from type Ia supernovae, a critical density 
Einstein–de Sitter universe can give a good account of observations of 
large-scale structure provided the assumption of a single power  law for 
the initial inflationary fluctuation spectrum is dropped, a small amount 
of hot dark matter is added, and the Hubble parameter is dropped to the 
perhaps implausibly low value h ≈ 0.45 (ref. 70).

The CMB temperature measurements provide particularly compelling 
support for the paradigm. The WMAP temperature maps do, however, 
show puzzling anomalies that are not expected from gaussian fluctua-
tions71–73, as well as large-scale asymmetries that are equally unexpected 
in an isotropic and homogeneous space74,75. Although these signals could 
perhaps originate from foregrounds or residual systematics, it is curious 
that the anomalies seem well matched by anisotropic Bianchi cosmologi-
cal models, although the models examined so far require unacceptable 
cosmological parameter values76. Further data releases from WMAP 
and future CMB missions such as PLANCK will shed light on these 

Figure 4 | Time evolution of the cosmic large-
scale structure in dark matter and galaxies, 
obtained from cosmological simulations of the 
ΛCDM model. The panels on the left show the 
projected dark matter distribution in slices 
of thickness 15 h–1 Mpc, extracted at redshifts 
z = 8.55, z = 5.72, z = 1.39 and z = 0 from the 
Millennium N-body simulation of structure 
formation5. These epochs correspond to times of 
600 million, 1 billion, 4.7 billion and 13.6 billion 
years after the Big Bang, respectively. The colour 
hue from blue to red encodes the local velocity 
dispersion in the dark matter, and the brightness 
of each pixel is a logarithmic measure of the 
projected density. The panels on the right show 
the predicted distribution of galaxies in the same 
region at the corresponding times obtained by 
applying semi-analytic techniques to simulate 
galaxy formation in the Millennium simulation5. 
Each galaxy is weighted by its stellar mass, and 
the colour scale of the images is proportional to 
the logarithm of the projected total stellar mass. 
The dark matter evolves from a smooth, nearly 
uniform distribution into a highly clustered state, 
quite unlike the galaxies, which are strongly 
clustered from the start.
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Ideal fluid versus collision-less gas

Many codes used in cosmology describe dark matter as
ideal, cold and pressure-less fluid

Tµν = ε uµuν

Equation of state p = 0

No shear stress and bulk viscous pressure πµν = πbulk = 0

Dark matter is also modeled as collision-less gas of massive particles,
interacting via gravity only

Two pictures are in general not consistent



Dissipative properties

Viscosities

Diffusive transport of momentum [Maxwell (1860)]

Depend strongly on interaction properties

Example: non-relativistic gas of particles with mass m, mean peculiar
velocity v̄, elastic 2→ 2 cross-section σel

η =
m v̄

3 σel
ζ = 0

Interesting additional information about dark matter



Material properties of dark matter

Gravitational lensing and x-ray image of “bullet cluster” 1E0657-56

so far: dark matter is non-interacting → can collide without stopping

Future decade: analysis of colliding galaxy clusters will refine this picture

Dark energy self interacting
→ modification of equation of state
→ dissipation



Is dark matter self-interacting?
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Offset between stars and dark matter falling into cluster

Is this a first indication for a dark matter self interaction?
[Kahlhoefer, Schmidt-Hoberg, Kummer & Sarkar, MNRAS 452, 1 (2015)]
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The quark gluon plasma in the early universe

Quark-gluon plasma has filled the
universe until ∼ 10−6 s

Probably not much information
from that era transmitted

Baryogenesis / Leptogenesis
presumably much earlier



QCD in two dimensions

QCD in 1+1 dimensions described by ’t Hooft model

L = −ψ̄iγµ(∂µ − igAµ)ψi −miψ̄iψi −
1

2
trFµνF

µν

fermionic fields ψi with sums over flavor species i = 1, . . . , Nf

SU(Nc) gauge fields Aµ with field strength tensor Fµν

gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass

non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for Nc →∞ with g2Nc fixed
[’t Hooft (1974)]


