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Motivation

@ Elementary particle collision experiments such as e™ e~ collisions
show thermal-like features.

@ Example: particle multiplicities
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ Conventional thermalization by collisions unlikely.
o Alternative explanations needed.




Rapidity distribution
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[open (filled) symbols: e™e™ (pp), Grosse-Oetringhaus & Reygers (2010)]

o Rapidity distribution dN/dn has plateau around midrapidity
@ Only logarithmic dependence on collision energy



QCD strings

==
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Particle production from QCD strings.
e. g. Lund model (Pythia).

Different regions in a string are entangled.

Subinterval A is described by reduced density matrix

pa = Trpp.

Reduced density matrix is of mixed state form.
Could this lead to thermal-like effects?



Microscopic model

@ QCD in 141 dimensions described by 't Hooft model

_ . _ 1 ,
L = =iy (0p — igA L)Y — mithiah; — §tr F, F!

Fermionic fields v; with sums over flavor species i = 1,..., Ny
SU(N.) gauge fields A, with field strength tensor F,,,

Gluons are not dynamical in two dimensions

Gauge coupling g has dimension of mass

Non-trivial, interacting theory, cannot be solved exactly

Spectrum of excitations known for N, — oo with g2 N, fixed
['t Hooft (1974)]



Schwinger model
e QED in 1+1 dimension

_ . _ 1 ,
L = —hiy"(Op — 1qAL) Vi — mihith; — 1 P

@ Geometric confinement
o U(1) charge related to string tension ¢ = /20

@ For single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

1 1
S = /dzx\/ﬁ{ — fg”"au¢&,¢ — §M2¢2

maqe”

5372 cos(Q\fqb—&-H)}

e Schwinger bosons are dipoles ¢ ~ 1)

@ Mass is related to U(1) charge by M = q/v/7 = \/20/7
@ Massless Schwinger model m = 0 leads to free bosonic theory



Transverse coordinates

@ So far dynamics strictly confined to 141 dimensions

@ Transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hy, = 0, X0, X)

SnGg = /de\/—dethW {—0’ + .. }

~ /dQJJ\/g{—O' — %g““@MXiﬁl,Xi + }

e Two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates X* with 1 =1, 2.



Ezxpanding string solution 1

Consider string formed between (external) quark-anti-quark pair on
trajectories

z==xt
o Coordinates: Bjorken time T = v/t2 — 22, rapidity nn = arctanh(z/t)
o Metric ds? = —dr? + 72dn?
e Symmetry with respect to longitudinal boosts n — 1 + An



FExpanding string solution 2

@ Schwinger boson field depends only on 7

¢ = ¢(r)
e Equation of motion
N _
D2p+ —0,¢+ M?*¢ = 0.
T

o Gauss law: electric field E = q¢/+/m must approach the U(1) charge
of the external quarks E — ¢, for 7 — 0

- VTGe

¢(r) = .

(T — 0+)

@ Solution of equation of motion [Loshaj, Kharzeev (2011)]

dr) = Y2 (o)



Reduced density matrix

Consider now physical processes such as hadron formation

Assume that these are local processes in some space region A

I I
B A B

o Reduced density matrix, trace over complement region B

pa=Trgp

In general p4 mixed state density matrix even if p is pure

Reason: entanglement between regions A and B
o Characterization by entanglement entropy

Sa=-=Tr{paln(pa)}



Gaussian states

@ Theories with quadratic action typically have Gaussian density matrix

o Fully characterized by field expectation values

o(z) = (o(2)), m(z) = (7 (z))

and connected two-point correlation functions, e. g.

(D(@)d(y))e = ($(2)d(y)) — d(x)(y)

o If p is Gaussian, also reduced density matrix p4 is Gaussian



Entanglement entropy for Gaussian state

e Entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, 1712.09362]

1
Sy = §TrA {DIn(D?)},

Operator trace over region A only

@ Matrix of correlation functions
—UP(x)m(y))e i<¢($)¢(y)>c>
D(x,y) = . . .
TR (i i
@ Involves connected correlation functions of field ¢(x) and canonically
conjugate momentum field ()
e Expectation value ¢ does not appear explicitly

o Coherent states and vacuum have equal entanglement entropy S4



Rapidity interval

T = const
n = const
————— region A
region B

o Consider rapidity interval (—An/2, An/2) at fixed Bjorken time 7

e Entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

@ Can be evaluated equivalently in interval Az = 27 sinh(An/2) at
fixed time ¢ = 7 cosh(An/2)

@ Need to solve eigenvalue problem with correct boundary conditions



Bosonized massless Schwinger model

o Entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

o Entanglement entropy density dS/dAn for bosonized massless
Schwinger model (M = \/i%)

dS/dAn
0.4
0.3

0.2 H

0.1+

0.0 An

0 5 10 15 20 25

Mr=1,10"1% 1072, 1073, 1074, and 107°



Conformal limat

@ For M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(Az) = gln (Az/e) + constant

with small length € acting as UV cutoff.

Here this implies

S(r, An) = gln (27 sinh(An/2)/€) + constant

Conformal charge ¢ = 1 for free massless scalars or Dirac fermions.

Additive constant not universal but entropy density is

0 c
TAUS(T’ An) —gcoth(An/Q)

%g (An > 1)

Entropy becomes extensive in An !



Free massive fermions

o Entanglement entropy can also be calculated for free Dirac fermions
of mass m

dS/dAn
0.4,

0.3+F

0.2+f

0.1+

0.0

. An
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mr=1,10"1,1072,107%, 107%, and 107°
@ Same universal plateau ¢/6 with ¢ =1 at early time

@ Conformal limit corresponds to non-interacting fermions

o Consistent with or without bosonization



Unwversal entanglement entropy density

o For very early times “Hubble” expansion rate dominates over masses

and interactions

1
H=>->M=-"L n
T

V3

Theory dominated by free, massless fermions

Universal entanglement entropy density

ds c

dAn 6
with conformal charge ¢
@ For QCD in 141 dimensions (gluons not dynamical)

C:NCXNf

From fluctuating transverse coordinates (Nambu-Goto action)

c=N.XNy+2=9+2=11



Fxperimental access to entanglement ¢

@ Could longitudinal entanglement be tested experimentally?
o Unfortunately entropy density d.S/dn not straight-forward to access.

@ Measured in eTe™ is the number of charged particles per unit
rapidity dN¢/dn (rapidity defined with respect to the thrust axis)

@ Around mid-rapidity logarithmic dependence on the collision energy.

o Typical values for collision energies /s = 14 — 206 GeV in the range

ANz /dn ~ 2 — 4

o Entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/N., = 7.2 would give

dS/dn ~ 14 — 28

@ This is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy.



Temperature and entanglement entropy

e For conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

o For static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

1
S(T,1) = gln <7rTe Sil’lh(’]TLT)) + const

o Compare this to our result in expanding geometry
c 2T .
S(r,An) = 3 In [ — sinh(An/2) ) 4 constant
€
o Expressions agree for L = 7An (with metric ds?> = —dr? + 72dn?)
and time-dependent temperature

1
T=—
2rT



Modular or entanglement Hamiltonian 1

t

——— t=const
————— n = const
7/ reg!on A
region B

z

o Conformal field theory
e Hypersurface ¥ with boundary on the intersection of two light cones
@ Reduced density matrix
[Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta (2017), see
also Candelas, Dowker (1979)]

1
pa=—e K Zy=Tre X,
Za

@ Modular or entanglement Hamiltonian K.



Modular or entanglement Hamiltonian 2

@ Modular or entanglement Hamiltonian is local expression

K:/ZdE“ﬁ”(x)TW(w).

e Energy-momentum tensor 7}, () and £”(z) is a vector field
£4(2) = G5 l(k — ) (@ — p)(k — p) + (2 — p)*
x (k—z)(k—p) = (k= p)*(z —p)(k — )]

with end point of the future light cone k and starting point of the
past light cone p.

@ Inverse temperature and fluid velocity

() = pH(z) =




Modular or entanglement Hamiltonian 3

—— T=const
————— n = const
————— region A

region B

z

e For k very far in the future £#(z) — 27 o
o Fluid velocity in T-direction & time-dependent temperature

h

T(r) = Cy—-

o Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

e Hawking-Unruh temperature in Rindler wedge T'(x) = hc/(27mz)



Alternative derivation: mode functions

o Fluctuation field ¢ = ¢ — ¢ has equation of motion

2o( = 1\42—1‘9—2 =0
=o(T,m) + ~0rp(7,m) + 20 o(1,m) =

@ Solution in terms of plane waves

plrn) = [ G a®f (KD +af () £ e )

@ Mode functions as Hankel functions
T kr 2
(k) = YT BP (017)
or alternatively as Bessel functions

o E o
fr k) = 2sinh(7k) J-ix(MT)



Bogoliubov transformation

@ Mode functions are related

f(r, k) =a(k) f(
f(r, k) =a*(k)f

@ Bogoliubov coefficients

eﬂ"k‘ 677rk
ok) = 2sinh(wk) Bk) = 2sinh(wk)

@ Vacuum |Q2) with respect to a(k) such that a(k)[2) = 0 contains
excitations with respect to a(k) such that a(k)|Q2) # 0 and vice versa



Role of different mode functions

@ Hankel functions f(7, k) are superpositions of positive frequency
modes with respect to Minkowski time ¢

@ Bessel functions f(r, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time ¢

o At very early time 1/7 > M conformal symmetry

ds* = 7% [—dIn(1)? + dn?*]

@ Hankel functions f(, k) are superpositions of positive and negative
frequency modes with respect to conformal time In(7)

o Bessel functions f(r, k) are superpositions of positive frequency
modes with respect to conformal time In(7)



Occupation numbers

@ Minkowski space coherent states have two-point functions

(@'(k)a(k")e = n(k) 2w 6(k — k') = |B(k)[> 27 6(k — K)
(a(k)a(k'))e = a(k) 2n 6(k + k') = —a*(k)B* (k) 2w 5 (k + &)
(@'(k)a' (k') = a* (k) 2m 8(k + k') = —a(k)B(k) 27 6(k + k')

o Occupation number

(k) = |B(k)* = ﬁ

@ Bose-Einstein distribution with excitation energy E = |k|/7 and
temperature

1
T=—

2rT

o Off-diagonal occupation number (k) = —1/(2sinh(7k)) make sure
we still have pure state



Local description

o Consider now rapidity interval (—An/2, An/2)
@ Fourier expansion becomes discrete

=
—
90(7]) = i3 Z on €720

n=—oo

an/2 17 . » N
©n :/ dn o(n) - [6""“7 + (*1)"6””“]
—An/2 2

@ Relation to continuous momentum modes by integration kernel

dk . A 1 1
oo = [ (3 =) |+
2 2 -y k+ X

o(k)

o Local density matrix determined by correlation functions

<507L>7 <7Tn>7 <<,0n,(,0m>c, etc.



Emergence of locally thermal state

@ Mode functions at early time

- 1, S
Fir,) = e Oi000

@ Phase varies strongly with k& for M — 0

O(k, M) = kIn(M/2) + arg(T(1 — ik))

o Off-diagonal term (k) have factors strongly oscillating with &
1
K)—
)|k|
x {[& +n(k)] + cos 2k In(r) + 20(k, M)] u(k)}

(p(1, k)™ (T,K))e = 2m6(k —

cancel out when going to finite interval !

@ Only Bose-Einstein occupation numbers 7(k) remain



Physics picture

o Coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

@ On finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

@ Technically limits A — oo and M7 — 0 do not commute

e An — oo for any finite M7 gives pure state
o M7 — 0 for any finite An gives thermal state with 7' =1/(27T)



Testing the mechanism with cold atoms

@ Lieb-Liniger model for interacting bosonic atoms in D =1
dimensions has linear dispersion at small momenta w = v, p

e strong interaction > 1 sound velocity vs = vp = ™n/m
o weak interaction v < 1 sound velocity vs = \/yn/m = \/gnm

3

=== LiebI 4
------- Lieb 11 /

—— Phonons /

()/

0 025 05 075 1
p/pr

strong interactios v >> 1 [De Rosi et al. (2017)]

o Effective metric for phonons

ds? v2dt? + da?



Ezxpanding geometries in cold atom experiments

o Expanding geometries can be realized by interplay of
e longitudinal expansion
o time dependent change of sound velocity vs(t)
o time dependent gap or mass M?(t)

& Decelerating Universes 1 Coasting Universe Accelerating Universe

AL\




Entanglement and deep inelastic scattering

@ How strongly entangled is the nuclear wave function?

o What is the entropy of quasi-free partons and can it be understood
as a result of entanglement? [Kharzeev, Levin (2017)]

S = In[zG(x)]

o Does saturation at small Bjorken-z have an entropic meaning?

o Entanglement entropy and entropy production in the color glass
condensate [Kovner, Lublinsky (2015)]

o Could entanglement entropy help for a non-perturbative extension of
the parton model?

o Entropy of perturbative and non-perturbative Pomeron descriptions
[Shuryak, Zahed (2017)]



Conclusions

o Rapidity intervals in an expanding string are entangled
o Entanglement comes in via boundary terms

o At very early times theory effectively conformal

1
- >m,q
T

o Entanglement entropy extensive in rapidity % =5

@ Determined by conformal charge ¢ = N, x Ny + 2

@ Reduced density matrix for conformal field theory is of locally
thermal form with temperature

T=—
2rT

o Entanglement could be important ingredient to understand apparent
“thermal effects” in eTe™ and other collider experiments



Backup



Bosonization out-of-equilibrium
[Gutman, Grefen, Mirlin, PRB 81, 085436 (2010)]

Bosonization consists of several steps
@ mapping between Hilbert space of fermions and bosons

@ construction of bosonic Hamiltonian Hp by expressing fermionic
Hamiltonian Hg in terms of bosonic operators

@ expressing fermionic operators in bosonic language

@ evaluate observables (e. g. Greens functions) with respect to
many-body bosonic density matrix pp

First three steps are independent of state, only last step depends on pp.

@ States with general fermionic occupation numbers ng(p) lead to
non-local & higher order Greens-functions in bosonized theory

e For confining theories only bosonic excitations are asymptotic states.



