Dissipation in quantum gauge theories - interesting open questions

Stefan Flörchinger (Heidelberg U.)

632. WE-Heraeus-Seminar: *Gauge Field Dynamics with Ultracold Gas Systems*, Bad Honnef, December 14, 2016.

> UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Why heavy ion collisions ?

- Study quantum gauge theories at non-zero temperature and density
- Microscopic physics of QCD quite well understood but challenging to understand more macroscopic aspects
- Chance to improve general understanding of quantum field theory important also for cosmology and condensed matter physics
- Quark gluon plasma has filled the universe from about 10^{-12} s to 10^{-6} s after the big bang. Study it in laboratory experiments !
- Ongoing large experimental programs at at RHIC (BNL) and the LHC (CERN).

Little bangs in laboratory

Evolution in time

- Non-equilibrium evolution at early times
 - initial state from QCD? Color Glass Condensate? ...
 - $\bullet\,$ thermalization via strong interactions, plasma instabilities, particle production, $\ldots\,$
- Local thermal and chemical equilibrium
 - strong interactions lead to short thermalization times
 - evolution from relativistic fluid dynamics
 - expansion, dilution, cool-down
- Chemical freeze-out
 - for small temperatures one has mesons and baryons
 - inelastic collision rates become small
 - particle species do not change any more
- Thermal freeze-out
 - elastic collision rates become small
 - particles stop interacting
 - particle momenta do not change any more

$Microscopic \ description$

Lagrangian

$$\mathscr{L} = -\frac{1}{2} \operatorname{tr} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} - \sum_{f} \bar{\psi}_{f} \left(i \gamma^{\mu} \mathbf{D}_{\mu} - m_{f} \right) \psi_{f}$$

with

$$\mathbf{F}_{\mu\nu} = \partial_{\mu} \mathbf{A}_{\nu} - \partial_{\nu} \mathbf{A}_{\mu} - ig[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}], \qquad \mathbf{D}_{\mu} = \partial_{\mu} - ig\mathbf{A}_{\mu}$$

Particle content

- $N_c^2 1 = 8$ real massless vector bosons: gluons
- $N_c \times N_f$ massive Dirac fermions: quarks

Quark masses

Up	2.3 MeV	Charm	1275 MeV	Тор	173 GeV
Down	4.8 MeV	Strange	95 MeV	Bottom	4180 MeV

Asymptotic freedom

- Coupling constant small at high momentum transfer / energy scale
- High-temperature QCD should be weakly coupled
- Low-temperature QCD should be strongly coupled

Collision energies

- Large Hadron Collider (LHC), run 1
 - total collision energy for Pb-Pb

$$\sqrt{s} = 2 \times 574 \,\mathrm{TeV}$$

- 208 Pb has 82 + 126 = 208 nucleons
- collision energy per nucleon

$$\sqrt{s_{\rm NN}} = \frac{574}{208} \, \mathrm{TeV} = 2.76 \, \mathrm{TeV}$$

- also proton-ion collisions (pA) at $\sqrt{s_{\rm NN}} = 5.02\,{\rm GeV}$
- Relativistic Heavy Ion Collider (RHIC) at BNL (since 2000)

 $\sqrt{s_{\rm NN}} \leq 200 \, {\rm GeV}$

- Lower energy experiments
 - Alternating Gradient Synchrotron (AGS) at BNL (since mid 1980's)

 $\sqrt{s_{\rm NN}} pprox 2 - 5 \,{\rm GeV}$

• CERN SPS fixed target experiments (since 1994)

 $\sqrt{s_{\mathsf{NN}}} \leq 17\,\mathsf{GeV}$

Multiplicity

Number of charged particles found in the detector

- as function of pseudo-rapidity $\eta = -\ln(\tan(\theta/2))$
- \bullet integration gives $N_{\rm ch} = 5060 \pm 250$ at upper RHIC energy
- not all particles are charged, about $1.6 \times 5060 \approx 8000$ hadrons in total
- $N_{\rm ch}$ grows with collision energy
- estimate for LHC: $N_{\rm ch} = 25\,000$ or about $40\,000$ hadrons in total

Identified particle multiplicities

[Andronic, Braun-Munzinger, Redlich, Stachel (2012/2013)]

Multiplicities of identified particles well described by statistical model:

- non-interacting hadron resonance gas in thermal and chemical equilibrium.
- includes all hadronic resonances known to the particle data group.
- fit parameters are temperature T, volume V and chemical potentials for baryon number μ_b , isospin, strangness and charm.

Chemical freeze-out interpretation

- Why does statistical model work that well?
- Hadronization is governed by non-perturbative QCD processes. Not completely understood yet.
- Interpretation in terms of chemical freeze-out:
 - Close-to-equilibrium evolution with expansion and cool-down
 - Number changing processes are first fast and keep up equilibrium
 - At low temperature they become too slow to keep up with the expansion
 - Particle numbers get frozen in
- Interpretation seems reasonable for heavy ion collisions.
- Puzzle: Statistical model works also for electron-positron or proton-proton collisions with similar temperatures.

Statistical model fits and collision energy

Statistical model fits have been made at different collision energies

[Andronic, Braun-Munzinger, Stachel (2009)]

A phase diagram from chemical freeze-out ?

• The fit parameters (T,μ) from different collision energies lead to a suggestive diagram. What is the physical significance ?

[Andronic, Braun-Munzinger, Stachel (2009), LQCD from Fodor, Katz (2004)]

• At large μ_b / small T no phase transition at the chemical freeze-out line [Floerchinger, Wetterich (2012)]

Fluid dynamics

- Long distances, long times or strong enough interactions
- matter or quantum fields form a fluid!
- Needs macroscopic fluid properties
 - equation of state $p(T, \mu)$
 - shear viscosity $\eta(T,\mu)$
 - bulk viscosity $\zeta(T,\mu)$
 - heat conductivity $\kappa(T,\mu)$
 - relaxation times, ...
- For QCD no full *ab initio* calculation of transport properties possible yet but in principle fixed by **microscopic** properties encoded in *L*_{QCD}
- Ongoing experimental and theoretical effort to understand this in detail

Relativistic fluid dynamics

Energy-momentum tensor and conserved current

$$\begin{split} T^{\mu\nu} &= (\epsilon + p + \pi_{\mathsf{bulk}}) u^{\mu} u^{\nu} + (p + \pi_{\mathsf{bulk}}) g^{\mu\nu} + \pi^{\mu\nu} \\ N^{\mu} &= n \, u^{\mu} + \nu^{\mu} \end{split}$$

- \bullet tensor decomposition w. r. t. fluid velocity u^{μ}
- pressure $p = p(\epsilon, n)$
- close-to-equilibrium: constitutive relations from derivative expansion
 - bulk viscous pressure $\pi_{\mathsf{bulk}} = -\zeta \
 abla_{\mu} u^{\mu} + \dots$
 - shear stress $\pi^{\mu\nu} = -\eta \left[\Delta^{\mu\alpha} \nabla_{\alpha} u^{\nu} + \Delta^{\nu\alpha} \nabla_{\alpha} u^{\mu} \frac{2}{3} \Delta^{\mu\nu} \nabla_{\alpha} u^{\alpha} \right] + \dots$
 - diffusion current $\nu^{\alpha} = -\kappa \left[\frac{nT}{\epsilon+p}\right]^2 \Delta^{\alpha\beta} \partial_{\beta} \left(\frac{\mu}{T}\right) + \dots$
- more general: dynamical equations for π_{bulk} , $\pi^{\mu\nu}$ and ν^{μ}

$$au_{\mathsf{bulk}} u^{\mu} \partial_{\mu} \pi_{\mathsf{bulk}} + \pi_{\mathsf{bulk}} = -\zeta \ \nabla_{\mu} u^{\mu} + \dots$$

Fluid dynamic equations for ϵ,n and u^{μ} from covariant conservation laws

$$\nabla_{\mu}T^{\mu\nu} = 0, \qquad \nabla_{\mu}N^{\mu} = 0.$$

Bjorken boost invariance

How does the fluid velocity look like?

- Bjorkens guess: $v_z(t, x, y, z) = z/t$
- leads to an invariance under Lorentz-boosts in the z-direction
- use coordinates $\tau=\sqrt{t^2-z^2}~x,~y,~\eta={\rm arctanh}(z/t)$
- fluid velocity $u^{\mu} = (u^{\tau}, u^x, u^y, 0)$
- \bullet thermodynamic scalars like energy density $\epsilon = \epsilon(\tau, x, y)$
- remaining problem is 2+1 dimensional
- Bjorken boost symmetry is an idealization but it is reasonably accurate close to mid-rapidity $\eta\approx 0.$

The Bjorken model

[coordinates: $\tau = \sqrt{t^2 - z^2}$, x, y, $\eta = \operatorname{arctanh}(z/t)$]

• Consider initial conditions at $au= au_0$ of the form

$$\epsilon = \epsilon(\tau_0), \qquad u^{\mu} = (1, 0, 0, 0)$$

- Simplified model for inner region at early times after central collision.
- Symmetries
 - Bjorken boost invariance $\eta \to \eta + \Delta \eta$

 ${\ensuremath{\, \bullet }}$ Translations and rotations in the transverse plane (x,y)

imply

- $u^{\mu} = (1,0,0,0)$ for all times τ
- $\epsilon=\epsilon(\tau)$ independent of x,y,η
- Equation for energy density in first order formalism

$$\partial_{\tau}\epsilon + (\epsilon + p)\frac{1}{\tau} - \left(\frac{4}{3}\eta + \zeta\right)\frac{1}{\tau^2} = 0$$

• Solution depends on equation of state $p(\epsilon)$ and viscosities $\eta(\epsilon)$, $\zeta(\epsilon)$

Non-central collisions

- pressure gradients larger in reaction plane
- leads to larger fluid velocity in this direction
- more particles fly in this direction
- can be quantified in terms of elliptic flow v_2
- particle distribution

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left[1 + 2\sum_{m} v_m \cos\left(m\left(\phi - \psi_R\right)\right) \right]$$

• symmetry $\phi \rightarrow \phi + \pi$ would imply $v_1 = v_3 = v_5 = \ldots = 0$.

$Elliptic \ flow$

Elliptic flow coefficient v_2 as a function of p_T for different centrality classes

Elliptic flow at different collision energies

Elliptic flow coefficient v_2 for centrality class 20-30% as a function of $\sqrt{s_{\sf NN}}$

• Elliptic flow in fixed centrality class increases with collision energy.

• At very small energy not enough time to develop flow.

Two-particle correlation function

• normalized two-particle correlation function

$$C(\phi_1,\phi_2) = \frac{\langle \frac{dN}{d\phi_1} \frac{dN}{d\phi_2} \rangle_{\text{events}}}{\langle \frac{dN}{d\phi_1} \rangle_{\text{events}} \langle \frac{dN}{d\phi_2} \rangle_{\text{events}}} = 1 + 2\sum_m v_m^2 \ \cos(m\left(\phi_1 - \phi_2\right))$$

• Surprisingly v_2 , v_3 , v_4 , v_5 and v_6 are all non-zero!

[ALICE 2011, similar results from CMS, ATLAS, Phenix]

Harmonic flow coefficients

Flow coefficients v_2 , v_3 , v_4 and v_5 for charged particles as a function of transverse momentum for different centrality classes.

- Elliptic flow v_2 has strongest centrality dependence.
- Triangular flow v_3 as well as v_4 and v_5 are all non-zero.
- $v_n(p_T)$ at fixed p_T decreases for increasing n

$Event\-by\-event\ fluctuations$

- argument for $v_3=v_5=0$ is based on event-averaged geometric distribution
- deviations from this can come from event-by-event fluctuations.
- one example is Glauber model

- initial transverse density distribution fluctuates event-by-event and this leads to sizeable $v_{\rm 3}$ and $v_{\rm 5}$
- more generally also other initial hydro fields may fluctuate: fluid velocity, shear stress, baryon number density etc

Fluid dynamic simulations

- Second order relativistic fluid dynamics is solved numerically for given initial conditions.
- Codes use thermodynamic equation of state from lattice QCD.
- Initial conditions fluctuate from event-to-event and different models are employed and compared.
- η/s is varied in order to find experimentally favored value.

[Gale, Jeon, Schenke, Tribedy, Venugopalan (2013)]

What perturbations are interesting and why?

- Initial fluid perturbations: Event-by-event fluctuations around a background or average of fluid fields at time τ₀:
 - energy density ϵ
 - fluid velocity u^{μ}
 - shear stress $\pi^{\mu\nu}$
 - more general also: baryon number density n_B , electric charge density, electromagnetic fields, ...
- governed by universal evolution equations
- can be used to constrain thermodynamic and transport properties
- contain interesting information from early times
- measure for deviations from equilibrium

Similarities to cosmic microwave background

- fluctuation spectrum contains info from early times
- many numbers can be measured and compared to theory
- can lead to detailed understanding of evolution and properties
- could trigger precision era in heavy ion physics

A program to understand fluid perturbations

- Ocharacterize initial perturbations.
- Propagated them through fluid dynamic regime.
- Obtermine influence on particle spectra and harmonic flow coefficients.
- Take also perturbations from non-hydro sources (e.g. jets) into account.

Fluid dynamic perturbation theory for heavy ions

proposed in: [Floerchinger & Wiedemann, PLB 728, 407 (2014)]

- goal: determine transport properties experimentally
- so far: numerical fluid simulations e.g. [Heinz & Snellings (2013)]
- new: solve fluid equations for smooth and symmetric background and order-by-order in perturbations
- less numerical effort
- good convergence properties [Floerchinger et al., PLB 735, 305 (2014)]
- similar technique used in cosmology since many years

Collective behavior in proton - ion collisions

[CMS (2014), similar from ALICE, ATLAS]

- Signatures for fluid dynamic behavior were found also in proton-ion collisions.
- Triangular flow very similar for comparable multiplicity.
- Theoretical understanding: Collision geometry smaller but higher initial energy density.

Collective flow signals in proton - proton collisions (?)

- Collective flow signals are also visible in data from proton-proton collisions with large collision energy and large particle multiplicity
- Are there alternative explanations in terms of field theory concepts? Initial state physics?

Theoretical puzzles

- Traditional description of proton-proton collision physics is in terms of factorization
 - Parton distribution function
 - Cross section for elementary processes
 - Fragmentation into hadrons
- Harmonic flow coefficients need physics beyond this !
- · Working theoretical model is based on fluid dynamics
 - assumes local thermalization
 - uses fluid velocity and thermal variables
- Unitary time evolution versus dissipative dynamics (entropy generation)
- Where does fluid dynamics become applicable / break down ?

Entropy

- Unitary time evolution conserves entropy
- Thermal fluid is produced from dissipative dynamics
- Information loss by restriction of observation
- Entropy as entanglement entropy

$$S_A = -\operatorname{Tr} \left\{ \rho_A \ln \rho_A \right\} \qquad \text{with} \qquad \rho_A = \operatorname{Tr} \left|_{\bar{A}} \rho, \right.$$

Thermalization, dissipation and entanglement

- Kinetic theory: One-particle spectrum can thermalize
 - One-particle spectrum from tracing over other excitations
 - Entropy from entanglement between particles / excitations
- Local apparent thermalization
 - no quasi-particle description needed
 - local observables from tracing over other regions
 - Entropy from entanglement between regions

Hadronization

- QCD in terms of quarks and gluons is weakly coupled at high energies
- QCD in therms of mesons and baryons is weakly coupled at low energies
- QCD is strongly coupled at intermediate energies
- Dissipation / thermalization is particularly efficient at large coupling
- Hadronization is not very well understood, but could actually be very important stage for apparent thermalization

The Lund model

- basic model for hadronization
- underlies many Monte-Carlo codes (e.g. PYTHIA)
- $\bullet\,$ model for classical gauge fields in d=1 and classical massless particles
- mesons as jo-jo states
- probability for pair production as in static Schwinger model
- formulated as a (classical) probabilistic cascade model along light cone

Entanglement entropy in one dimension

- \bullet Conformal field theories in d=1 are well studied
- Entanglement entropy of interval with length l can be followed in time

 $S_l(t) = -\mathsf{Tr}\big|_{\bar{l}} \,\rho(t) \ln \rho(t)$

- Entanglement entropy becomes extensive: thermalization
- Moreover, all local observables show thermalization !

Entanglement dynamics in string model of hadronization

- Consider QCD string dynamics as d = 1 model
- What is the dynamics of entanglement between different intervals of the string?
- String breakup and hadron production should be local processes. Does meson spectrum generated from entangled string show a thermal spectrum?
- More general: are transverse degrees of freedom thermal-like?
- How would the Lund model have to be modified to take this into account?

Conclusions

- Many features of high energy nuclear collisions are described by relativistic fluid dynamics.
- Evolution of fluid perturbations analogous to cosmological perturbations.
- Flow signals also found in proton-nucleus and nucleus-nucleus collisions.
- Range of applicability / point of breakdown of fluid dynamics and thermodynamics in high energy collisions not entirely clear.
- Hadronization / soft QCD physics still not totally understood.
- Entanglement dynamics in high energy nuclear collisions could be quite interesting.