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Motivation

@ Elementary particle collision experiments such as e™ e~ collisions
show thermal-like features.

@ Example: particle multiplicities
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ Conventional thermalization by collisions unlikely.
o Alternative explanations needed.



QCD strings

==

B A B

Particle production from QCD strings.
e. g. Lund model (Pythia).

Different regions in a string are entangled.

Subinterval A is described by reduced density matrix

pa = Trpp.

Reduced density matrix is of mixed state form.
Could this lead to thermal-like effects?



Microscopic model

QCD in 1+1 dimensions described by 't Hooft model
_ ) _ 1 .
L = =iy (Op — igA L)Y — mithinh; — St F, F"
o Fermionic fields 1; with sums over flavor species i = 1,..., Ny

SU(NV.) gauge fields A, with field strength tensor F,,

Gluons are not dynamical in two dimensions

Gauge coupling g has dimension of mass
Non-trivial, interacting theory, cannot be solved exactly

Spectrum of excitations known for N, — oo with g2 N, fixed



Schwinger model

e QED in 1+1 dimension

L = *1/_%")#(8# - iqA#)w mﬂ/&% - ;wFlw

o Geometric confinement
U(1) charge related to string tension ¢ = /20

For single massless fermion one can bosonize theory exactly
/ PG {gwamam - M2¢2}

Schwinger bosons are dipoles ¢ ~ 1))
Mass is related to U(1) charge by M = ¢/\/7



Transverse coordinates

@ So far dynamics strictly confined to 141 dimensions

@ Transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hy, = 0, X0, X)

SnGg = /de\/—dethW {—0’ + .. }

~ /dQJJ\/g{—O' — %g““@MXiﬁl,Xi + }

e Two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates X* with 1 =1, 2.



Ezxpanding string solution 1

o Consider string formed between (external) quark-anti-quark pair on

trajectories
z ==t

o Coordinate system with Bjorken time 7 = /2 — 22 and rapidity
1 = arctanh(z/t)
o Symmetry with respect to longitudinal boosts n — 1 + An

6/21



FExpanding string solution 2

@ Schwinger boson field depends only on 7

¢ =¢(7)
o Equation of motion
026+ 10:0+ M5 =0,

o Gauss law: electric field E = g¢/+/m must approach the U(1) charge
of the external quarks E — ¢ for 7 — 04

< VTGe
o(7) = .

(T — 0+)

@ Solution of equation of motion

d7) = Y2 (o)



Reduced density matrix

Consider now physical processes such as hadron formation

Assume that these are local processes in some space region A

I I
B A B

o Reduced density matrix, trace over complement region B

pa=Trgp

In general p4 mixed state density matrix even if p is pure

Reason: entanglement between regions A and B
o Characterization by entanglement entropy

Sa=-=Tr{paln(pa)}



Gaussian states

@ Theories with quadratic action typically have Gaussian density matrix

o Fully characterized by field expectation values

o(z) = (o(2)), m(z) = (7 (z))

and connected two-point correlation functions, e. g.

(D(@)d(y))e = ($(2)d(y)) — d(x)(y)

o If p is Gaussian, also reduced density matrix p4 is Gaussian



Entanglement entropy for Gaussian state

e Entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, to appear]

1
Sy = 5TrA {DIn(D?)},

o Operator trace over region A only
@ Matrix of correlation functions
—i(¢(x)m(y))e i<¢($)¢(y)>c>
D(x,y) = . . .
e =(SEOR Hee:
@ Involves connected correlation functions of field ¢(x) and canonically
conjugate momentum field ()
e Expectation value ¢ does not appear explicitly

o Coherent states and vacuum have equal entanglement entropy S4



Rapidity interval

o Consider rapidity interval (—An/2, An/2) at fixed Bjorken time

@ Entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

o Can be evaluated equivalently in interval Az = 27sinh(An/2) at
fixed time ¢ = 7 cosh(An/2)

@ Need to solve eigenvalue problem with correct boundary conditions



Bosonized massless Schwinger model

o Entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

o Entanglement entropy density dS/dAn for bosonized massless
Schwinger model (M = \/i%)

dS/dAn
0.4
0.3

0.2 H

0.1+

0.0 An

0 5 10 15 20 25

Mr=1,10"1% 1072, 1073, 1074, and 107°



Conformal limat

@ For M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994); Calabrese, Cardy (2004)]

S(Az) = gln (Az/e) + constant

with small length € acting as UV cutoff.

Here this implies

S(r, An) = gln (27 sinh(An/2)/€) + constant

Conformal charge ¢ = 1 for free massless scalars or Dirac fermions.

Additive constant not universal but entropy density is

0 c
mS(T, An) —Ecoth(An/Q)

%g (Anp>1)

Entropy becomes extensive in An !



Free massive fermions

o Entanglement entropy can also be calculated for free Dirac fermions
of mass m

dS/dAn
0.4,

0.3+F

0.2+f
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@ Same universal plateau ¢/6 with ¢ =1 at early time

@ Conformal limit corresponds to non-interacting fermions

o Consistent with or without bosonization



Unwversal entanglement entropy density

o For very early times “Hubble” expansion rate dominates over masses

and interactions

1
H=>->M=-"L n
T

V3

Theory dominated by free, massless fermions

Universal entanglement entropy density

ds c

dAn 6
with conformal charge ¢
@ For QCD in 141 dimensions (gluons not dynamical)

C:NCXNf

From fluctuating transverse coordinates (Nambu-Goto action)

c=N.XNy+2=9+2=11



Fxperimental access to entanglement ¢

@ Could longitudinal entanglement be tested experimentally?
o Unfortunately entropy density d.S/dn not straight-forward to access.

@ Measured in eTe™ is the number of charged particles per unit
rapidity dN¢/dn (rapidity defined with respect to the thrust axis)

@ Around mid-rapidity logarithmic dependence on the collision energy.

o Typical values for collision energies /s = 14 — 206 GeV in the range

ANz /dn ~ 2 — 4

o Entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/N., = 7.2 would give

dS/dn ~ 14 — 28

@ This is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy.



Temperature and entanglement entropy

e For conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

o For static interval of length [ [Calabrese, Cardy (2004)]

1
S(T,1) = gln (71'Te sinh(7rlT)> + const

o Compare this to our result in expanding geometry
c 2T .
S(r,An) = 3 In [ — sinh(An/2) ) 4 constant
€
o Expressions agree for [ = 7An (with metric ds? = —d7? + 72dn?)
and time-dependent temperature

1
T=—
2rT



Modular or entanglement Hamailtonian 1

o Conformal field theory
@ Hypersurface ¥ with boundary on the intersection of two light cones
@ Reduced density matrix
[Casini, Huerta, Myers (2011), Arias, Blanco, Casini, Huerta (2017)]
1
pa=—e K, Zy=Tre K,

Za

@ Modular or entanglement Hamiltonian K.

18 /21



Modular or entanglement Hamiltonian 2

@ Modular or entanglement Hamiltonian is local expression

K:/ZdE“ﬁ”(x)TW(w).

e Energy-momentum tensor 7}, () and £”(z) is a vector field
£4(2) = G5 l(k — ) (@ — p)(k — p) + (2 — p)*
x (k—z)(k—p) = (k= p)*(z —p)(k — )]

with end point of the future light cone k and starting point of the
past light cone p.

@ Inverse temperature and fluid velocity

() = pH(z) =




Modular or entanglement Hamiltonian 3

o For k very far in the future £#(z) — 27 x#
o Fluid velocity in T-direction & time-dependent temperature

T(r)=

T 27

o Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

e Hawking-Unruh temperature in Rindler wedge T'(x) = hc/(27z)



Conclusions

o Rapidity intervals in an expanding string are entangled
o Entanglement comes in via boundary terms

o At very early times theory effectively conformal

1
-—>m,q
r

o Entanglement entropy extensive in rapidity % =5

@ Determined by conformal charge ¢ = N, x Ny + 2

@ Reduced density matrix for conformal field theory is of locally
thermal form with temperature

T=—
2rT

o Entanglement could be important ingredient to understand apparent
“thermal effects” in eTe™ and other collider experiments



