The hydrodynamical description of heavy ion collisions. Recent developments

Stefan Flörchinger (CERN)

EDS Blois 2015, Borgo, July 3, 2015.

mainly based on

- Mode-by-mode fluid dynamics for relativistic heavy ion collisions [Phys. Lett. B, 728, 407 (2014), with U. A. Wiedemann]
- Characterization of initial fluctuations for the hydrodynamical description of heavy ion collisions, [Phys. Rev. C 88, 044906 (2013), with U. A. Wiedemann]
- Kinetic freeze-out, particle spectra and harmonic flow coefficients from mode-by-mode hydrodynamics, [Phys. Rev. C 89 (2014) 034914, with U. A. Wiedemann]
- How (non-) linear is the hydrodynamics of heavy ion collisions? [Phys. Lett. B 735 (2014) 305, with U. A. Wiedemann, A. Beraudo, L. Del Zanna, G. Inghirami, V. Rolando]
- Statistics of initial density perturbations in heavy ion collisions and their fluid dynamic response [JHEP 1408 (2014) 005, with U. A. Wiedemann]
- Hydrodynamics and Jets in Dialogue [EPJC 74, 3189 (2014), with K. C. Zapp]
- Fluctuations of baryonic number around Bjorken background [work in progress, with M. Martinez]

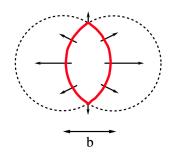
Evolution in time after heavy ion collision

- Non-equilibrium evolution at early times
 - initial state at from QCD? Color Glass Condensate? ...
 - thermalization via strong interactions, plasma instabilities, particle production, ...
- Local thermal and chemical equilibrium
 - strong interactions lead to short thermalization times
 - evolution from relativistic fluid dynamics
 - expansion, dilution, cool-down
- Chemical freeze-out
 - for small temperatures one has mesons and baryons
 - inelastic collision rates become small
 - particle species do not change any more
- Thermal freeze-out
 - elastic collision rates become small
 - particles stop interacting
 - particle momenta do not change any more

Fluid dynamic regime

- Assumes strong interaction effects leading to local equilibrium.
- Fluid dynamic variables
 - thermodynamic variables: e.g. $\epsilon(x)$, n(x),
 - fluid velocity $u^{\mu}(x)$,
 - shear stress tensor $\pi^{\mu\nu}(x)$,
 - bulk viscous pressure $\pi_{\text{Bulk}}(x)$.
- ullet Can be formulated as derivative expansion for $T^{\mu\nu}.$
- Hydrodynamics is universal: many details of microscopic theory not important.
- Some macroscopic properties are important:
 - ideal hydro: needs equation of state $p=p(T,\mu)$ from thermodynamics
 - first order hydro: needs also transport coefficients like shear viscosity $\eta=\eta(T,\mu)$ and bulk viscosity $\zeta(T,\mu)$ from linear response theory
 - ullet second order hydro: needs also relaxation times $au_{
 m Shear}$, $au_{
 m Bulk}$ etc.

Non-central collisions



- pressure gradients larger in reaction plane
- leads to larger fluid velocity in this direction
- more particles fly in this direction
- ullet can be quantified in terms of elliptic flow v_2
- particle distribution

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left[1 + 2 \sum_{m} v_{m} \cos \left(m \left(\phi - \psi_{R} \right) \right) \right]$$

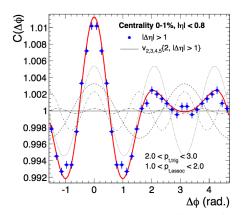
• symmetry $\phi \to \phi + \pi$ implies $v_1 = v_3 = v_5 = \ldots = 0$.

Two-particle correlation function

• normalized two-particle correlation function

$$C(\phi_1,\phi_2) = \frac{\langle \frac{dN}{d\phi_1} \frac{dN}{d\phi_2} \rangle_{\text{events}}}{\langle \frac{dN}{d\phi_1} \rangle_{\text{events}} \langle \frac{dN}{d\phi_2} \rangle_{\text{events}}} = 1 + 2 \sum_m v_m^2 \cos(m \left(\phi_1 - \phi_2\right))$$

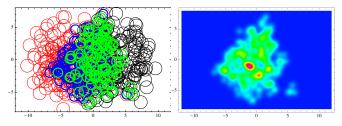
• Surprisingly v_2 , v_3 , v_4 , v_5 and v_6 are all non-zero!



[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]

Event-by-event fluctuations

- ullet argument for $v_3=v_5=0$ is based on event-averaged geometric distribution
- deviations from this can come from event-by-event fluctuations.
- one example is Glauber model

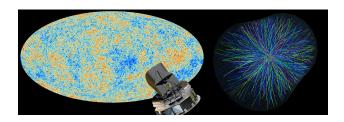


- ullet initial transverse density distribution fluctuates event-by-event and this leads to sizeable v_3 and v_5
- more generally also other initial hydro fields may fluctuate: fluid velocity, shear stress, baryon number density etc

What perturbations are interesting and why?

- Initial fluid perturbations: Event-by-event fluctuations around an average of fluid fields at time τ_0 and their evolution:
 - ullet energy density ϵ
 - $\bullet \ \ {\rm fluid} \ \ {\rm velocity} \ u^\mu$
 - shear stress $\pi^{\mu\nu}$
 - more general also: baryon number density n, electric charge density, electromagnetic fields, ...
- governed by universal evolution equations
- can be used to constrain thermodynamic and transport properties
- contain interesting information from early times

Similarities to cosmological fluctuation analysis



- fluctuation spectrum contains info from early times
- many numbers can be measured and compared to theory
- can lead to detailed understanding of evolution
- to learn something about the evolution one needs to know some universal properties of initial state, for example $P(k) \sim k^{n_s-1}$

A program to understand fluid perturbations

- Oharacterize initial perturbations
- Propagated them through fluid dynamic regime
- Determine influence on particle spectra and harmonic flow coefficients
- Take also perturbations from non-hydro sources (jets) into account [see work with K. Zapp, EPJC 74 (2014) 12, 3189]

Characterization of initial conditions

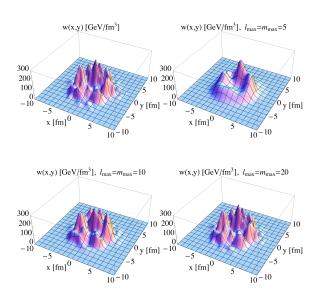
Transverse enthalpy density

Based on Bessel-Fourier expansion and background density [Floerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen & Wolpert 2012, Floerchinger & Wiedemann 2014]

$$w(r,\phi) = w_{\text{BG}}(r) + w_{\text{BG}}(r) \sum_{m,l} w_l^{(m)} e^{im\phi} J_m \left(z_l^{(m)} \rho(r) \right)$$

- ullet azimuthal wavenumber m, radial wavenumber l
- $w_l^{(m)}$ dimensionless
- ullet higher m and l correspond to finer spatial resolution
- ullet coefficients $w_l^{(m)}$ can be related to eccentricienies
- works similar for vectors (velocity) and tensors (shear stress)

Transverse density from Glauber model



Event ensembles

 Initial conditions at beginning of fluid dynamic regime are governed by event-by-event probability distribution

$$p_{\tau_0}[w,u^\mu,\pi^{\mu\nu},\ldots]$$

Moments / correlation functions

$$\left\langle w_{l_1}^{(m_1)} w_{l_2}^{(m_2)} \dots w_{l_n}^{(m_n)} \right\rangle$$

- contain information from initial state physics / early dynamics
- universal (model independent) properties would be nice to have
- same information in cumulants (connected correlation functions)

Statistics of initial density perturbations

Independent point-sources model (IPSM)

$$w(\vec{x}) = \left[\frac{1}{\tau_0} \frac{dW_{\mathrm{BG}}}{d\eta}\right] \frac{1}{N} \sum_{j=1}^{N} \delta^{(2)}(\vec{x} - \vec{x}_j)$$

- ullet random positions \vec{x}_i , independent and identically distributed
- probability distribution $p(\vec{x}_i)$ reflects collision geometry
- possible to determine correlation functions analytically for central and non-central collisions [Floerchinger & Wiedemann (2014)]
- Long-wavelength modes (small m and l) that don't resolve differences between point-like and extended sources have universal statistics.

Solution of IPSM and scaling with number of sources

• for IPSM one can exactly determine the correlation functions

$$\langle w_{l_1}^{(m_1)} \cdots w_{l_n}^{(m_n)} \rangle$$

[Floerchinger & Wiedemann, JHEP 1408 (2014) 005]

ullet connected correlation functions (cumulants) scale with N like [see also Ollitrault & Yan (2014), Bzdak & Skokov (2014)]

$$\langle w_{l_1}^{(m_1)} \cdots w_{l_n}^{(m_n)} \rangle_c \sim \frac{1}{N^{n-1}}$$

(implies that distribution is non-Gaussian)

- scaling broken for non-central collisions
- impact parameter dependence of terms that break scaling is known

Fluid dynamic response

Response to density perturbations

For a single event

$$V_m^* = v_m e^{-i m \psi_m}$$

$$= \sum_{l} S_{(m)l} w_l^{(m)} + \sum_{\substack{m_1, m_2, \\ l_1, l_2}} S_{(m_1, m_2)l_1, l_2} w_{l_1}^{(m_1)} w_{l_2}^{(m_2)} \delta_{m, m_1 + m_2} + \dots$$

- $S_{(m)l}$ is linear dynamic response function
- $S_{(m_1,m_2)l_1,l_2}$ is quadratic dynamic response function etc.
- Symmetries imply conservation of azimuthal wavenumber
- Response functions depend on thermodynamic and transport properties, in particular viscosity.

Flow correlations from initial density correlations

Moments of flow coefficients

$$\left\langle V_{m_1}^* \cdots V_{m_n}^* \right\rangle = S_{(m_1)l_1} \cdots S_{(m_n)l_n} \left\langle w_{l_1}^{(m_1)} \cdots w_{l_n}^{(m_n)} \right\rangle$$

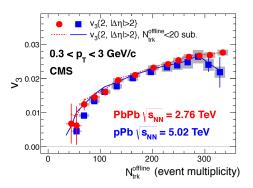
$$+ \text{non-linear terms}$$

- combination of dynamical response coefficients and correlation functions of initial density perturbations
- linear, quadratic and higher-order terms
- ullet For N independent sources and central collisions

$$v_m\{n\}^n \sim \frac{1}{N^{n-1}} \qquad \text{or} \qquad v_m\{n\} \sim \frac{1}{N^{1-\frac{1}{n}}}$$

- explains why $v_m\{4\} \sim v_m\{6\} \sim v_m\{8\}$ are of almost equal size
- holds also for extended sources
- holds also for non-linear response contributions
- ullet can be extended to other correlation functions, e. g. $\langle V_2 V_3 V_5^* \rangle \sim rac{1}{N^2}$
- gets broken for non-central collisions
- impact parameter dependence of corrections is known

Proton-nucleus vs. nucleus-nucleus collisions



- surprisingly flow observables are similar in pPb and PbPb collisions
- ullet triangular flow coefficient v_3 as a function of multiplicity ("number of produced particles") essentially the same!

Scaling with system size

- ullet Large (PbPb) and small systems (pPb) may have different number of independent sources N and response functions $S_{(m)l}$
- For linear dynamics one has parametrically

$$v_m\{n\} \sim \frac{S_{(m)l}}{N^{1-\frac{1}{n}}}$$

• To have $v_m\{n\}|_{\mathsf{PbPb}} = v_m\{n\}|_{\mathsf{pPb}}$ one needs

$$\frac{S_{(m)l}|_{\mathsf{pPb}}}{S_{(m)l}|_{\mathsf{PbPb}}} = \left(\frac{N_{\mathsf{pPb}}}{N_{\mathsf{PbPb}}}\right)^{1 - \frac{1}{n}}$$

 \bullet For comparison at equal multiplicity one may have $N_{\rm pPb}\approx N_{\rm PbPb}$ so that response functions must be equal

$$S_{(m)l}|_{\text{pPb}} \approx S_{(m)l}|_{\text{PbPb}}$$

• $S_{(m)l}$ depends on system size only via initial background $w_{\rm BG}(r)$. Precise dependence can be investigated more closely.

$Hydrodynamic\ evolution$

Perturbative expansion

Write the hydrodynamic fields $h=(w,u^{\mu},\pi^{\mu\nu},\pi_{\rm Bulk},\ldots)$

ullet at initial time au_0 as

$$h = h_0 + \epsilon h_1$$

with background h_0 , fluctuation part ϵh_1

• at later time $\tau > \tau_0$ as

$$h = h_0 + \epsilon h_1 + \epsilon^2 h_2 + \epsilon^3 h_3 + \dots$$

Solve for time evolution in this scheme

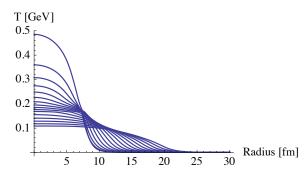
- h₀ is solution of full, non-linear hydro equations in symmetric situation: azimuthal rotation and Bjorken boost invariant
- h₁ is solution of linearized hydro equations around h₀, can be solved mode-by-mode
- \bullet h_2 can be obtained by from interactions between modes etc.

Background evolution

System of coupled $1+1\ \mbox{dimensional non-linear partial differential equations for}$

- \bullet enthalpy density $w(\tau,r)$ (or temperature $T(\tau,r))$
- fluid velocity $u^{\tau}(\tau,r), u^{r}(\tau,r)$
- ullet two independent components of shear stress $\pi^{\mu
 u}(au,r)$

Can be easily solved numerically

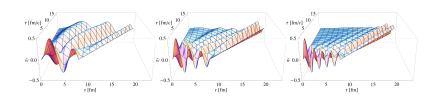


Evolving perturbation modes

- ullet Linearized hydro equations: set of coupled 3+1 dimensional, linear, partial differential equations.
- Use Fourier expansion

$$h_j(\tau, r, \phi, \eta) = \sum_m \int \frac{dk_\eta}{2\pi} h_j^{(m)}(\tau, r, k_\eta) e^{i(m\phi + k_\eta \eta)}.$$

- Reduces to 1+1 dimensions.
- Can be solved numerically for each initial Bessel-Fourier mode.

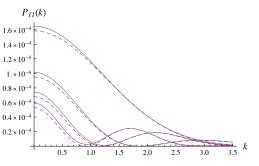


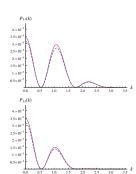
Mode interactions

- Non-linear terms in the evolution equations lead to mode interactions.
- Quadratic and higher order in initial perturbations.
- Can be determined from iterative solution but has not been fully worked out yet.
- Convergence can be tested with numerical solution of full hydro equations.

Evolution of spectrum of density perturbations Density-density spectrum

$$P_{11}(\vec{k}) = \int d^2x \, e^{-i\vec{k}(\vec{x} - \vec{y})} \, \langle \, d(\vec{x}_1) \, d(\vec{x}_2) \, \rangle_c$$





dashed: linear evolution, solid: including first non-linear correction

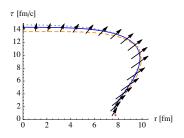
left: $\eta/s = 0.08$, $\tau = 1.5, 2.5, 3.5, 4.5$ fm/c, right: $\eta/s = 0.08$ and $\eta/s = 0.8$, $\tau = 7.5$ fm/c

[Brouzakis, Floerchinger, Tetradis & Wiedemann, arXiv:1411.2912]

$Kinetic\ freeze ext{-}out$

Freeze-out surface

- Perturbative expansion can be used also at freeze-out.
 [Floerchinger, Wiedemann 2013]
- Freeze-out surface is azimuthally symmetric as background.
- Generalization to kinetic hadronic scattering and decay phase possible.



(solid: $\eta/s=0.08$, dotted: $\eta/s=0$, dashed: $\eta/s=0.3$)

Particle distribution

for single event

$$\ln\left(\frac{dN^{\rm single\ event}}{p_Tdp_Td\phi dy}\right) = \underbrace{\ln S_0(p_T)}_{\text{from\ background}} + \underbrace{\sum_{m,l} w_l^{(m)} e^{im\phi} \theta_l^{(m)}(p_T)}_{\text{from\ fluctuations}}$$

- \bullet each mode comes with an angle, $w_l^{(m)} = |w_l^{(m)}| \, e^{i m \psi_l^{(m)}}$
- each mode has different p_T -dependence, $\theta_l^{(m)}(p_T)$
- quadratic order correction

$$\sum_{m_1, m_2, l_1, l_2} w_{l_1}^{(m_1)} w_{l_2}^{(m_2)} e^{i(m_1 + m_2)\phi} \kappa_{l_1, l_2}^{(m_1, m_2)}(p_T)$$

non-linearities from hydro evolution and freeze-out

Differential harmonic flow coefficients

Double differential harmonic flow coefficient (to lowest order)

$$v_m\{2\}^2(p_T^a, p_T^b) = \sum_{l_1, l_2} \theta_{l_1}^{(m)}(p_T^a) \; \theta_{l_2}^{(m)}(p_T^b) \; \langle w_{l_1}^{(m)} w_{l_2}^{(m)*} \rangle$$

- intuitive matrix expression
- in general no factorization
- can be generalized to higher order flow cumulants

Baryon number density fluctuations

Fluctuations around vanishing baryon number

Evolution of baryon number density

$$u^{\mu}\partial_{\mu}n + n\nabla_{\mu}u^{\mu} + \nabla_{\mu}\nu^{\mu} = 0$$

with diffusion current ν^{α} determined by heat conductivity κ

$$\nu^{\alpha} = -\kappa \left[\frac{nT}{\epsilon + p} \right]^2 \Delta^{\alpha\beta} \partial_{\beta} \left(\frac{\mu}{T} \right)$$

- Consider situation with $\langle n(x) \rangle = \langle \mu(x) \rangle = 0$ but event-by-event fluctuation $\delta n \neq 0$
- ullet Concentrate now on Bjorken flow profile for u^μ

$$\partial_{\tau} \delta n + \frac{1}{\tau} \delta n - \kappa \left[\frac{nT}{\epsilon + p} \right]^{2} \left(\frac{\partial (\mu/T)}{\partial n} \right)_{\epsilon} \left(\partial_{x}^{2} + \partial_{y}^{2} + \frac{1}{\tau^{2}} \partial_{\eta}^{2} \right) \delta n = 0$$

 Structures in transverse and rapidity directions are "flattened out" by heat conductive dissipation

Baryon number correlations experimentally

• Two-particle correlation function of baryons minus anti-baryons

$$C_{\mathsf{Baryon}}(\phi_1 - \phi_2, \eta_1 - \eta_2) = \langle n(\phi_1, \eta_1) n(\phi_2, \eta_2) \rangle_c$$

• In Fourier representation

$$C_{\mathsf{Baryon}}(\Delta\phi, \Delta\eta) = \sum_{m=-\infty}^{\infty} \int \frac{dq}{2\pi} \; \tilde{C}_{\mathsf{Baryon}}(m, q) \, e^{im\Delta\phi + iq\Delta\eta}$$

heat conductivity leads to exponential suppression

$$\tilde{C}_{\mathsf{Baryon}}(m,q) = e^{-m^2 I_1 - q^2 I_2} \left. \tilde{C}_{\mathsf{Baryon}}(m,q) \right|_{\kappa = 0}$$

• I_1 and I_2 can be approximated as

$$I_{1} \approx \int_{\tau_{0}}^{\tau_{f}} d\tau \, \frac{2}{R^{2}} \, \kappa \left[\frac{nT}{\epsilon + p} \right]^{2} \left(\frac{\partial (\mu/T)}{\partial n} \right)_{\epsilon}$$

$$I_{2} \approx \int_{\tau_{0}}^{\tau_{f}} d\tau \, \frac{2}{\tau^{2}} \, \kappa \left[\frac{nT}{\epsilon + p} \right]^{2} \left(\frac{\partial (\mu/T)}{\partial n} \right)_{\epsilon}$$

• $I_2 \gg I_1$ would lead to long-range correlations in rapidity direction ("baryon number ridge")

Remarks on baryon number fluctuations

- Initial ("primordial") baryon number fluctuations are poorly understood so far but presumably non-vanishing.
- Heat conductivity of QCD also poorly understood theoretically so far
 - from perturbation theory [Danielewicz & Gyulassy, PRD 31, 53 (1985)]

$$\kappa \sim \frac{T^4}{\mu^2 \alpha_s^2 \ln \alpha_s} \qquad (\mu \ll T)$$

• from AdS/CFT [Son & Starinets, JHEP 0603 (2006)]

$$\kappa = 8\pi^2 \frac{T}{\mu^2} \eta = 2\pi \frac{sT}{\mu^2} \qquad (\mu \ll T)$$

- More refined study needed to take transverse expansion properly into account.
- Seems to be interesting topic for further experimental and theoretical studies.

Summary and Conclusions

Conclusions

- Systematic expansion in initial fluid perturbations is possible and has good convergence properties.
- Formalism works in praxis (see also backup slides).
- Initial density perturbations have some universal properties that can help to better constrain thermodynamic and transport properties.
- Fluid dynamic response allows to access correlation functions of initial perturbations.
- Baryon number correlations could allow to constrain heat conductivity.

Characterization of transverse density via eccentricities

Fluctuations in initial transverse enthalpy density $w(r,\phi)$ can be characterized in terms of eccentricities $\epsilon_{n,m}$ and angles $\psi_{n,m}$ [Ollitrault, Teaney, Yan, Luzum, and others]

$$\epsilon_{n,m} e^{im \psi_{n,m}} = \frac{\int dr \int_0^{2\pi} d\varphi \, r^{n+1} e^{im\varphi} w(r,\varphi)}{\int dr \int_0^{2\pi} d\varphi \, r^{n+1} w(r,\varphi)}$$

- ullet $w(r,\phi)$ completely determined by set of all $\epsilon_{n,m}$ and $\psi_{n,m}$
- closely related method is based on cumulants [Teaney, Yan]
- no positive transverse density can be associated to small set of cumulants (beyond Gaussian order) such that higher order cumulants vanish
- generalization to velocity and shear fluctuations not known

Scaling tests

 \bullet Start with single enthalpy density mode (m=2,l=1) on top of background

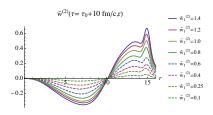
$$w(\tau_0,r,\phi) = w_{\mathsf{BG}}(\tau_0,r) \left[1 + 2 \, \tilde{w}_1^{(2)} J_2(k_1^{(2)} r) \, \cos(2\phi) \right].$$

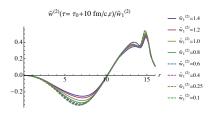
- Evolve this with hydro solver ECHO-QGP
 [Del Zanna et al., EPJC 73, 2524 (2013), see also following talk]
- Determine Fourier components

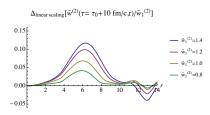
$$\tilde{w}^{(m)}(\tau, r) = \frac{1}{w_{\mathsf{BG}}(r)} \frac{1}{2\pi} \int d\phi \ e^{-im\phi} \, w(\tau, r, \phi)$$

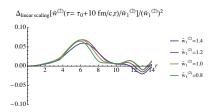
Scaling tests at first order

Compare enthalpy $\tilde{w}^{(2)}(\tau,r)$ at fixed τ for different initial weights



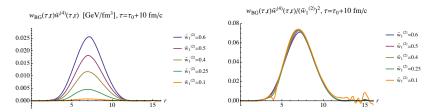






Scaling tests at second order

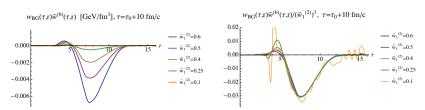
From symmetry considerations one expects that modes with m=0 and m=4 receive mainly quadratic contributions $\sim \left(\tilde{w}_1^{(2)}\right)^2$.



- Hydrodynamic response to initial enthalpy density fluctuations is perturbative.
- Non-linearities can be understood order-by-order and lead to characteristic "overtones".
- Results motivate more thorough development of fluid dynamic perturbation theory.

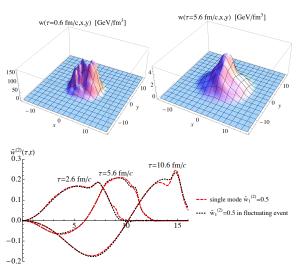
Scaling tests at third order

From symmetry considerations one expects that modes m=6 receive mainly cubic contributions $\sim \left(\tilde{w}_1^{(2)}\right)^3$.



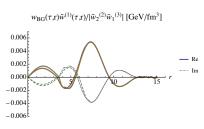
Scaling tests embedded in realistic event

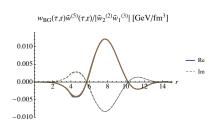
Embed mode (m=2,l=1) into realistic fluctuating event and compare to embedding into pure background.

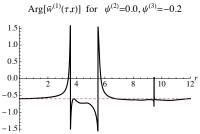


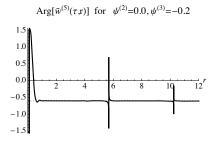
Scaling tests with several initial modes

Start with linear combination of (m=2,l=2) and (m=3,l=1) modes and test scaling for m=1 and m=5 response.









Generalized Glauber model

• Fluctuations due to nucleon positions: used so far

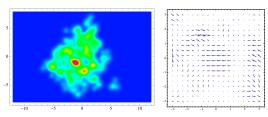
$$\epsilon(\tau, \mathbf{x}, y) = \sum_{i=1}^{N_{\mathsf{part}}} \epsilon_w(\tau, \mathbf{x} - \mathbf{x}_i, y), \qquad u^{\mu} = (1, 0, 0, 0)$$

can be generalized to include also velocity fluctuations

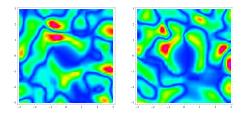
$$T^{\mu
u}(au,\mathbf{x},y) = \sum_{i=1}^{N_{\mathsf{part}}} T_w^{\mu
u}(au,\mathbf{x}-\mathbf{x}_i,y)$$

- More generally describe primordial fluid fields by
 - expectation values $\langle \epsilon(\tau_0, \mathbf{x}, y) \rangle, \langle u^{\mu}(\tau_0, \mathbf{x}, y) \rangle, \langle n_B(\tau_0, \mathbf{x}, y) \rangle$
 - correlation functions $\langle \epsilon(\tau_0, \mathbf{x}, y) \, \epsilon(\tau_0, \mathbf{x}', y') \rangle$, etc.
- Origin of this fluctuations is initial state physics and early-time, non-equilibrium dynamics.

Velocity fluctuations



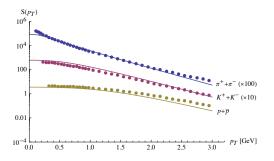
- ullet also the velocity field will fluctuate at the initialization time au_0
- \bullet take here transverse velocity for every participant to be Gaussian distributed with width 0.1c
- ullet vorticity $|\partial_1 u^2 \partial_2 u^1|$ and divergence $|\partial_1 u^1 + \partial_2 u^2|$



"Proof of principle" study: One-particle spectrum

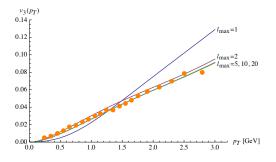
Initial conditions from Glauber Monte Carlo Model

$$S(p_T) = dN/(2\pi p_T dp_T d\eta d\phi)$$



Points: 5% most central collisions, ALICE [PRL 109, 252301 (2012)] Curves: Our calculation, no hadron rescattering and decays after freeze-out.

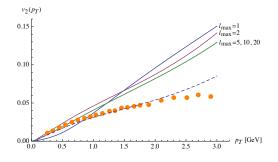
Triangular flow for charged particles



Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]

Curves: Different maximal resolution l_{max}

Elliptic flow for charged particles

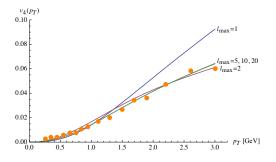


Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]

Solid curves: Different maximal resolution $l_{\sf max}$

Dashed curve: Mode (m=2,l=1) suppressed by factor 0.7

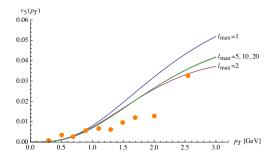
Flow coefficient v_4 for charged particles



Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]

Curves: Different maximal resolution l_{max}

Flow coefficient v_5 for charged particles



Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]

Curves: Different maximal resolution l_{max}

Harmonic flow coefficients, central, particle identified

