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Big Bang Expansion

13.7 billion years © ~ 0 fm/c -1 fin/c

Cosmology Heavy ion collisions
e cosmol. scale: MPc= 3.1 x 10?2 m o nuclear scale: fm=10""" m
o Gravity + QED + Dark sector e QCD
@ one big event @ very many events

@ initial conditions not directly accessible
o all information must be reconstructed from final state

e dynamical description as a fluid on large scales



The dark matter fluid

@ Heavy ion collisions

ZLqaco —  fluid properties

o Late time cosmology

fluid properties —  Zlark matter

@ Until direct detection of dark matter, it can only be observed via

T,uu

dark matter



Relativistic fluid dynamics
Energy-momentum tensor and conserved current

T = (e + p + Touk)u''u” + (p + Touk)g"" + 7

N* =nut + "

tensor decomposition w. r. t. fluid velocity u*

pressure p = p(e, n)

close-to-equilibrium: constitutive relations from derivative expansion

o bulk viscous pressure  mhk = —¢ Vyut + ...

o shear stress TH” = —n [AHAV u? + AYOV quH — %A‘“’Vau‘ﬂ + ...

2
o diffusion current v = —k [%] A""Baﬁ (%) + ...

@ more general: dynamical equations for mpuk, 7" and v*

Thulk W OpTbuik + Touk = —C V,ur 4+ ...

Fluid dynamic equations for ¢,n and u* from covariant conservation laws

V. T" =0,  V,N*=0.



Fluid dynamics

Long distances, long times or strong enough interactions
Needs macroscopic fluid properties

e equation of state p(e,n)

o shear viscosity n(e, n)

e bulk viscosity ¢(e,n)

o heat conductivity k(e,n)

o relaxation times, ...

For QCD no full ab initio calculation of transport properties possible yet
but in principle fixed by microscopic properties encoded in Zqcp

Ongoing experimental and theoretical effort to understand this in detail



Ideal fluid versus collision-less gas

@ Many codes used in cosmology describe dark matter as
ideal, cold and pressure-less fluid

T = e u'u”

o Equation of state p =0

No shear stress and bulk viscous pressure 7" = ok = 0

Dark matter is also modeled as collision-less gas of massive particles,
interacting via gravity only

o Two pictures are in general not consistent



Collision-less, cold dark matter

@ Collision-less gas in curved space

o

0
P o @) = T’ ﬁf(:fiﬁ)

o For massive particles in non-relativistic limit, Vlasov equation

(04 2 2 ) sty =m0 ) o 1o =0

with

Ap(z) = 4WGNm[f(x,m



Moments of distribution function

@ mass density

pla) = / m f (2, 7)

@ momentum density

pla)v;(z) = / pi (. )

@ energy density

@ heat current

shear stress

@ higher order moments

T =m [ (22 —v@) (% — @) (5~ ) f0.7)



Moments of Vlasov’s equation

o Conservation of mass

8tp + vjﬁjp -+ ,Oaj”Uj = 0,

o Conservation of momentum

p (0 +v;05) vk + 0;Tjk = —p Ok

o Conservation of internal energy

(Or +v;05) € + € 9v; + (Ojuk) Tk + 0jq; = 0
@ Evolution of shear stress
0 0 0 0 0
3tTjk+afxlTjkl+<afxlvj) Tkz+(%vk) Ez+<%vz> Tjk‘f’vlaixlj—‘jk =0

o Ife=q; =Tjx =Tjr = ... =0 at some time to, the moment equations
imply € = q; = Tjr = Tjr1 = 0 also at later times ¢ > ¢



Shell crossing

o The approximation € = g; = T = Tjr; = ... = 0 is called single stream
approximation

@ Corresponds to a phase space density
x R -
7,7 = P25 (5 mi(a)

@ However, phase space manifolds can can wind up
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@ For multi-stream flow

Nstreams ()

fen= 3 250, mi)

all moments are in general non-vanishing



Dissipative properties

Viscosities
o Diffusive transport of momentum [Maxwell (1860)]
o Depend strongly on interaction properties

o Example: non-relativistic gas of particles with mass m, mean peculiar
velocity v, elastic 2 — 2 cross-section o
muv

n:gael (=0

o Formally, for cold, collision-less dark matter, this is 0/0...
Entropy production

@ For dilute gases, described by kinetic theory, Boltzmann's H-theorem:

8tH ~ Og¢l.

@ In general, dissipation could contain interesting additional information
about dark matter



Self-interaction of dark matter

Gravitational lensing and x-ray image of “bullet cluster” 1E0657-56

@ so far: dark matter is non-interacting — can collide without stopping

2
o cm

Tl <12
m

g



Is dark matter self-interacting?

o

Milky Way
star Lensed image A

o

Milky Way
star

ADec (arcsec, relative to N1)

|
°

—ARA (arcsec, relative to N1)

Galaxy cluster Abell 3827
[Massey et al., MNRAS 449, 3393 (2015)]

o Offset between stars and dark matter falling into cluster
o |s this a first indication for a dark matter self-interaction?

2
% ~ 3% ~ 0.5% (under debate)

[Kahlhoefer, Schmidt-Hoberg, Kummer & Sarkar, MNRAS 452, 1 (2015)]



Cosmological inhomogeneities

Cosmological perturbation theory

[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov, Weinberg, ...

@ Solves evolution equations for fluid + gravity

o Expands in perturbations around homogeneous background

@ Detailed understanding how different modes evolve

o Diagramatic formalism for non-linear mode-mode interactions
Cosmological fluid

@ Very simple equations of state p=we

o Viscosities usually neglected n=¢=0

@ Photons and neutrinos are free streaming



Initial conditions

o Perturbations are classified into scalars, vectors, tensors

@ Vector modes are decaying, need not be specified

o Tensor modes are gravitational waves, can be neglected for most purposes
o Decaying scalar modes also not relevant

@ Growing scalar modes are further classified by wavelength

@ For relevant range of wavelength: close to Gaussian probability distribution

@ Almost scale invariant initial spectrum of density contrast d(k) = de(k)/€
(3(k) (k")) = P(k) 8 (k + X))
with

Pk) ~ k™! ns = 0.968 + 0.006 [Planck (2015)]



Cosmological structure formation

Dark matter Visible galaxies

o Formation of large scale structure
o tests physics of dark matter
o tests physics of dark energy
o gets tested by missions like Euclid
o Cosmological perturbation theory
breaks down when density contrast

sk) = S0 o 4

grows large at late times and for small
scales

o Numerical simulations (IN-body) are
expensive and time-consuming

@ One would like to have better
analytical understanding

[Springel, Frenk & White,
Nature 440, 1137 (2006)]



Approzimations for large scale cosmology
o cold dark matter, single-stream approximation: ideal, pressure-less fluid
T = e utu”
Covariant conservation law

uHVe+eVyut =0, eu'V,u” =0.

@ only scalar perturbations: no vorticity, fluid velocity characterized by
velocity divergence
0=V -7

@ metric with scale factor and Newtonian potential ¢

ds® = a®(1) [~ (1 + 2®(r, @) dr° + (1 — 2®(r, T)) dTd]

where
A®(7,Z) = 4nGn d¢e(T, T)

o dynamical fields can be taken as

61(, K) = 6(r, k) = %ﬂk) oy = 0T




FEquations of motion and action
e Evolution equations for fluid + gravity

Ona(k) = —Qan(n)n(k)+ / d*pd®q 8 (k—F—) Yave (B, 3 1) $5(F) 6(Q)

with n = Ina(7),
0 -1
o =( _, )
—5m 14+ %

and vertices

o L P+ 47
Y121(, Py m) = y112(P, 4, m) = ( 2(1;)
L P+ q
7222(])3 q7 7]) - 2}32(}2

@ Can also be obtained from variation of the action

Slé.x] = / dn[ / e xa(—F, 1) (BasBy + Qas) o (R, 1)

- / Ik d’pd®q 5P (k — 5 — Dvave(K, B, @) xa (— K, 1) b0 (5, 1) e (3, 1)



Partition function

@ introduce sources
@ integrate over Gaussian distributed initial conditions

@ leads to the partition function
1
Z|J, K; P°] :/D¢D>< exp{ ~3 Xa (n0) Pasxs(10)

+1 / dn [Xa (50,{)87] + Qab)¢b - 'Yacha¢b¢c + Ja¢a + KbXb} }

correlation functions can be obtained by functional derivatives



Schwinger functional

@ Schwinger functional is defined as

WJ, K; P°] = —ilog Z[J, K; PY].

o Propagators and correlation functions follow as functional derivatives

8w
5‘]‘1(_];7 17) 6Jb(E/a 77/)

= Z(S(E - E/) Pab(E7n7 77/)

J, K=0
2
= oW = - _5(k - k/) Gfb(kan, 77/)
(5Ja(—lf777) 6Kb(k 77]) J, K=0
2
_,6 W = = _5(E - E/) G(fb(E7 uB 77/)
5Ka(*l€77]) 5Jb(k/:77/) J, K=0

W
6K¢1(_Ea 77) 5Kb(];/7 77,)

J, K=0



Effective action and renormalized field equations

o Effective action is defined as Legendre transform
Do P = [ dnd'e (Judn + Kixa} = WU P'),

with expectation values

- 5 - 5
da(k,n) = ——=—W, xo(k,n) = ———
dJa(k,m) Ky (k,m)

@ Renormalized field equations



Coarse-grained effective action and functional RG equation

o Effective action I'[¢, x] contains effect of initial state fluctuations
@ ldea: take them into account gradually - organized by scale
o Modify initial spectrum by cutting off the IR

PY(@) = P (O(lql - k)

lowering k takes more and more IR modes into account

o k-dependent Schwinger functional
WilJ, K] = W[J, K; ]

satisfies exact flow equation [Polchinski 1984]

oWl K] =5 [ 0E@)us {xol@0w-0.0) - iR

(¢, 0)0Ky(—q;0)

o Modified effective action satisfies exact flow equation [Wetterich 1993]

ONTh[6. 1] = 3 Tr { (t@ld —i (P - ) akP,?}



Boundary values

o For large regulator scale k, fluctuations are suppressed
k— o0

tim T4[6. ) = =S(6.x] ~ 5 [ Xo(=2.0) P (@x(@.0)

o For small regulator scale k, all fluctuations are included

lim T [, x] = T[¢, 1]



Flow equations for correlation functions

@ Flow equations for correlation functions have one-loop form, for example
inverse retarded propagator

. 1 5T 5T
0Dy k(@) = Tr{W;iQ’ WP Tk _w®g, p?

T2 Sxa(—=@n) % Sou(T 1)

k 5¢b((777]/) 5Xa(—Q:7))

21‘\(2)
- %Tr {W<2) O°L, WP o, PY

1 Ty Ty
—|—2Tr{W<2) kWi kWP, P

B oxa(—=@.m) 8¢ (T ')

-O- G- L2



Solving the flow equation for I'y

o Flow equation for I';[¢, x| can be solved by iteration — Standard
perturbation theory

Duloon] = ~816. + T {n (~5@o,x] — i(PY — P) } + ...

o Within truncations, one can also find approximate, non-perturbative
solutions. Make ansatz

N
Tk[p, x] = /dnd?’mz a;(k)O;[¢, x]

and derive flow equations for the coefficients o (k)

1o}
kopi = Bilea,...,an)



Renormalization of effective viscosity and pressure

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453)]

Effective theory at scale k has additional terms in equations of motion
Order them by fluid dynamic derivative expansion
Lowest order: ideal fluid

Next-to-lowest order: effective sound velocity parameter

_ 2 _dp/de
BT T

and effective viscosity parameter (for compressional modes)

dn/3+ ¢
(e+p)Ha

Yy =

Both depend on flow parameter k and scale factor a
vs = Asa”, Yo =N a”

with k-dependent parameters \s(k), A\, (k) and x(k).



RG flow of effective sound velocity parameter

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453)]
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RG flow of effective viscosity parameter

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]
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RG flow of exponent k

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453)]
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Fixed point behavior
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@ growing mode is sensitive to A\s + A,

o functional RG has IR fixed points



Functional RG + perturbation theory

[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)]
[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

@ RG evolution to determine effective viscosity and sound velocity at

intermediate scale k.,

@ Perturbation theory for power spectrum for scales 0 < |q| < ki,

@ Theory with effective viscosity and sound velocity parameters

o Background + linear + one-loop + two-loop
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Conclusions

@ Structure formation in the cosmological fluid is dominated by dark matter.

@ Would be highly interesting to constrain different dark matter models via
the fluid properties.

@ A better understanding of non-linear structure formation is needed.
o Field theory and renormalization group techniques can help here.

e Taking into account initial state fluctuations leads to an effective theory,
which, to leading order in a derivative expansion, can be characterized by
effective viscosity and sound velocity terms.

o First numerical results look promising and agree well with N-body
simulations.



Backup slides



“Fundamental” and “effective” wviscosity

Two types of viscosities for cosmological fluid

©@ Momentum transport by particles or radiation

e governed by interactions
o from linear response theory [Green (1954), Kubo (1957)]

close to equilibrium

@ Momentum transport in the inhomogeneous, coarse-grained fluid

governed by non-linear fluid mode couplings

determined perturbatively [Blas, Floerchinger, Garny, Tetradis & Wiedemann]
non-equilibrium

heavy ions: anomalous plasma viscosity [Asakawa, Bass & Miiller (2006)]
eddy viscosity [Romatschke (2008)]



Power spectrum at different redshifts
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Velocity spectra

Pgo(k,z=0)/Ps5, viscous theory
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Power spectrum, standard perturbation theory
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[D. Blas, M. Garny and T. Konstandin, JCAP 1309 (2013) 024]



Could dissipation affect the overall cosmological expansion ?



Bulk viscosity

o Bulk viscous pressure is negative for expanding universe

Touk = —C Vyut = —C3H <0

o Negative effective pressure
Deff = P + Thulk < 0

would act similar to dark energy in Friedmann's equations
[Murphy (1973), Padmanabhan & Chitre (1987), Fabris, Goncalves & de Sa Ribeiro (2006),
Li & Barrow (2009), Velten & Schwarz (2011), Gagnon & Lesgourgues (2011), ...]

o Is negative effective pressure physical?

o In context of heavy ion physics: instability for pes < 0 (“cavitation”)
[Torrieri & Mishustin (2008), Rajagopal & Tripuraneni (2010), Buchel, Camanho & Edelstein
(2014), Habich & Romatschke (2015), Denicol, Gale & Jeon (2015)]

@ What precisely happens at the instability?



Is negative effective pressure physical?

o Kinetic theory

i

3 —2
poe) = [ b f ) 2 0

o Stability argument

Pt (© Petf (€)

Peif (€) Peit (€)

€2

If there is a vacuum with ¢ = peg = 0, phases with peg < 0 cannot be
mechanically stable. (But could be metastable.)



Bulk viscosity in heavy ion physics

@ In heavy ion physics people start now to consider bulk viscosity.
@ Becomes relevant close to chiral crossover

1 T T T T T
)
i
0.8F H param. 1 ]
E:‘ ----- param. 2
0.6 " B
g it
i) I‘.
0.4 : i -
0.2 \ -
0 L S——olt-c-pe-o
0.8 1.2 1.6 2

T/Te
[Denicol, Gale & Jeon (2015)]
o Is there a first-order phase transition triggered by the expansion?

@ What is the relation to chemical and kinetic freeze-out?

@ More detailed understanding needed, both for heavy ion physics and
cosmology



Backreaction: General idea

o for 0 + 1 dimensional, non-linear dynamics

p=fle)=fotfio+if2o®+...

@ one has for expectation values ¢ = ()

p=fo+ho+ifad +ifalle—0)")+...

@ evolution equation for expectation value ¢ depends on two-point
correlation function or spectrum Pz = {(p — @)?)

@ evolution equation for spectrum depends on bispectrum and so on
@ more complicated for higher dimensional theories

@ more complicated for gauge theories such as gravity



Backreaction in gravity

o Einstein’s equations are non-linear.

o Important question [G. F. R. Ellis (1984)]: If Einstein’s field equations describe
small scales, including inhomogeneities, do they also hold on large scales?

@ Is there a sizable backreaction from inhomogeneities to the cosmological
expansion?

o Difficult question, has been studied by many people
[Ellis & Stoeger (1987); Mukhanov, Abramo & Brandenberger (1997); Unruh (1998);
Buchert (2000); Geshnzjani & Brandenberger (2002); Schwarz (2002); Wetterich (2003);
Résdnen (2004); Kolb, Matarrese & Riotto (2006); Brown, Behrend, Malik (2009);
Gasperini, Marozzi & Veneziano (2009); Clarkson & Umeh (2011); Green & Wald (2011); ..]

@ Recent reviews: [Buchert & Risdnen, Ann. Rev. Nucl. Part. Sci. 62, 57 (2012); Green
& Wald, Class. Quant. Grav. 31, 234003 (2014)]

o No general consensus but most people believe now that gravitational
backreaction is rather small.

@ In the following we look at a new backreaction on the matter side of
Einstein’s equations.



Fluid equation for energy density

First order viscous fluid dynamics
uOpe + (e + p)V,ut — (0% — 206" 0, = 0

For 72 < ¢ and Newtonian potentials ®, ¥ < 1
é+T-Ve+ (e +p) (3§+ﬁ-ﬁ)
o 2 -
= % [3% + V- 17:| + g [aﬂ}jaivj + aﬂ}jaj’l)i — %(V . 17)2:|



Fluid dynamic backreaction in Cosmology

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Expectation value of energy density € = (¢)
le+3H(E+p—3CH)=D
with dissipative backreaction term
D = (0 [0iv;0iv; + 90050 — 30i0:050;])
+ 22 (V) + (8- Y (p — 6CH))

D vanishes for unperturbed homogeneous and isotropic universe

@ D has contribution from shear & bulk viscous dissipation and
thermodynamic work done by contraction against pressure gradients

dissipative terms in D are positive semi-definite

for spatially constant viscosities and scalar perturbations only

e
D= Ctign/d?’q Poo(q)



Dissipation of perturbations

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

o Dissipative backreaction does not need negative effective pressure

L€+ 3H (64 per) = D

a

@ D is an integral over perturbations, could become large at late times.
o Can it potentially accelerate the universe?

o Need additional equation for scale parameter a

Use trace of Einstein's equations R = 8mGnNT",
iH +2H? = 4TFGN (€ — 3Pesr)

does not depend on unknown quantities like ((€ + pefr)utu”)

@ To close the equations one needs equation of state Per = Pes(€)
and dissipation parameter D



Deceleration parameter
[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

@ assume now vanishing effective pressure pesr = 0

_H_
aH?

obtain for deceleration parameter ¢ = —1 —

— -4+ 2(g—1) (g §) = GNP

for D = 0 attractive fixed point at ¢. = 5 (deceleration)

o for D > 0 fixed point shifted towards ¢. < 0 (acceleration)

6 : : :
5 ]
QC"J
Z 1
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L f
+ 2 ]
CER |
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deceleration parameter ¢



FEstimating viscous backreaction D

o For % ~ 4 one could explain the current accelerated expansion
(¢ = —0.6) by dissipative backreaction.
@ Is this possible?

@ In principle one can determine D for given equation of state and viscous
properties from dynamics of structure formation.

@ So far only rough estimates. If shear viscosity dominates:

D= a%<77 [aﬂ}jai’l}j + awja,-vi — %&-viajvj]) ~ CDﬁI‘I2

with ¢cp = O(1). Corresponds to Av =~ 100km/s for Az ~ 1 MPc

@ Leads to
47GnD N CDﬁH

3H3 T 2p.

. 3H2
with p. = 8§




Viscosities

o Relativistic particles / radiation contribute to shear viscosity

n:CnfRTR

o prefactor ¢; = O(1)
e energy density of radiation eg
o mean free time T
@ Bulk viscosity vanishes in situations with conformal symmetry but can be
large when conformal symmetry is broken.

o For massive scalar particles with A\p? interaction [Jeon & Yaffe (1996)]

6 om /T 5/2T1/2 T
¢~ yifse /, ne g for =<1



FEstimating viscous backreaction D

Consider shear viscosity from radiation
N =2Ch €ERTR
Backreaction term

47GND ~ CDCn ER
3H3 ~ 2 p,.

TRH

o fluid approximation needs Tr H < 1

o for sizeable effect one would need er/p. = O(1)

o unlikely that D becomes large enough in this scenario
Needed refinements:

o full dynamics of perturbations

@ second order fluid dynamics

o complete model(s)



Could viscous backreaction lead to ACDM-type expansion?

[Floerchinger, Tetradis & Wiedemann, 1506.00407]

@ Backreaction term D(z) will be some function of redshift.

o For given dissipative properties D(z) can be determined, but calculation is
involved.

@ One may ask simpler question: For what form of D(z) would the
expansion be as in the ACDM model?

e The ad hoc ansatz D(z) = const - H(z) leads to modified Friedmann

equations
_ D _ 3 2 _ D _ 1 17 2
€~ aim = sy Peff — T30 = ~8xcy (2aH+3H)
@ In terms of € = € — % one can write
L&+ 3H(E + perr) = 0, R+ TP — 871G (€ — 3perr)

@ For peff = 0 these are standard equations for ACDM model with

__ 2nGND
A= 3H




Modification of Friedmann’s equations by backreaction 1

@ For universe with fluid velocity inhomogeneities one cannot easily take
direct average of Einstein's equations.

However, fluid equation for energy density and trace of Einstein's
equations can be used.
e By integration one finds modified Friedmann equation

H(r)? = 575n {E(T) - /TT ar' (40 a(T’)D(T/):|

Additive deviation from Friedmann's law for D(7') > 0

@ Part of the total energy density is due to dissipative production

€ = €nd + €d

Assume for dissipatively produced part

éd + 3%(1 + ﬁ)d)gd =aD



Modification of Friedmann’s equations by backreaction 2

Leads to another variant of Friedmann’s equation

H(r)? = S |:5nd(7—) + /TIT dr’ {(%)34—3% - (sz(<:’)))4] a(T')D(T’)}

o If the dissipative backreaction D produces pure radiation, wq = 1/3, it
does not show up in effective Friedmann equation at all!

o For wg < 1/3 there is a new component with positive contribution on the
right hand side of the effective Friedmann equation.

@ To understand expansion, parametrize for late times

D(r) = H(7) < a(r) )_ND

a(o)

with constants D and k.
@ Hubble parameter as function of (ap/a) =1+ 2

H(a) = Hoy/Qa + Qs (22)° + Qg (42)" + Qp (22)"

@ For k ~ 0 the role of Q4 and Qp would be similar.



