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mainly based on

Mode-by-mode fluid dynamics for relativistic heavy ion collisions
[Phys. Lett. B, 728, 407 (2014), with U. A. Wiedemann]

Characterization of initial fluctuations for the hydrodynamical description
of heavy ion collisions, [Phys. Rev. C 88, 044906 (2013), with
U. A. Wiedemann]

Kinetic freeze-out, particle spectra and harmonic flow coe�cients from
mode-by-mode hydrodynamics, [Phys. Rev. C 89 (2014) 034914, with
U. A. Wiedemann]

How (non-) linear is the hydrodynamics of heavy ion collisions? [Phys.
Lett. B 735 (2014) 305, with U. A. Wiedemann, A. Beraudo,
L. Del Zanna, G. Inghirami, V. Rolando]

Statistics of initial density perturbations in heavy ion collisions and their
fluid dynamic response [JHEP 1408 (2014) 005, with U. A. Wiedemann]

Hydrodynamics and Jets in Dialogue [EPJC 74, 3189 (2014), with K. C.
Zapp]

Fluctuations of baryonic number around Bjorken background
[work in progress, with M. Martinez]



Introduction



Evolution in time after heavy ion collision

Non-equilibrium evolution at early times
initial state at from QCD? Color Glass Condensate? ...
thermalization via strong interactions, plasma instabilities, particle
production, ...

Local thermal and chemical equilibrium
strong interactions lead to short thermalization times
evolution from relativistic fluid dynamics
expansion, dilution, cool-down

Chemical freeze-out
for small temperatures one has mesons and baryons
inelastic collision rates become small
particle species do not change any more

Thermal freeze-out
elastic collision rates become small
particles stop interacting
particle momenta do not change any more
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Fluid dynamic regime

Assumes strong interaction e↵ects leading to local equilibrium.

Fluid dynamic variables
thermodynamic variables: e.g. ✏(x), n(x),
fluid velocity u

µ(x),
shear stress tensor ⇡µ⌫(x),
bulk viscous pressure ⇡Bulk(x).

Can be formulated as derivative expansion for Tµ⌫ .

Hydrodynamics is universal: many details of microscopic theory not
important.

Some macroscopic properties are important:
ideal hydro: needs equation of state p = p(T, µ) from
thermodynamics
first order hydro: needs also transport coe�cients like shear viscosity
⌘ = ⌘(T, µ) and bulk viscosity ⇣(T, µ) from linear response theory
second order hydro: needs also relaxation times ⌧Shear, ⌧Bulk etc.
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Non-central collisions

pressure gradients larger in reaction plane
leads to larger fluid velocity in this direction
more particles fly in this direction
can be quantified in terms of elliptic flow v2

particle distribution
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symmetry �! �+ ⇡ implies v1 = v3 = v5 = . . . = 0.
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Two-particle correlation function
normalized two-particle correlation function

C(�1,�2) =
h dN
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Surprisingly v2, v3, v4, v5 and v6 are all non-zero!

[ALICE 2011, similar results from CMS, ATLAS, Phenix, Star]
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Event-by-event fluctuations

argument for v3 = v5 = 0 is based on event-averaged geometric
distribution

deviations from this can come from event-by-event fluctuations.

one example is Glauber model

!10 !5 0 5 10

!5

0

5

initial transverse density distribution fluctuates event-by-event and
this leads to sizeable v3 and v5

more generally also other initial hydro fields may fluctuate: fluid
velocity, shear stress, baryon number density etc
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What perturbations are interesting and why?

Initial fluid perturbations: Event-by-event fluctuations around an
average of fluid fields at time ⌧0 and their evolution:

energy density ✏

fluid velocity u

µ

shear stress ⇡µ⌫

more general also: baryon number density n,
electric charge density, electromagnetic fields, ...

governed by universal evolution equations

can be used to constrain thermodynamic and transport properties

contain interesting information from early times
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Similarities to cosmological fluctuation analysis

fluctuation spectrum contains info from early times

many numbers can be measured and compared to theory

can lead to detailed understanding of evolution

to learn something about the evolution one needs to know some
universal properties of initial state, for example P (k) ⇠ k

ns�1
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A program to understand fluid perturbations

1 Characterize initial perturbations
2 Propagated them through fluid dynamic regime
3 Determine influence on particle spectra and harmonic flow

coe�cients
4 Take also perturbations from non-hydro sources (jets) into account

[see work with K. Zapp, EPJC 74 (2014) 12, 3189]
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Characterization of initial conditions



Transverse enthalpy density

Based on Bessel-Fourier expansion and background density
[Floerchinger & Wiedemann 2013, see also Coleman-Smith, Petersen &
Wolpert 2012, Floerchinger & Wiedemann 2014]

w(r,�) = wBG(r) + wBG(r)

X

m,l

w

(m)
l

e

im�

J

m

⇣
z

(m)
l

⇢(r)

⌘

azimuthal wavenumber m, radial wavenumber l

w

(m)
l

dimensionless

higher m and l correspond to finer spatial resolution

coe�cients w(m)
l

can be related to eccentricienies

works similar for vectors (velocity) and tensors (shear stress)
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Transverse density from Glauber model
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Event ensembles

Initial conditions at beginning of fluid dynamic regime are governed
by event-by-event probability distribution

p

⌧0 [w, u
µ

,⇡

µ⌫

, . . .]

Moments / correlation functions

D
w

(m1)
l1

w

(m2)
l2

. . . w

(mn)
ln

E

contain information from initial state physics / early dynamics
universal (model independent) properties would be nice to have
same information in cumulants (connected correlation functions)
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Statistics of initial density perturbations

Independent point-sources model (IPSM)

w(~x) =


1

⌧0

dWBG

d⌘

�
1

N

NX

j=1

�

(2)
(~x� ~x

j

)

random positions ~x
j

, independent and identically distributed

probability distribution p(~x

j

) reflects collision geometry

possible to determine correlation functions analytically for central
and non-central collisions [Floerchinger & Wiedemann (2014)]

Long-wavelength modes (small m and l) that don’t resolve
di↵erences between point-like and extended sources have
universal statistics.

12 / 32



Solution of IPSM and scaling with number of sources

for IPSM one can exactly determine the correlation functions

hw(m1)
l1

· · ·w(mn)
ln

i

[Floerchinger & Wiedemann, JHEP 1408 (2014) 005]

connected correlation functions (cumulants) scale with N like
[see also Ollitrault & Yan (2014), Bzdak & Skokov (2014)]

hw(m1)
l1

· · ·w(mn)
ln

i
c

⇠ 1

N

n�1

(implies that distribution is non-Gaussian)

scaling broken for non-central collisions

impact parameter dependence of terms that break scaling is known
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Fluid dynamic response



Response to density perturbations

For a single event

V

⇤
m

= v

m

e

�im m

=

X

l
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w
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�

m,m1+m2 + . . .

S(m)l is linear dynamic response function

S(m1,m2)l1,l2 is quadratic dynamic response function etc.

Symmetries imply conservation of azimuthal wavenumber

Response functions depend on thermodynamic and transport
properties, in particular viscosity.
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Flow correlations from initial density correlations
Moments of flow coe�cients

⌦
V

⇤
m1

· · ·V ⇤
mn

↵
=S(m1)l1 · · ·S(mn)ln

D
w

(m1)
l1

· · ·w(mn)
ln

E

+ non-linear terms

combination of dynamical response coe�cients and correlation
functions of initial density perturbations

linear, quadratic and higher-order terms

For N independent sources and central collisions

v

m

{n}n ⇠ 1

N

n�1
or v

m

{n} ⇠ 1

N

1� 1
n

explains why vm{4} ⇠ vm{6} ⇠ vm{8} are of almost equal size
holds also for extended sources
holds also for non-linear response contributions
can be extended to other correlation functions, e. g. hV2V3V

⇤
5 i ⇠ 1

N2

gets broken for non-central collisions
impact parameter dependence of corrections is known
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Proton-nucleus vs. nucleus-nucleus collisions

Raphael Granier de Cassagnac Quark Matter 2014, Darmstadt 

Triangular flow 
• Remarkable similarity in the v3 signal as a function 

of multiplicity in pPb and PbPb 
 

17 

¹ 3 

PLB724 (2013) 213 

(event multiplicity) 

surprisingly flow observables are similar in pPb and PbPb collisions

triangular flow coe�cient v3 as a function of multiplicity (“number
of produced particles”) essentially the same!
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Scaling with system size
Large (PbPb) and small systems (pPb) may have di↵erent number
of independent sources N and response functions S(m)l

For linear dynamics one has parametrically

v

m

{n} ⇠
S(m)l

N

1� 1
n

To have v

m

{n}|PbPb = v

m

{n}|pPb one needs

S(m)l|pPb
S(m)l|PbPb

=

✓
NpPb

NPbPb

◆1� 1
n

For comparison at equal multiplicity one may have NpPb ⇡ NPbPb so
that response functions must be equal

S(m)l|pPb ⇡ S(m)l|PbPb

S(m)l depends on system size only via initial background wBG(r).
Precise dependence can be investigated more closely.
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Hydrodynamic evolution



Perturbative expansion

Write the hydrodynamic fields h = (w, u

µ

,⇡

µ⌫

,⇡Bulk, . . .)

at initial time ⌧0 as

h = h0 + ✏h1

with background h0, fluctuation part ✏h1

at later time ⌧ > ⌧0 as

h = h0 + ✏h1 + ✏

2
h2 + ✏

3
h3 + . . .

Solve for time evolution in this scheme

h0 is solution of full, non-linear hydro equations in symmetric
situation: azimuthal rotation and Bjorken boost invariant

h1 is solution of linearized hydro equations around h0,
can be solved mode-by-mode

h2 can be obtained by from interactions between modes etc.
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Background evolution
System of coupled 1 + 1 dimensional non-linear partial di↵erential
equations for

enthalpy density w(⌧, r) (or temperature T (⌧, r))

fluid velocity u

⌧

(⌧, r), u

r

(⌧, r)

two independent components of shear stress ⇡µ⌫

(⌧, r)

Can be easily solved numerically
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Evolving perturbation modes
Linearized hydro equations: set of coupled 3 + 1 dimensional, linear,
partial di↵erential equations.

Use Fourier expansion

h

j

(⌧, r,�, ⌘) =

X

m

Z
dk

⌘

2⇡

h

(m)
j

(⌧, r, k

⌘

) e

i(m�+k⌘⌘)
.

Reduces to 1 + 1 dimensions.

Can be solved numerically for each initial Bessel-Fourier mode.
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Mode interactions

Non-linear terms in the evolution equations lead to mode
interactions.

Quadratic and higher order in initial perturbations.

Can be determined from iterative solution but has not been fully
worked out yet.

Convergence can be tested with numerical solution of full hydro
equations.
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Evolution of spectrum of density perturbations
Density-density spectrum
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dashed: linear evolution, solid: including first non-linear correction

left: ⌘/s = 0.08, ⌧ = 1.5, 2.5, 3.5, 4.5 fm/c, right: ⌘/s = 0.08 and ⌘/s = 0.8, ⌧ = 7.5 fm/c

[Brouzakis, Floerchinger, Tetradis & Wiedemann, arXiv:1411.2912]
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Kinetic freeze-out



Freeze-out surface

Perturbative expansion can be used also at freeze-out.
[Floerchinger, Wiedemann 2013]

Freeze-out surface is azimuthally symmetric as background.

Generalization to kinetic hadronic scattering and decay phase
possible.

0 2 4 6 8 10
r @fmD0

2
4
6
8
10
12
14

t @fmêcD

(solid: ⌘/s = 0.08, dotted: ⌘/s = 0, dashed: ⌘/s = 0.3)
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Particle distribution

for single event
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| eim 
(m)
l

each mode has di↵erent p
T

-dependence, ✓(m)
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quadratic order correction
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non-linearities from hydro evolution and freeze-out
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Di↵erential harmonic flow coe�cients

Double di↵erential harmonic flow coe�cient (to lowest order)

v

m

{2}2(pa
T

, p

b

T

) =

X

l1,l2

✓

(m)
l1

(p

a

T

) ✓

(m)
l2

(p

b

T

) hw(m)
l1

w

(m)⇤
l2

i

intuitive matrix expression

in general no factorization

can be generalized to higher order flow cumulants
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Baryon number density fluctuations



Fluctuations around vanishing baryon number
Evolution of baryon number density

u
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Structures in transverse and rapidity directions are “flattened out”
by heat conductive dissipation
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Baryon number correlations experimentally
Two-particle correlation function of baryons minus anti-baryons

CBaryon(�1 � �2, ⌘1 � ⌘2) = hn(�1, ⌘1)n(�2, ⌘2)ic

In Fourier representation
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im��+iq�⌘

heat conductivity leads to exponential suppression

˜
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2
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2
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I1 and I2 can be approximated as
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Z ⌧f

⌧0

d⌧
2

R2



nT

✏+ p

�2 ✓@(µ/T )

@n

◆

✏

I2 ⇡
Z ⌧f

⌧0

d⌧
2

⌧2



nT

✏+ p

�2 ✓@(µ/T )

@n

◆

✏

I2 � I1 would lead to long-range correlations in rapidity direction
(”baryon number ridge”)
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Remarks on baryon number fluctuations

Initial (”primordial”) baryon number fluctuations are poorly
understood so far but presumably non-vanishing.

Heat conductivity of QCD also poorly understood theoretically so far

from perturbation theory [Danielewicz & Gyulassy, PRD 31, 53 (1985)]

 ⇠ T

4

µ

2
↵

2
s ln↵s

(µ ⌧ T )

from AdS/CFT [Son & Starinets, JHEP 0603 (2006)]

 = 8⇡2 T

µ

2
⌘ = 2⇡

sT

µ

2
(µ ⌧ T )

More refined study needed to take transverse expansion properly into
account.

Seems to be interesting topic for further experimental and
theoretical studies.
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Summary and Conclusions



Conclusions

Systematic expansion in initial fluid perturbations is possible and has
good convergence properties.

Formalism works in praxis (see also backup slides).

Initial density perturbations have some universal properties that can
help to better constrain thermodynamic and transport properties.

Fluid dynamic response allows to access correlation functions of
initial perturbations.

Baryon number correlations could allow to constrain heat
conductivity.
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Backup



Characterization of transverse density via eccentricities

Fluctuations in initial transverse enthalpy density w(r,�) can be
characterized in terms of eccentricities ✏

n,m

and angles  
n,m

[Ollitrault, Teaney, Yan, Luzum, and others]

✏

n,m

e

im n,m
=

R
dr

R 2⇡
0 d' r

n+1
e

im'

w(r,')

R
dr

R 2⇡
0 d' r

n+1
w(r,')

w(r,�) completely determined by set of all ✏
n,m

and  
n,m

closely related method is based on cumulants [Teaney, Yan]

no positive transverse density can be associated to small set of
cumulants (beyond Gaussian order) such that higher order
cumulants vanish

generalization to velocity and shear fluctuations not known



Scaling tests

Start with single enthalpy density mode (m = 2, l = 1) on top of
background

w(⌧0, r,�) = wBG(⌧0, r)

h
1 + 2 w̃

(2)
1 J2(k

(2)
1 r) cos(2�)

i
.

Evolve this with hydro solver ECHO-QGP
[Del Zanna et al., EPJC 73, 2524 (2013), see also following talk]

Determine Fourier components

w̃

(m)
(⌧, r) =

1

wBG(r)

1

2⇡

Z
d� e

�im�

w(⌧, r,�)
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Scaling tests at first order

Compare enthalpy w̃

(2)
(⌧, r) at fixed ⌧ for di↵erent initial weights
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Scaling tests at second order

From symmetry considerations one expects that modes with m = 0 and

m = 4 receive mainly quadratic contributions ⇠
�
w̃

(2)
1

�2
.
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Hydrodynamic response to initial enthalpy density fluctuations is
perturbative.

Non-linearities can be understood order-by-order and lead to
characteristic “overtones”.

Results motivate more thorough development of fluid dynamic
perturbation theory.
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Scaling tests at third order

From symmetry considerations one expects that modes m = 6 receive

mainly cubic contributions ⇠
�
w̃

(2)
1

�3
.
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Scaling tests embedded in realistic event
Embed mode (m = 2, l = 1) into realistic fluctuating event and compare
to embedding into pure background.
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Scaling tests with several initial modes
Start with linear combination of (m = 2, l = 2) and (m = 3, l = 1)

modes and test scaling for m = 1 and m = 5 response.
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Generalized Glauber model

Fluctuations due to nucleon positions: used so far

✏(⌧,x, y) =

NpartX

i=1

✏

w

(⌧,x� x

i

, y), u

µ

= (1, 0, 0, 0)

can be generalized to include also velocity fluctuations

T

µ⌫

(⌧,x, y) =

NpartX

i=1

T

µ⌫

w

(⌧,x� x

i

, y)

More generally describe primordial fluid fields by
expectation values h✏(⌧0,x, y)i, huµ(⌧0,x, y)i, hnB(⌧0,x, y)i
correlation functions h✏(⌧0,x, y) ✏(⌧0,x0

, y

0)i, etc.
Origin of this fluctuations is initial state physics and
early-time, non-equilibrium dynamics.



Velocity fluctuations

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

also the velocity field will fluctuate at the initialization time ⌧0
take here transverse velocity for every participant to be Gaussian
distributed with width 0.1c

vorticity |@1u2 � @2u
1| and divergence |@1u1

+ @2u
2|



“Proof of principle” study: One-particle spectrum

Initial conditions from Glauber Monte Carlo Model

S(p

T

) = dN/(2⇡p

T

dp

T

d⌘d�)
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Points: 5% most central collisions, ALICE [PRL 109, 252301 (2012)]
Curves: Our calculation, no hadron rescattering and decays after
freeze-out.



Harmonic flow coe�cients for central collisions

Triangular flow for charged particles
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Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]
Curves: Di↵erent maximal resolution lmax



Harmonic flow coe�cients for central collisions

Elliptic flow for charged particles
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Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]
Solid curves: Di↵erent maximal resolution lmax

Dashed curve: Mode (m = 2, l = 1) suppressed by factor 0.7



Harmonic flow coe�cients for central collisions

Flow coe�cient v4 for charged particles
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Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]
Curves: Di↵erent maximal resolution lmax



Harmonic flow coe�cients for central collisions

Flow coe�cient v5 for charged particles
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Points: 2% most central collisions, ALICE [PRL 107, 032301 (2011)]
Curves: Di↵erent maximal resolution lmax



Harmonic flow coe�cients, central, particle identified
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