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mainly based on

Mode-by-mode fluid dynamics for relativistic heavy ion collisions
[Phys. Lett. B, 728, 407 (2014), with U. A. Wiedemann]

Characterization of initial fluctuations for the hydrodynamical description
of heavy ion collisions, [Phys. Rev. C 88, 044906 (2013), with
U. A. Wiedemann]

Kinetic freeze-out, particle spectra and harmonic flow coefficients from
mode-by-mode hydrodynamics, [Phys. Rev. C 89 (2014) 034914, with
U. A. Wiedemann]

How (non-) linear is the hydrodynamics of heavy ion collisions? [Phys.
Lett. B 735 (2014) 305, with U. A. Wiedemann, A. Beraudo,
L. Del Zanna, G. Inghirami, V. Rolando]

Statistics of initial density perturbations in heavy ion collisions and their
fluid dynamic response [JHEP 1408 (2014) 005, with U. A. Wiedemann]
Hydrodynamics and Jets in Dialogue [EPJC 74, 3189 (2014), with K. C.
Zapp]

Fluctuations of baryonic number around Bjorken background
[work in progress, with M. Martinez]



Introduction



Fvolution in time after heavy ion collision

o Non-equilibrium evolution at early times

e initial state at from QCD? Color Glass Condensate? ...
e thermalization via strong interactions, plasma instabilities, particle
production, ...

@ Local thermal and chemical equilibrium

e strong interactions lead to short thermalization times
e evolution from relativistic fluid dynamics
e expansion, dilution, cool-down

@ Chemical freeze-out

o for small temperatures one has mesons and baryons
e inelastic collision rates become small
e particle species do not change any more

@ Thermal freeze-out

e elastic collision rates become small
e particles stop interacting
e particle momenta do not change any more



Fluid dynamic regime

Assumes strong interaction effects leading to local equilibrium.

Fluid dynamic variables
o thermodynamic variables: e.g. e(x), n(x),
o fluid velocity u”(x),
o shear stress tensor 7" (z),
e bulk viscous pressure mguk(x).

Can be formulated as derivative expansion for TH".

Hydrodynamics is universal: many details of microscopic theory not

important.

@ Some macroscopic properties are important:

o ideal hydro: needs equation of state p = p(T', 1) from
thermodynamics

o first order hydro: needs also transport coefficients like shear viscosity
n = n(T, 1) and bulk viscosity ¢(T, u) from linear response theory

e second order hydro: needs also relaxation times 7Tspear, TBuk €tC.



Non-central collisions

-

b

pressure gradients larger in reaction plane
leads to larger fluid velocity in this direction
more particles fly in this direction

can be quantified in terms of elliptic flow v
particle distribution

N _ N
dp 27

1 +QZ U, cos (m (¢ — YRr))

symmetry ¢ — ¢ + 7 implies v; =v3 =v5 =...=0.



Two-particle correlation function

@ normalized two-particle correlation function

dN dN

C(o1,02) =

NdTndegileI;ents —1—1—22 vy, cos
<E>events<%>events

@ Surprisingly vo, v3, v4, vs and vg are all non—zero!
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[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]



FEvent-by-event fluctuations

@ argument for v3 = v5 = 0 is based on event-averaged geometric
distribution

@ deviations from this can come from event-by-event fluctuations.

@ one example is Glauber model
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@ initial transverse density distribution fluctuates event-by-event and
this leads to sizeable v3 and vs

@ more generally also other initial hydro fields may fluctuate: fluid
velocity, shear stress, baryon number density etc




What perturbations are interesting and why?

Initial fluid perturbations: Event-by-event fluctuations around an
average of fluid fields at time 75 and their evolution:

energy density €

fluid velocity u*

shear stress 7"

more general also: baryon number density n,

electric charge density, electromagnetic fields, ...

governed by universal evolution equations

can be used to constrain thermodynamic and transport properties

@ contain interesting information from early times



Stmalarities to cosmological fluctuation analysis

o fluctuation spectrum contains info from early times
@ many numbers can be measured and compared to theory
@ can lead to detailed understanding of evolution

@ to learn something about the evolution one needs to know some
universal properties of initial state, for example P(k) ~ k"s~1



A program to understand fluid perturbations

@ Characterize initial perturbations
@ Propagated them through fluid dynamic regime

@ Determine influence on particle spectra and harmonic flow
coefficients

@ Take also perturbations from non-hydro sources (jets) into account
[see work with K. Zapp, EPJC 74 (2014) 12, 3189]



Characterization of initial conditions



Transverse enthalpy density

Based on Bessel-Fourier expansion and background density
[Floerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen &
Wolpert 2012, Floerchinger & Wiedemann 2014]

w(r,¢) = wec(r) + wse(r wa e T (A™p(r))

azimuthal wavenumber m, radial wavenumber [

wl(m) dimensionless

@ higher m and [ correspond to finer spatial resolution

coefficients wl(m) can be related to eccentricienies

works similar for vectors (velocity) and tensors (shear stress)



Transverse density from Glauber model
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FEvent ensembles

@ Initial conditions at beginning of fluid dynamic regime are governed
by event-by-event probability distribution

Do [w, Y]

e Moments / correlation functions

<wl(m1)wl(m2) . w(m“)>

1 2 In

e contain information from initial state physics / early dynamics
o universal (model independent) properties would be nice to have
o same information in cumulants (connected correlation functions)



Statistics of 1nitial density perturbations

Independent point-sources model (IPSM)

N
o | 1dWee| 1 @)=
wl) = | =4 }N;‘S @)

@ random positions Z;, independent and identically distributed

@ probability distribution p(Z;) reflects collision geometry

@ possible to determine correlation functions analytically for central
and non-central collisions [Floerchinger & Wiedemann (2014)]

o Long-wavelength modes (small m and ) that don't resolve
differences between point-like and extended sources have
universal statistics.



Solution of IPSM and scaling with number of sources

o for IPSM one can exactly determine the correlation functions

(w™) ..

wll (mn)>

.wl

n

[Floerchinger & Wiedemann, JHEP 1408 (2014) 005]

@ connected correlation functions (cumulants) scale with N like
[see also Ollitrault & Yan (2014), Bzdak & Skokov (2014)]

(m1) (mn) 1
<wl:n wl:ln >c ~ Nn—l

(implies that distribution is non-Gaussian)
@ scaling broken for non-central collisions

@ impact parameter dependence of terms that break scaling is known



Fluid dynamic response



Response to density perturbations

For a single event

= Um e_imwnL

= Z S(m)l wl(nl) + Z S(ml,mg)ll,lg wl(lml) l(,:n2) 5m,m1+m2 + ..

mi,ma,

l1,l2

V*

m

S(m is linear dynamic response function

S(my,m2)l1 1, 1S quadratic dynamic response function etc.

Symmetries imply conservation of azimuthal wavenumber

Response functions depend on thermodynamic and transport
properties, in particular viscosity.



Flow correlations from initial density correlations
Moments of flow coefficients

<V;ll ...V;M> =S(mu)ts - St <wl(1ml) . wl(m)>

+ non-linear terms

@ combination of dynamical response coefficients and correlation
functions of initial density perturbations

o linear, quadratic and higher-order terms

@ For N independent sources and central collisions

1 1
vm{n} ~ W or Um{n} ~ m

explains why v, {4} ~ v, {6} ~ v, {8} are of almost equal size
holds also for extended sources

holds also for non-linear response contributions

can be extended to other correlation functions, e. g. (VaV3V5") ~ ﬁ
gets broken for non-central collisions

impact parameter dependence of corrections is known



Proton-nucleus vs. nucleus-nucleus collisions
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@ surprisingly flow observables are similar in pPb and PbPb collisions

o triangular flow coefficient vs as a function of multiplicity (“number
of produced particles”) essentially the same!



Scaling with system size
o Large (PbPb) and small systems (pPb) may have different number

of independent sources IV and response functions S(,,);
@ For linear dynamics one has parametrically

Sim)i

Ni—=

Um{n} ~

e To have v, {n}|pbpb = vm{n}|ppb One needs

_1
S(m)l‘pr _ ( Npr >1 "
S(m)i|PbPb Npbpb

o For comparison at equal multiplicity one may have Nyp, =~ Npppp SO
that response functions must be equal

Stmytlppb R S(myi|popb

o S(m) depends on system size only via initial background wgg(r).
Precise dependence can be investigated more closely.



Hydrodynamaic evolution



Perturbative expansion

Write the hydrodynamic fields h = (w, u*, 7", Ty, - - -)

@ at initial time 7y as
h=ho+eh

with background hg, fluctuation part € hy

@ at later time 7 > 73 as

h=ho+ehy +ehy+ehs+...

Solve for time evolution in this scheme

@ hy is solution of full, non-linear hydro equations in symmetric
situation: azimuthal rotation and Bjorken boost invariant

@ hq is solution of linearized hydro equations around hg,
can be solved mode-by-mode

@ ho can be obtained by from interactions between modes etc.



Background evolution
System of coupled 1 + 1 dimensional non-linear partial differential
equations for
@ enthalpy density w(r,r) (or temperature T'(7,r))
o fluid velocity u” (7,7),u" (7, 7)
@ two independent components of shear stress 7#¥ (1, )

Can be easily solved numerically
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FEvolving perturbation modes

o Linearized hydro equations: set of coupled 3 + 1 dimensional, linear,
partial differential equations.

@ Use Fourier expansion

hj(Tv T, ¢a 77) = Z / 277: h; )(7'7 T, k'ﬂ) e ( ¢+k,,77).

@ Reduces to 1 + 1 dimensions.

@ Can be solved numerically for each initial Bessel-Fourier mode.




Mode interactions

@ Non-linear terms in the evolution equations lead to mode
interactions.

o Quadratic and higher order in initial perturbations.

@ Can be determined from iterative solution but has not been fully
worked out yet.

o Convergence can be tested with numerical solution of full hydro
equations.



FEvolution of spectrum of density perturbations
Density-density spectrum

Pu(R) = / P e~ R (4(7,) d(7) )
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dashed: linear evolution, solid: including first non-linear correction
left: n/s = 0.08, 7 = 1.5,2.5,3.5,4.5fm/c, right: /s = 0.08 and /s = 0.8, 7 = 7.5fm/c
[Brouzakis, Floerchinger, Tetradis & Wiedemann, arXiv:1411.2912]




Kinetic freeze-out



Freeze-out surface

@ Perturbative expansion can be used also at freeze-out.
[Floerchinger, Wiedemann 2013]

o Freeze-out surface is azimuthally symmetric as background.

o Generalization to kinetic hadronic scattering and decay phase
possible.

1 [fm]

(solid: /s = 0.08, dotted: n/s = 0, dashed: n/s = 0.3)



Particle distribution

for single event

dNSingIe event ) — -
In{———)= InS £ N7 ™ gimog
(PpoTd¢dy M Z l , (pr)

from background ot

from fluctuations

. . (m)
each mode comes with an angle, wl(m) = |wl(m)| efmi

each mode has different pr-dependence, Ol(m)(pT)

quadratic order correction

Z wl(lml)wl(2m2) ei(m1+m2)¢> Iil(zrfl;,mz) (pT)

mi,ma,li,l2

non-linearities from hydro evolution and freeze-out



Differential harmonic flow coefficients

Double differential harmonic flow coefficient (to lowest order)

ond2F2 (0 o) = 3 0 (%) 07 (9) (™M)

l1,l2

@ intuitive matrix expression
@ in general no factorization

@ can be generalized to higher order flow cumulants



Baryon number density fluctuations



Fluctuations around vanishing baryon number

@ Evolution of baryon number density
uon +nV,ut + Vot =0

with diffusion current v* determined by heat conductivity x

1/0‘/1{ nt rAaﬁﬁg (ﬁ)

€E+p T

o Consider situation with (n(z)) = (u(z)) =0
but event-by-event fluctuation én # 0

o Concentrate now on Bjorken flow profile for u*

2
5‘75n+15nn[ nt ] (a(“/T)) (8§+8§+1283]> Sn =0
T 6 T

€+p on

@ Structures in transverse and rapidity directions are “flattened out”
by heat conductive dissipation



Baryon number correlations experimentally

@ Two-particle correlation function of baryons minus anti-baryons

CBaryon(¢1 - ¢27 m — 772) = <n(¢17 771)”@727 772)>C

@ In Fourier representation

d
CBaryon(A¢ An Z / 1 C(Baryon(’/n Q) imAgrighn

m=—0o0

heat conductivity leads to exponential suppression

~ 2 2 ~
C’Baryon (m7 Q) =e " h-a'l C’Baryon (ma q)|f'€:0

@ Iy and I can be approximated as

w25 (50),
we e ST (%50),

o I> > I, would lead to long-range correlations in rapidity direction
(" baryon number ridge")




Remarks on baryon number fluctuations

o Initial (" primordial™) baryon number fluctuations are poorly
understood so far but presumably non-vanishing.

@ Heat conductivity of QCD also poorly understood theoretically so far

e from perturbation theory [Danielewicz & Gyulassy, PRD 31, 53 (1985)]

T4

Y adma, <D

o from AdS/CFT [Son & Starinets, JHEP 0603 (2006)]
T sT
K:87T2E7]:27TF (bT)

@ More refined study needed to take transverse expansion properly into
account.

@ Seems to be interesting topic for further experimental and
theoretical studies.



Summary and Conclusions



Conclusions

Systematic expansion in initial fluid perturbations is possible and has
good convergence properties.

Formalism works in praxis (see also backup slides).

Initial density perturbations have some universal properties that can
help to better constrain thermodynamic and transport properties.
Fluid dynamic response allows to access correlation functions of
initial perturbations.

Baryon number correlations could allow to constrain heat
conductivity.



Backup



Characterization of transverse density via eccentricities

Fluctuations in initial transverse enthalpy density w(r, ¢) can be
characterized in terms of eccentricities €, ,,, and angles ¥, ,,
[Ollitrault, Teaney, Yan, Luzum, and others]

[ dr 27 dpr e )
[dr [T dern+lw(r, o)

imn,m _

€n,m €

e w(r, ¢) completely determined by set of all €, ,,, and ¥y, p,
@ closely related method is based on cumulants [Teaney, Yan]

@ no positive transverse density can be associated to small set of
cumulants (beyond Gaussian order) such that higher order
cumulants vanish

@ generalization to velocity and shear fluctuations not known



Scaling tests

o Start with single enthalpy density mode (m = 2,1 = 1) on top of
background

w(7o,r, @) = wee(T0,7) [1 + 21552)J2(k§2)r) cos(2¢5)} .

o Evolve this with hydro solver ECHO-QGP
[Del Zanna et al., EPJC 73, 2524 (2013), see also following talk]

@ Determine Fourier components

1 1

o™ (1,7) =

/ dé &= w(r, 1, §)

wpeg(r) 27



Scaling tests at first order

Compare enthalpy @(? (7, r) at fixed 7 for different initial weights

(1= 19+10 fm/c 1)
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Scaling tests at second order

From symmetry considerations one expects that modes with m = 0 and

. . . N ~(2)72
m = 4 receive mainly quadratic contributions ~ (w?)) .

wia(@ W O(T 1)/, P)?, 7=19+10 fm/c
0.08

wea(T W (rr) [GeV/fm?], 7=79+10 fm/c
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) 006 e
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@ Hydrodynamic response to initial enthalpy density fluctuations is
perturbative.

@ Non-linearities can be understood order-by-order and lead to
characteristic “overtones”.

@ Results motivate more thorough development of fluid dynamic
perturbation theory.



Scaling tests at third order

From symmetry considerations one expects that modes m = 6 receive
. . oo ~(2)\3
mainly cubic contributions ~ (@;”)".
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Scaling tests embedded in realistic event

Embed mode (m = 2,1 = 1) into realistic fluctuating event and compare
to embedding into pure background.

w(t=5.6 fm/c x.y) [GeV/fm?]
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Scaling tests with several initial

Start with linear combination of (m = 2,1

modes
=2)and (m=3,l=1)

modes and test scaling for m = 1 and m = 5 response.
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Generalized Glauber model

o Fluctuations due to nucleon positions: used so far

Npart

T X y Z 6u) Xiay)7 uﬂ = (1707070)

@ can be generalized to include also velocity fluctuations

Npart
Tﬂy(Ta X, y) = Z Tqi}LV(Ta X = X, y)

=1

More generally describe primordial fluid fields by
e expectation values (e(70,%,y)), (u" (70, %,¥)), (nB(70,X,Y))
o correlation functions (e(7o, %, y) (10, x’, '), etc.

Origin of this fluctuations is initial state physics and
early-time, non-equilibrium dynamics.



Velocity fluctuations

@ also the velocity field will fluctuate at the initialization time 7

o take here transverse velocity for every participant to be Gaussian
distributed with width 0.1¢

e vorticity |9yu? — dpul| and divergence |0yut + dou?|




“Proof of principle” study: One-particle spectrum

Initial conditions from Glauber Monte Carlo Model

S(pr) = dN/(2nprdprdnde)

S(pr)
106 ¢

104+

100 |
220 e (x100)
r KT+K™ (x10)
p+p

001 F

104 . . . . . . pr[Gev]
00 0.5 10 1.5 20 25 30

Points: 5% most central collisions, ALICE [PRL 109, 252301 (2012)]
Curves: Our calculation, no hadron rescattering and decays after
freeze-out.



Harmonic flow coefficients for central collisions

Triangular flow for charged particles
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Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]
Curves: Different maximal resolution [y



Harmonic flow coefficients for central collisions

Elliptic flow for charged particles

va(pr)
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Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]
Solid curves: Different maximal resolution lmax
Dashed curve: Mode (m = 2,1 = 1) suppressed by factor 0.7



Harmonic flow coefficients for central collisions

Flow coefficient vy for charged particles
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Harmonic flow coefficients for central collisions

Flow coefficient v for charged particles
vs(pr)
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Curves: Different maximal resolution nyax



Harmonic flow coefficients,

va(pr)
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