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Big bang – little bang analogy

Cosmology

cosmol. scale: MPc= 3.1× 1022 m

Gravity + QED + Dark sector

one big event

Heavy ion collisions

nuclear scale: fm= 10−15 m

QCD

very many events

initial conditions not directly accessible

all information must be reconstructed from final state

dynamical description as a fluid on large scales
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The dark matter fluid

Heavy ion collisions

LQCD → fluid properties

Late time cosmology

fluid properties → Ldark matter

Until direct detection of dark matter, it can only be observed via

Tµνdark matter

2 / 31



Relativistic fluid dynamics
Energy-momentum tensor and conserved current

Tµν = (ε+ p+ πbulk)uµuν + (p+ πbulk)gµν + πµν

Nµ = nuµ + νµ

tensor decomposition w. r. t. fluid velocity uµ

pressure p = p(ε, n)

close-to-equilibrium: constitutive relations from derivative expansion

bulk viscous pressure πbulk = −ζ ∇µuµ + . . .

shear stress πµν = −η
[
∆µα∇αuν + ∆να∇αuµ − 2

3
∆µν∇αuα

]
+ . . .

diffusion current να = −κ
[
nT
ε+p

]2
∆αβ∂β

( µ
T

)
+ . . .

more general: dynamical equations for πbulk, πµν and νµ

τbulk u
µ∂µπbulk + πbulk = −ζ ∇µuµ + . . .

Fluid dynamic equations for ε, n and uµ from covariant conservation laws

∇µTµν = 0, ∇µNµ = 0.

3 / 31



Fluid dynamics

Long distances, long times or strong enough interactions

Needs macroscopic fluid properties
equation of state p(ε, n)
shear viscosity η(ε, n)
bulk viscosity ζ(ε, n)
heat conductivity κ(ε, n)
relaxation times, ...

For QCD no full ab initio calculation of transport properties possible yet
but in principle fixed by microscopic properties encoded in LQCD

Ongoing experimental and theoretical effort to understand this in detail
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Ideal fluid versus collision-less gas

Many codes used in cosmology describe dark matter as
ideal, cold and pressure-less fluid

Tµν = ε uµuν

Equation of state p = 0

No shear stress and bulk viscous pressure πµν = πbulk = 0

Dark matter is also modeled as collision-less gas of massive particles,
interacting via gravity only

Two pictures are in general not consistent
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Collision-less, cold dark matter

Collision-less gas in curved space

pµ
∂

∂xµ
f(x, ~p)− Γjµνp

µpν
∂

∂pj
f(x, ~p) = 0

For massive particles in non-relativistic limit, Vlasov equation(
∂t +

pj
m

∂

∂xj

)
f(x, ~p)−

(
m

∂

∂xj
φ(x)

)
∂

∂pj
f(x, ~p) = 0

with

∆φ(x) = 4πGNm

∫
~p

f(x, ~p)
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Moments of distribution function

mass density

ρ(x) =

∫
~p

mf(x, ~p)

momentum density

ρ(x)vj(x) =

∫
~p

pjf(x, ~p)

energy density

ε(x) =

∫
~p

m

2

(
~p

m
− ~v(x)

)2

f(x, ~p)

heat current

qj(x) =

∫
~p

m

2

(
~p

m
− ~v(x)

)2
pj
m
f(x, ~p)

shear stress

Tjk(x) = m

∫
~p

(pj
m
− vj(x)

)(pk
m
− vk(x)

)
f(x, ~p)

higher order moments

Tjkl(x) = m

∫
~p

(pj
m
− vj(x)

)(pk
m
− vk(x)

)( pl
m
− vl(x)

)
f(x, ~p)
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Moments of Vlasov’s equation

Conservation of mass

∂tρ+ vj∂jρ+ ρ∂jvj = 0,

Conservation of momentum

ρ (∂t + vj∂j) vk + ∂jTjk = −ρ ∂kφ

Conservation of internal energy

(∂t + vj∂j) ε+ ε ∂jvj + (∂jvk)Tjk + ∂jqj = 0

Evolution of shear stress

∂tTjk+
∂

∂xl
Tjkl+

(
∂

∂xl
vj

)
Tkl+

(
∂

∂xl
vk

)
Tjl+

(
∂

∂xl
vl

)
Tjk+vl

∂

∂xl
Tjk = 0

If ε = qj = Tjk = Tjkl = . . . = 0 at some time t0, the moment equations
imply ε = qj = Tjk = Tjkl = 0 also at later times t > t0
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Shell crossing

The approximation ε = qj = Tjk = Tjkl = . . . = 0 is called single stream
approximation

Corresponds to a phase space density

f(x, ~p) =
ρ(x)

m
δ(3)(~p−m~v(x))

However, phase space manifolds can can wind up

x

v(x)

One flow 
region.

Three flow 

region after first 

caustic crossing.

Multi flow 

region leading 

to virialization.

P

Vt

For multi-stream flow

f(x, ~p) =

Nstreams(x)∑
n=1

ρn(x)

m
δ(3)(~pn −m~v(x))

all moments are in general non-vanishing
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Dissipative properties

Viscosities

Diffusive transport of momentum [Maxwell (1860)]

Depend strongly on interaction properties

Example: non-relativistic gas of particles with mass m, mean peculiar
velocity v̄, elastic 2→ 2 cross-section σel

η =
m v̄

3 σel
ζ = 0

Formally, for cold, collision-less dark matter, this is 0/0...

Entropy production

For dilute gases, described by kinetic theory, Boltzmann’s H-theorem:

∂tH ∼ σel.

In general, dissipation could contain interesting additional information
about dark matter
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Self-interaction of dark matter

Gravitational lensing and x-ray image of “bullet cluster” 1E0657-56

so far: dark matter is non-interacting → can collide without stopping

σel

m
. 1.2

cm2

g
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Is dark matter self-interacting?
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[Massey et al., MNRAS 449, 3393 (2015)]

Offset between stars and dark matter falling into cluster

Is this a first indication for a dark matter self-interaction?

σel

m
≈ 3

cm2

g
≈ 0.5

b

GeV
(under debate)

[Kahlhoefer, Schmidt-Hoberg, Kummer & Sarkar, MNRAS 452, 1 (2015)]
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Cosmological inhomogeneities

Cosmological perturbation theory
[Lifshitz, Peebles, Bardeen, Kosama, Sasaki, Ehler, Ellis, Hawking, Mukhanov, Weinberg, ...]

Solves evolution equations for fluid + gravity

Expands in perturbations around homogeneous background

Detailed understanding how different modes evolve

Diagramatic formalism for non-linear mode-mode interactions

Cosmological fluid

Very simple equations of state p = w ε

Viscosities usually neglected η = ζ = 0

Photons and neutrinos are free streaming
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Initial conditions

Perturbations are classified into scalars, vectors, tensors

Vector modes are decaying, need not be specified

Tensor modes are gravitational waves, can be neglected for most purposes

Decaying scalar modes also not relevant

Growing scalar modes are further classified by wavelength

For relevant range of wavelength: close to Gaussian probability distribution

Almost scale invariant initial spectrum of density contrast δ(k) = δε(k)/ε̄

〈δ(k) δ(k′)〉 = P (k) δ(3)(k + k′)

with

P (k) ∼ kns−1 ns = 0.968± 0.006 [Planck (2015)]
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Cosmological structure formation

Formation of large scale structure
tests physics of dark matter
tests physics of dark energy
gets tested by missions like Euclid

Cosmological perturbation theory
breaks down when density contrast

δ(k) =
δε(k)

ε̄
� 1

grows large at late times and for small
scales

Numerical simulations (N -body) are
expensive and time-consuming

One would like to have better
analytical understanding

Dark matter Visible galaxies

© 2006 Nature Publishing Group 

 

larger than the value required by cosmology. Postulating instead a con-
nection to the energy scale of quantum chromodynamics would still 
leave a discrepancy of some 40 orders of magnitude. A cosmological 
dark energy field that is so unnaturally small compared with these par-
ticle physics scales is a profound mystery. 

The evidence for an accelerating universe provided by type Ia super-
novae relies on a purely phenomenological calibration of the relation 
between the peak luminosity and the shape of the light curve. It is this 
that lets these supernovae be used as an accurate standard candle. Yet 
this relation is not at all understood theoretically. Modern simulations 
of thermonuclear explosions of white dwarfs suggest that the peak lumi-
nosity should depend on the metallicity of the progenitor star66,67. This 
could, in principle, introduce redshift-dependent systematic effects, 
which are not well constrained at present. Perhaps of equal concern is the 
observation that the decline rate of type Ia supernovae correlates with 
host galaxy type68,69, in the sense that the more luminous supernovae 
(which decline more slowly) are preferentially found in spiral galaxies. 

Interestingly, it has also been pointed out that without the evidence 
for accelerated expansion from type Ia supernovae, a critical density 
Einstein–de Sitter universe can give a good account of observations of 
large-scale structure provided the assumption of a single power  law for 
the initial inflationary fluctuation spectrum is dropped, a small amount 
of hot dark matter is added, and the Hubble parameter is dropped to the 
perhaps implausibly low value h ≈ 0.45 (ref. 70).

The CMB temperature measurements provide particularly compelling 
support for the paradigm. The WMAP temperature maps do, however, 
show puzzling anomalies that are not expected from gaussian fluctua-
tions71–73, as well as large-scale asymmetries that are equally unexpected 
in an isotropic and homogeneous space74,75. Although these signals could 
perhaps originate from foregrounds or residual systematics, it is curious 
that the anomalies seem well matched by anisotropic Bianchi cosmologi-
cal models, although the models examined so far require unacceptable 
cosmological parameter values76. Further data releases from WMAP 
and future CMB missions such as PLANCK will shed light on these 

Figure 4 | Time evolution of the cosmic large-
scale structure in dark matter and galaxies, 
obtained from cosmological simulations of the 
ΛCDM model. The panels on the left show the 
projected dark matter distribution in slices 
of thickness 15 h–1 Mpc, extracted at redshifts 
z = 8.55, z = 5.72, z = 1.39 and z = 0 from the 
Millennium N-body simulation of structure 
formation5. These epochs correspond to times of 
600 million, 1 billion, 4.7 billion and 13.6 billion 
years after the Big Bang, respectively. The colour 
hue from blue to red encodes the local velocity 
dispersion in the dark matter, and the brightness 
of each pixel is a logarithmic measure of the 
projected density. The panels on the right show 
the predicted distribution of galaxies in the same 
region at the corresponding times obtained by 
applying semi-analytic techniques to simulate 
galaxy formation in the Millennium simulation5. 
Each galaxy is weighted by its stellar mass, and 
the colour scale of the images is proportional to 
the logarithm of the projected total stellar mass. 
The dark matter evolves from a smooth, nearly 
uniform distribution into a highly clustered state, 
quite unlike the galaxies, which are strongly 
clustered from the start.
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NATURE|Vol 440|27 April 2006 INSIGHT REVIEW

Nature  Publishing Group ©2006

[Springel, Frenk & White,

Nature 440, 1137 (2006)]
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Approximations for large scale cosmology

cold dark matter, single-stream approximation: ideal, pressure-less fluid

Tµν = ε uµuν

Covariant conservation law

uµ∇µε+ ε∇µuµ = 0, ε uµ∇µuν = 0.

only scalar perturbations: no vorticity, fluid velocity characterized by
velocity divergence

θ = ~∇ · ~v

metric with scale factor and Newtonian potential φ

ds2 = a2(τ)
[
− (1 + 2Φ(τ, ~x)) dτ2 + (1− 2Φ(τ, ~x)) d~xd~x

]
where

∆Φ(τ, ~x) = 4πGN δε(τ, ~x)

dynamical fields can be taken as

φ1(τ,~k) = δ(τ,~k) =
δε(τ,~k)

ε̄(τ)
, φ2(τ,~k) = −θ(τ,

~k)

H(τ)
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Equations of motion and action

Evolution equations for fluid + gravity

∂ηφa(~k) = −Ωab(η)φb(~k)+

∫
d3p d3q δ(3)(~k−~p−~q)γabc(~p, ~q, η)φb(~p)φc(~q)

with η = ln a(τ),

Ω(η) =

(
0 − 1

− 3
2
Ωm 1 + H′

H

)
and vertices

γ121(~q, ~p, η) = γ112(~p, ~q, η) =
(~p+ ~q)~q

2~q2

γ222(~p, ~q, η) =
(~p+ ~q)2~p · ~q

2~p2~q2

Can also be obtained from variation of the action

S[φ, χ] =

∫
dη

[∫
d3k χa(−~k, η) (δab∂η + Ωab)φb(~k, η)

−
∫
d3k d3p d3q δ(3)(~k − ~p− ~q)γabc(~k, ~p, ~q)χa(−~k, η)φb(~p, η)φc(~q, η)

]
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Partition function

introduce sources

integrate over Gaussian distributed initial conditions

leads to the partition function

Z[J, K; P 0] =

∫
DφDχ exp

{
− 1

2
χa(η0)P 0

abχb(η0)

+ i

∫
dη [χa(δab∂η + Ωab)φb − γabcχaφbφc + Jaφa +Kbχb]

}

correlation functions can be obtained by functional derivatives
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Schwinger functional

Schwinger functional is defined as

W [J,K;P 0] = −i logZ[J,K;P 0].

Propagators and correlation functions follow as functional derivatives

δ2W

δJa(−~k, η) δJb(~k′, η′)

∣∣∣∣∣
J,K=0

= iδ(~k − ~k′) Pab(~k, η, η′)

δ2W

δJa(−~k, η) δKb(~k′, η′)

∣∣∣∣∣
J,K=0

= −δ(~k − ~k′) GRab(~k, η, η′)

δ2W

δKa(−~k, η) δJb(~k′, η′)

∣∣∣∣∣
J,K=0

= −δ(~k − ~k′) GAab(~k, η, η′)

δ2W

δKa(−~k, η) δKb(~k′, η′)

∣∣∣∣∣
J,K=0

= 0
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Effective action and renormalized field equations

Effective action is defined as Legendre transform

Γ[φ, χ;P 0] =

∫
dηd3x {Jaφa +Kbχb} −W [J,K;P 0],

with expectation values

φa(~k, η) =
δ

δJa(~k, η)
W, χb(~k, η) =

δ

δKb(~k, η)
W

Renormalized field equations

δ

δφa(~x, η)
Γ[φ, χ] = Ja(~x, η)

δ

δχa(~x, η)
Γ[φ, χ] = Ka(~x, η)
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Coarse-grained effective action and functional RG equation

Effective action Γ[φ, χ] contains effect of initial state fluctuations

Idea: take them into account gradually - organized by scale

Modify initial spectrum by cutting off the IR

P 0
k (~q) = P 0(~q)Θ(|~q| − k)

lowering k takes more and more IR modes into account

k-dependent Schwinger functional

Wk[J,K] ≡W [J,K;P 0
k ]

satisfies exact flow equation [Polchinski 1984]

∂kWk[J,K] =
i

2

∫
q

∂k(P 0
k (~q))ab

{
χa(~q, 0)χb(−~q, 0)− i δ2Wk[J,K]

δKa(~q, 0)δKb(−~q, 0)

}

Modified effective action satisfies exact flow equation [Wetterich 1993]

∂kΓk[φ, χ] =
1

2
Tr

{(
Γ

(2)
k [φ, χ]− i

(
P 0
k − P 0))−1

∂kP
0
k

}
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Boundary values

For large regulator scale k, fluctuations are suppressed

lim
k→∞

Γk[φ, χ] = −S[φ, χ]− i

2

∫
~q

χa(−~q, 0)P 0
ab(~q)χb(~q, 0)

For small regulator scale k, all fluctuations are included

lim
k→0

Γk[φ, χ] = Γ[φ, χ]
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Flow equations for correlation functions

Flow equations for correlation functions have one-loop form, for example
inverse retarded propagator

∂kD
R
ab,k(~q, η, η′) =

1

2
Tr

{
W

(2)
k

δΓ
(2)
k

δχa(−~q, η)
W

(2)
k

δΓ
(2)
k

δφb(~q′, η′)
W

(2)
k ∂kP

0
k

}

+
1

2
Tr

{
W

(2)
k

δΓ
(2)
k

δφb(~q′, η′)
W

(2)
k

δΓ
(2)
k

δχa(−~q, η)
W

(2)
k ∂kP

0
k

}

− 1

2
Tr

{
W

(2)
k

δ2Γ
(2)
k

δχa(−~q, η) δφb(~q′, η′)
W

(2)
k ∂kP

0
k

}
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Solving the flow equation for Γk

Flow equation for Γk[φ, χ] can be solved by iteration → Standard
perturbation theory

Γk[φ, χ] = −S[φ, χ] +
i

2
Tr
{

ln
(
−S(2)[φ, χ]− i(P 0

k − P0)
)}

+ . . .

Within truncations, one can also find approximate, non-perturbative
solutions. Make ansatz

Γk[φ, χ] =

∫
dη d3x

N∑
j=1

αj(k)Oj [φ, χ]

and derive flow equations for the coefficients αj(k)

k
∂

∂k
αj = βj(α1, . . . , αN )
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Renormalization of effective viscosity and pressure

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

Effective theory at scale k has additional terms in equations of motion

Order them by fluid dynamic derivative expansion

Lowest order: ideal fluid

Next-to-lowest order: effective sound velocity parameter

γs =
c2s
H2

=
dp/dε

H2
.

and effective viscosity parameter (for compressional modes)

γν =
4η/3 + ζ

(ε+ p)Ha .

Both depend on flow parameter k and scale factor a

γs = λs a
κ, γν = λν a

κ

with k-dependent parameters λs(k), λν(k) and κ(k).
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RG flow of effective sound velocity parameter

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]
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RG flow of effective viscosity parameter

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]
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RG flow of exponent κ

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]
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Fixed point behavior
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Functional RG + perturbation theory
[Blas, Floerchinger, Garny, Tetradis & Wiedemann, JCAP 1511, 049 (2015)]

[Floerchinger, Garny, Tetradis & Wiedemann, 1607.03453]

RG evolution to determine effective viscosity and sound velocity at
intermediate scale km

Perturbation theory for power spectrum for scales 0 < |q| < km

Theory with effective viscosity and sound velocity parameters

Background + linear + one-loop + two-loop
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Conclusions

Structure formation in the cosmological fluid is dominated by dark matter.

Would be highly interesting to constrain different dark matter models via
the fluid properties.

A better understanding of non-linear structure formation is needed.

Field theory and renormalization group techniques can help here.

Taking into account initial state fluctuations leads to an effective theory,
which, to leading order in a derivative expansion, can be characterized by
effective viscosity and sound velocity terms.

First numerical results look promising and agree well with N -body
simulations.
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Backup slides



“Fundamental” and “effective” viscosity

Two types of viscosities for cosmological fluid

1 Momentum transport by particles or radiation
governed by interactions
from linear response theory [Green (1954), Kubo (1957)]

close to equilibrium

2 Momentum transport in the inhomogeneous, coarse-grained fluid
governed by non-linear fluid mode couplings
determined perturbatively [Blas, Floerchinger, Garny, Tetradis & Wiedemann]

non-equilibrium
heavy ions: anomalous plasma viscosity [Asakawa, Bass & Müller (2006)]

eddy viscosity [Romatschke (2008)]



Power spectrum at different redshifts
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Velocity spectra

• The matching we performed was based on our assumption about the form of the

effective energy-momentum tensor. The guiding principle was the number of field

derivatives, which led to the use of the first-order formalism at the current level of

approximation. On the other hand, a systematic procedure for performing the match-

ing, like the one in quantum field theory, needs to be developed. The framework must

be expanded in the presence of conserved currents, such as the ones corresponding

to baryon or dark-matter particle number, along the lines of ref. [47].

• The current matching seems remarkably accurate. On the other hand, an open issue

is how it can be made exact through the inclusion of additional couplings. Enlarging

the parameter space is also expected to lift the degeneracy between sound velocity

and shear viscosity in eq. (4.4).

• A particular point concerns the definition of the effective couplings. In the current

analysis they are specified through the effective propagator. However, it is also pos-

sible to define them through higher derivatives of the generating functional or the

effective action. The two definitions must be equivalent when all the underlying sym-

metries of the system are taken into account. At the practical level, we point out

that the higher-order couplings (2.9), (2.11) give numerically negligible contributions

for αs, αν given by eq. (4.4). Also the breaking of the degeneracy between them,

which must be done arbitrarily at the current level of the analysis, has a negligible

effect on the spectra, as has been shown in ref. [1].

5 The velocity spectra
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Power spectrum, standard perturbation theory
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Could dissipation affect the overall cosmological expansion ?



Bulk viscosity

Bulk viscous pressure is negative for expanding universe

πbulk = −ζ∇µuµ = −ζ 3H < 0

Negative effective pressure

peff = p+ πbulk < 0

would act similar to dark energy in Friedmann’s equations
[Murphy (1973), Padmanabhan & Chitre (1987), Fabris, Goncalves & de Sa Ribeiro (2006),

Li & Barrow (2009), Velten & Schwarz (2011), Gagnon & Lesgourgues (2011), ...]

Is negative effective pressure physical?

In context of heavy ion physics: instability for peff < 0 (“cavitation”)
[Torrieri & Mishustin (2008), Rajagopal & Tripuraneni (2010), Buchel, Camanho & Edelstein

(2014), Habich & Romatschke (2015), Denicol, Gale & Jeon (2015)]

What precisely happens at the instability?



Is negative effective pressure physical?

Kinetic theory

peff(x) =

∫
d3p

(2π)3
~p2

3E~p
f(x, ~p) ≥ 0

Stability argument

Ε

peff HΕL

Ε1 Ε2
Ε

peff HΕL

Ε2
Ε

peff HΕL

Ε2
Ε

peff HΕL

If there is a vacuum with ε = peff = 0, phases with peff < 0 cannot be
mechanically stable. (But could be metastable.)



Bulk viscosity in heavy ion physics

In heavy ion physics people start now to consider bulk viscosity.

Becomes relevant close to chiral crossover

[Denicol, Gale & Jeon (2015)]

Is there a first-order phase transition triggered by the expansion?

What is the relation to chemical and kinetic freeze-out?

More detailed understanding needed, both for heavy ion physics and
cosmology



Backreaction: General idea

for 0 + 1 dimensional, non-linear dynamics

ϕ̇ = f(ϕ) = f0 + f1 ϕ+ 1
2
f2 ϕ

2 + . . .

one has for expectation values ϕ̄ = 〈ϕ〉

˙̄ϕ = f0 + f1 ϕ̄+ 1
2
f2 ϕ̄

2 + 1
2
f2 〈(ϕ− ϕ̄)2〉+ . . .

evolution equation for expectation value ϕ̄ depends on two-point
correlation function or spectrum P2 = 〈(ϕ− ϕ̄)2〉
evolution equation for spectrum depends on bispectrum and so on

more complicated for higher dimensional theories

more complicated for gauge theories such as gravity



Backreaction in gravity

Einstein’s equations are non-linear.

Important question [G. F. R. Ellis (1984)]: If Einstein’s field equations describe
small scales, including inhomogeneities, do they also hold on large scales?

Is there a sizable backreaction from inhomogeneities to the cosmological
expansion?

Difficult question, has been studied by many people
[Ellis & Stoeger (1987); Mukhanov, Abramo & Brandenberger (1997); Unruh (1998);

Buchert (2000); Geshnzjani & Brandenberger (2002); Schwarz (2002); Wetterich (2003);

Räsänen (2004); Kolb, Matarrese & Riotto (2006); Brown, Behrend, Malik (2009);

Gasperini, Marozzi & Veneziano (2009); Clarkson & Umeh (2011); Green & Wald (2011); ...]

Recent reviews: [Buchert & Räsänen, Ann. Rev. Nucl. Part. Sci. 62, 57 (2012); Green

& Wald, Class. Quant. Grav. 31, 234003 (2014)]

No general consensus but most people believe now that gravitational
backreaction is rather small.

In the following we look at a new backreaction on the matter side of
Einstein’s equations.



Fluid equation for energy density

First order viscous fluid dynamics

uµ∂µε+ (ε+ p)∇µuµ − ζΘ2 − 2ησµνσµν = 0

For ~v2 � c2 and Newtonian potentials Φ,Ψ� 1

ε̇+ ~v · ~∇ε+ (ε+ p)
(

3 ȧ
a

+ ~∇ · ~v
)

= ζ
a

[
3 ȧ
a

+ ~∇ · ~v
]2

+ η
a

[
∂ivj∂ivj + ∂ivj∂jvi − 2

3
(~∇ · ~v)2

]



Fluid dynamic backreaction in Cosmology

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Expectation value of energy density ε̄ = 〈ε〉
1
a

˙̄ε+ 3H (ε̄+ p̄− 3ζ̄H) = D

with dissipative backreaction term

D = 1
a2
〈η
[
∂ivj∂ivj + ∂ivj∂jvi − 2

3
∂ivi∂jvj

]
〉

+ 1
a2
〈ζ[~∇ · ~v]2〉+ 1

a
〈~v · ~∇ (p− 6ζH)〉

D vanishes for unperturbed homogeneous and isotropic universe

D has contribution from shear & bulk viscous dissipation and
thermodynamic work done by contraction against pressure gradients

dissipative terms in D are positive semi-definite

for spatially constant viscosities and scalar perturbations only

D =
ζ̄+ 4

3
η̄

a2

∫
d3q Pθθ(q)



Dissipation of perturbations

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Dissipative backreaction does not need negative effective pressure

1
a

˙̄ε+ 3H (ε̄+ p̄eff) = D

D is an integral over perturbations, could become large at late times.

Can it potentially accelerate the universe?

Need additional equation for scale parameter a

Use trace of Einstein’s equations R = 8πGNT
µ
µ

1
a
Ḣ + 2H2 = 4πGN

3
(ε̄− 3p̄eff)

does not depend on unknown quantities like 〈(ε+ peff)uµuν〉
To close the equations one needs equation of state p̄eff = p̄eff(ε̄)
and dissipation parameter D



Deceleration parameter
[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

assume now vanishing effective pressure p̄eff = 0

obtain for deceleration parameter q = −1− Ḣ
aH2

− dq
d ln a

+ 2(q − 1)
(
q − 1

2

)
= 4πGND

3H3

for D = 0 attractive fixed point at q∗ = 1
2

(deceleration)

for D > 0 fixed point shifted towards q∗ < 0 (acceleration)

-1.0 -0.5 0.0 0.5 1.0
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0
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deceleration parameter q

d
q

d
ln

a
+

4
⇡

G
N

D
3
H

3



Estimating viscous backreaction D

For 4πGND
3H3 ≈ 4 one could explain the current accelerated expansion

(q ≈ −0.6) by dissipative backreaction.

Is this possible?

In principle one can determine D for given equation of state and viscous
properties from dynamics of structure formation.

So far only rough estimates. If shear viscosity dominates:

D = 1
a2
〈η
[
∂ivj∂ivj + ∂ivj∂jvi − 2

3
∂ivi∂jvj

]
〉 ≈ cD η̄H2

with cD = O(1). Corresponds to ∆v ≈ 100 km/s for ∆x ≈ 1 MPc

Leads to
4πGND

3H3
≈ cD η̄H

2ρc

with ρc = 3H2

8πGN



Viscosities

Relativistic particles / radiation contribute to shear viscosity

η = cη εR τR

prefactor cη = O(1)
energy density of radiation εR
mean free time τR

Bulk viscosity vanishes in situations with conformal symmetry but can be
large when conformal symmetry is broken.

For massive scalar particles with λϕ4 interaction [Jeon & Yaffe (1996)]

ζ ∼ m6

λ4T3 e
2m/T , η ∼ m5/2T1/2

λ2 for T
m
� 1



Estimating viscous backreaction D

Consider shear viscosity from radiation

η = cη εR τR

Backreaction term
4πGND

3H3
≈ cDcη

2

εR
ρc
τRH

fluid approximation needs τRH < 1

for sizeable effect one would need εR/ρc = O(1)

unlikely that D becomes large enough in this scenario

Needed refinements:

full dynamics of perturbations

second order fluid dynamics

complete model(s)



Could viscous backreaction lead to ΛCDM-type expansion?

[Floerchinger, Tetradis & Wiedemann, 1506.00407]

Backreaction term D(z) will be some function of redshift.

For given dissipative properties D(z) can be determined, but calculation is
involved.

One may ask simpler question: For what form of D(z) would the
expansion be as in the ΛCDM model?

The ad hoc ansatz D(z) = const ·H(z) leads to modified Friedmann
equations

ε̄− D
4H

= 3
8πGN

H2, p̄eff − D
12H

= − 1
8πGN

(
2 1
a
Ḣ + 3H2

)
In terms of ε̂ = ε̄− D

3H
one can write

1
a

˙̂ε+ 3H(ε̂+ p̄eff) = 0, R+ 8πGND
3H

= −8πGN(ε̂− 3p̄eff)

For p̄eff = 0 these are standard equations for ΛCDM model with

Λ = 2πGND
3H



Modification of Friedmann’s equations by backreaction 1

For universe with fluid velocity inhomogeneities one cannot easily take
direct average of Einstein’s equations.

However, fluid equation for energy density and trace of Einstein’s
equations can be used.

By integration one finds modified Friedmann equation

H(τ)2 = 8πGN
3

[
ε̄(τ)−

∫ τ

τI

dτ ′
(
a(τ ′)
a(τ)

)4
a(τ ′)D(τ ′)

]

Additive deviation from Friedmann’s law for D(τ ′) > 0

Part of the total energy density is due to dissipative production

ε̄ = ε̄nd + ε̄d

Assume for dissipatively produced part

˙̄εd + 3
ȧ

a
(1 + ŵd)ε̄d = aD



Modification of Friedmann’s equations by backreaction 2

Leads to another variant of Friedmann’s equation

H(τ)2 = 8πGN
3

[
ε̄nd(τ) +

∫ τ

τI

dτ ′
[(

a(τ ′)
a(τ)

)3+3ŵd −
(
a(τ ′)
a(τ)

)4
]
a(τ ′)D(τ ′)

]

If the dissipative backreaction D produces pure radiation, ŵd = 1/3, it
does not show up in effective Friedmann equation at all!

For ŵd < 1/3 there is a new component with positive contribution on the
right hand side of the effective Friedmann equation.

To understand expansion, parametrize for late times

D(τ) = H(τ)
(
a(τ)
a(τ0)

)−κ
D̃

with constants D̃ and κ.

Hubble parameter as function of (a0/a) = 1 + z

H(a) = H0

√
ΩΛ + ΩM

(a0
a

)3
+ ΩR

(a0
a

)4
+ ΩD

(a0
a

)κ
For κ ≈ 0 the role of ΩΛ and ΩD would be similar.


