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Remaining problems of the standard model

Standard model of elementary particle physics works surprisingly
well.

Seems to describe all measurements at the LHC so far.

Contains 18 free parameters (without neutrino masses)

3 gauge couplings for U(1), SU(2) and SU(3)
1 Higgs field vacuum expectation value
1 Higgs field self coupling
3 lepton masses
6 quark masses
3 CKM mixing angles + 1 phase

13 out of 18 parameters are determined by the Yukawa couplings.

Open questions are:

Why are there three generations?
What explains the Yukawa-coupling hierarchy between generations?
What gives mass to neutrinos?
What determines the Higgs VEV? (Hierarchy problem)
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Are leptons and quarks composite?

It seems plausible that there is some structure underlying the
standard model that explains the Yukawa couplings.

Quarks and leptons before electroweak symmetry breaking are chiral:
left-handed and right-handed fields in different gauge representations

Chiral symmetry forbids a mass term.

Can chiral fermions be composite?

In principle yes, there is at least no good argument against it.

Some constrains come from anomaly matching [’t Hooft (1979)].

However, a formalism to describe this and to determine whether
chiral bound states form in a given theory, is lacking.

For example it is clear that Schrödingers equation cannot be used.
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Constituents have not been found so far...

If leptons and quark consist of more elementary constituents the
question arises why these have never been found.

In principle a confining theory with strong interactions at a very high
energy scale could do the job.

Can only work if this theory has unbroken chiral symmetry in
contrast to QCD.

There is no obvious candidate for a theory underlying the standard model
so let us sharpen knifes by asking some questions on the standard model
itself.
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Right-handed fermions and scalar bosons

Start from

right-handed lepton ψR: SU(2) singlet, U(1)Y charge g′

mass-less scalar boson φ: SU(2) doublet, U(1)Y charge − 1
2g
′

gauge fields Bµ for U(1)Y and Aaµ for SU(2)

ψR φ Aaµ Bµ ψR

Bµ
φ
Aaµ

φ
Bµ

Quantum fluctuations induce fermion-boson vertex λφR

= B B B B B B

all particles in the loop are mass-less

perturbative one-loop contributions linearly infrared divergent
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Composite fields

What can be composite particles of ψR and φ?

Or: What substructures can fermion-boson vertex λφR have?

ψR

ψR

φ

φ

∈ ψL fL Bµ

left handed lepton ψL: SU(2) doublet, U(1)Y charge 1
2
g′

left-handed fermion fL: SU(2) doublet, U(1)Y charge 3
2
g′

vector boson of Bµ type

ψR and φ have opposite U(1)Y charge or attractive interaction, in
favor of bound state ψL
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Fermionic Hubbard-Stratonovich transformation

perform Hubbard-Stratonovich transformation with respect to the
attractive channel

field for ψL is introduced as auxiliary field with quadratic
“Lagrangian”

LHS = i(ψ̄L − ξ̄L) σ̄µDµ qL (−DνD
ν) (ψL − ξL)

Dµ is covariant derivative appropriate for ψL
ξL is quadratic in right-handed fermion and scalar fields, ξL ∼ φψR
the function

qL(p2) = 1 + ν2
L/p

2

contains a non-local mass νL
for large νL the fermion ψL is heavy and plays no role
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Effective theory after HS transformation

Right-handed fermions as before, standard kinetic term.

Left-handed fermions with kinetic term and non-local mass term νL

LψL
=i (ψ̄L)ȧ (σ̄µ)ȧb

(
∂µ − iAaµtaL − iBµyL

)
(ψL)b

+ i ν2
L (ψ̄L)ȧ

(
[σµDµ]

−1
)ȧb

(ψL)b

Yukawa interactions

LYukawa = −h
[
(ψ̄L)ȧ φ (ψR)ȧ + (ψ̄R)a φ† (ψL)a

]
.

Boson-Fermion interaction vertex

LφR = i (ψ̄R)a φ† λφR (−DνDν) (σµ)aḃDµ φ (ψR)ḃ

Kinetic terms for scalars and gauge fields as before.
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Adapting parameters
Boson-fermion vertex has two contributions

λφR = (λφR)loops −
h2

p2 + ν2
L

first term generated by radiative corrections / loops
second term from HS transformation

Idea is now to adapt h and νL such that λφR = 0.
One-loop calculation with IR cutoff Λ gives

(λφR)loops =
g′4

16π2

[
1

4Λ2
− p2 7

12Λ4
+O(p4)

]
.

which cancels to the given order in p2 for

h2
Λ =

3g′4

448π2
, ν2

L,Λ =
3

7
Λ2.

for g′2 = α 4π
cos2 θW

with the fine structure constant α(MZ) = 1/128

and sin2 θW (MZ) = 0.23126 one finds hΛ = 0.0033
surprisingly close to Yukawa coupling of τ -lepton hτ = 0.0072
non-local mass νL vanishes for Λ→ 0
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Exact flow equation with HS transformation

For functional RG study one needs flow equation that implements
k-dependent HS transformation [Floerchinger & Wetterich, PLB 680, 371

(2009), see also Gies & Wetterich (2002), Pawlowski (2007)]

∂kΓk =
1

2
STr

{
(Γ

(2)
k +Rk)−1

(
∂kRk −Rk(∂kQ

−1)Rk
)}

−1

2

↼

Γ
(1)

k

(
∂kQ

−1
)⇀

Γ
(1)

k

exact flow equation that generalizes Wetterich equation

Γ
(1)
k is functional derivative with respect to the composite field

∂kQ
−1 can be chosen arbitrary

works also for fermionic composite fields

9 / 20



Regulator functions

all relevant diagrams are UV finite

simple IR regulators are sufficient

∆Lk =− i k2 (ψ̄L)ȧ

(
[σµ∂µ]

−1
)ȧb

(ψL)b

− i k2 (ψ̄R)a
(

[σ̄µ∂µ]
−1
)
aḃ

(ψR)ḃ

+ k2φ†φ

− k2 1

2

(
AaµAaµ +BµBµ

)
+ k2c̄aca

regulator functions break gauge invariance

results presented in the following are for fixed gauge: Feynman gauge
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Flow equations for anomalous dimensions

anomalous dimension right-handed fermions

ψR

ψR

ψR

B

ψR

ψL

ψR

φ

(ηR)loops =
1

16π2

[
4g′2 + 2h2 k

2

ν2
L

ln

(
k2 + ν2

L

k2

)]

anomalous dimension left-handed fermions

ψL

ψL

ψL

A,B

ψL

ψR

ψL

φ

(ηL)loops =
1

16π2

[(
3g2 + g′2

) k2

ν2
L

ln

(
k2 + ν2

L

k2

)
+ 2h2

]
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Flow equations Yukawa coupling

ψL

ψL

ψR

φ

A,B φ

ψL

ψR

ψR

φ

φ B

ψL

ψL

φ

ψR

B ψR

Yukawa coupling at vanishing momentum

(∂th)loops =
1

16π2

[
− h

(
3g2 − g′2

) k2

ν2
L

ln

(
k2 + ν2

L

k2

)
− 2h g′2 − 8h g′2

k2

ν2
L

ln

(
k2 + ν2

L

k2

)]
First derivative with respect to fermion momentum p2

(∂th
′)loops =

1

16π2

[
h

(
3

4
g2 − 1

4
g′2

)[
− 12

k2

ν4
L

+ 6
2k4 + k2ν2

L

ν6
L

× ln

(
k2 + ν2

L

k2

)]
+

1

2
h g′2

1

k2

]

12 / 20



Flow equation boson-fermion vertex

at vanishing momentum

(∂tλφR)loops =
1

16π2

[
− 1

2
g′4

1

k2
+ 8h2g′2

1

k2 + ν2
L

− 3h4 k
2

ν4
L

ln

(
(2ν2

L + k2)k2

(ν2
L + k2)

)
− h2 ( 3

2
g2 + 1

2
g′2

) [ 3k2 + 2ν2
L

ν2
L(ν2

L + k2)
− 3k2

ν4
L

ln

(
k2 + ν2

L

k2

)]]

first derivative with respect to fermion momentum p2

(∂tλ
′
φR)loops =

1

16π2

[
7
3
g′4

1

k4
+ 2h2g′2

k2 + 2ν2
L

(k2 + ν2
L)2k2

− h2

(
3

2
g2 +

1

2
g′2

)
×

[
− 24k2

ν6
L

− 2

k2ν2
L

+
2

k2(k2 + ν2
L)

+
12k2(2k2 + ν2

L)

ν8
L

ln

(
k2 + ν2

L

k2

)]]
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Scale-dependent HS transformation
choose parameters of k-dependent HS transformation such that

∂kλφR(p2)
∣∣
p2=0

= 0, ∂kλ
′
φR(p2)

∣∣
p2=0

= 0.

choose also p-dependent wave-function renormalization for
composite field ψL(p) such that

∂kh(p2)
∣∣
p2=0

= 0.

that gives final flow equations for non-local mass

∂tν
2
L =(ηL)loops ν

2
L +

ν4
L

h2
(∂tλφR

)loops +
ν6
L

h2
(∂tλ

′
φR)loops

+
2ν4
L

h
(∂th

′)loops

and the Yukawa coupling

∂th
2 =2h (∂th)loops + h2 [(ηR)loops + (ηL)loops]

+ 2ν2
L (∂tλφR)loops + ν4

L(∂tλ
′
φR)loops + ν2

L 2h (∂th
′)loops
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Solution of flow equations
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for fixed gauge couplings g(MZ) = 0.651 and g′(MZ) = 0.807

fixed point approximately at

h∗2 =
3g′4

448π2
≈ 0.000011, ν̃∗2L =

ν2
L

k2
=

3

7
≈ 0.43

non-local mass parameter νL vanishes with k

Yukawa coupling related to U(1)Y gauge coupling

numerical value h∗ = 0.0033 close to hτ -lepton = 0.0072
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Flow of gauge couplings
One loop perturbative flow equations

∂tg =−
22
3 −

1
3 (nlL + 3nqL)− 1

6

16π2
g3,

∂tg
′ =

2
3

(
1
2nlL + nleR + 1

6nqL + 4
3nquR + 1

3nqdR

)
+ 1

6

16π2
g′3,

where the fermion content is
nlL left-handed leptons,
nle

R
right-handed leptons of electron type,

nqL left-handed quarks,
nqu

R
right-handed quarks of up-type,

nqd
R

right-handed quarks of down-type

For the standard model with complete fermion content

g2(k) =
1

1
g2(k0) + 19

96π2 ln(k/k0)
,

g′2(k) =
1

1
g′2(k0) −

41
96π2 ln(k/k0)

.
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Flow with flowing gauge couplings
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Remarks on anomalies

it is known that theories with only right-handed fermions (or only
left-handed fermions) lead to gauge anomalies

on first sight this seems to make an initial theory with only
right-handed fermions inconsistent

on the other side, the auxiliary fields that are added by the
Hubbard-Stratonovich transformation can also contribute to the
anomaly and might even cancel it

quite generally, theories with composite chiral fermions must fulfill
anomaly matching conditions [’t Hooft (1979)]

these issues need more study
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Composite right-handed fermions

also right-handed fermions might be composite

ψL

ψL

φ

φ

∈ ψR νR ψ′
R ν′R Bµ Aaµ

combinations of left-handed fermions ψL and scalars φ

right-handed fermion ψR: SU(2) singlet, U(1)Y charge g′

right-handed fermion νL: SU(2) singlet, U(1)Y charge 0
right-handed fermion ψ′

R: SU(2) triplet, U(1)Y charge g′

right-handed fermion ν′L: SU(2) triplet, U(1)Y charge 0
vector boson of Bµ type
vector boson of Aaµ type

ψL and φ can be bound by U(1)Y or SU(2) interactions

attractive U(1)Y interaction favors right-handed neutrino type νR
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Conclusions

Left-handed τ -lepton could be composite of scalar doublet and
right-handed τ -lepton!

Yukawa coupling can be predicted and agrees up to factor ∼ 2 with
experimental value but good agreement could be partly accidental.

Theoretical uncertainties still high:

Fierz ambiguities in Hubbard-Stratonovich transformation
Effect of scalar field self interaction and vacuum expectation value

Flow equation with scale-dependent Hubbard-Stratonovich
transformation can be used to investigate this interesting physics.

More detailed analysis needed to investigate possibilities for other
bound states (right-handed neutrinos ?).

Question of anomalies needs further studies.
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