
Hadronization at high µB in the chiral model

Stefan Flörchinger (CERN)

ECT* Trento, 08.10.2014



based on

S. Floerchinger and C. Wetterich Chiral freeze-out in heavy ion
collisions at large baryon densities, [Nucl. Phys. A, 890-891, 11 (2012)]

see also a related follow-up work
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Chemical freeze-out for different collision energies
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A phase diagram from chemical freeze-out?
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Is the chemical freeze-out universal?

Is the chemical freeze-out dominated by the universal
thermodynamic properties of QCD?

Or do the chemical freeze-out points rather reflect the dynamics of a
heavy-ion collision?

Thought experiment 1:

Consider a universe filled by a quark-gluon plasma with a very slow
expansion

Temperature decreases only very slowly

Chemical equilibrium would be maintained down to very small
temperatures

Thought experiment 2:

Consider a universe filled by a quark-gluon plasma with a very fast
expansion.

No time for equilibration

Quarks and gluons would hadronize like jets



Is chemical freeze-out universal? (2)

Thought experiment 1 would lead to thermal particle yields but at
very low temperature

Thought experiment 2 might lead to non-thermal particle yields but
hard to quantity since hadronization is purely understood

Conclusion: Freeze-out temperature inevitably depends on dynamics
of the expansion

Dependence might be weak for realistic expansions

Freeze-out might become effectively universal



Chemical freeze-out and chiral crossover
It has been argued that chemical-freeze out at RHIC energies is
essentially on the chiral crossover:
[Braun-Munzinger, Stachel, Wetterich, Phys. Lett. B, 596, 61 (2004)]

Expansion rate is approximately rT = |Ṫ /T | ≈ 0.13/fm
Rates for 2→ 2-particle scattering with strangeness exchange too
small to maintain chemical equilibrium, typically r2→2 ≈ 0.018/fm
Multi-hadron strangeness exchange reactions with Nin incoming
particles have rates that depend strongly on density, ∼ nNin

Many such processes become important close to Tc

10
-2

10
-1

1

10

10 2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

n/ (fm
-3)

o 1
 (f

m
)

165 170 175 180 185 190 T(MeV)

Time to bring Ω baryons into equilibrium



Is chemical freeze-out close to a phase transition
everywhere?

It was also proposed that the freeze-out line corresponds to

chiral & deconfinement transition at small µ

transition to quarkyonic matter at small T
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Normal nuclear matter and the droplet model
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Normal nuclear matter is sitting on a first order phase transition at
T = 0, µ = µc.

For densities n < nnucl = 0.153/fm3 one has phase separation:
vacuum (n = 0) or nuclear matter (n = nnucl)

Nuclei can be seen as droplets of normal nuclear matter



The chiral nucleon-meson model
Low-energy degrees of freedom of QCD

nucleons (protons, neutrons)

ψa =

(
p
n

)
scalar mesons σ, pseudscalar mesons (pions) π0, π± combined into

φab =

(
1√
2
(σ + iπ0) iπ−

iπ+ 1√
2
(σ − iπ0)

)

isospin singlet vector mesons ωµ

Chiral transformations are linear

ψ →
(

1 +
i

2
αV τ +

i

2
αAτγ5 +

i

2
βV +

i

2
βAγ5

)
ψ,

φ→ φ− i

2
αV [τ , φ]− i

2
αA{τ , φ}+ iβAφ,

ωµ → ωµ.



The chiral nucleon-meson model (2)

L =ψ̄a iγ
ν(∂ν − i g ων − i µ δ0ν) ψa

+ h
√

2
[
ψ̄a

(
1+γ5

2

)
φabψb + ψ̄a

(
1−γ5

2

)
(φ†)abψb

]
+ 1

2φ
∗
ab(−∂µ∂µ)φab + Umic(ρ, σ)

+
1

4
(∂µων − ∂νωµ)(∂µων − ∂νωµ) +

1

2
m2
ω ωµω

µ.

kinetic terms for nucleons ψa, scalars φab and vectors ων
Yukawa coupling between nucleons and vectors g

Yukawa coupling between nucleons and scalars h

effective potential for scalars

Umic(ρ, σ) = Ū(ρ)−m2
πfπσ

with the chiral invariant combination

ρ =
1

2
φ∗abφab =

1

2
(σ2 + π2).

extended and chiral version of Waleckas model
[Walecka, Ann. Phys. 83, 491 (1974)]



The chiral nucleon-meson model (3)

No mass terms for nucleons ψa, effective masses come from chiral
symmetry breaking only.

L is invariant under chiral symmetry except for an explicit
symmetry breaking term from quark masses ∼ m2

πfπσ

Parameters of the model are

pion mass mπ = 135 MeV
pion decay constant fπ = 93 MeV
vector boson mass mω = 783 MeV

as well as

vector Yukawa couplings g
scalar Yukawa coupling h
the form of the effective potential Ū(ρ).



Bosonic field expectation values

From symmetries at non-zero density

time component of vector field ω0 6= 0
leads to shift in nucleon chemical potential µeff = µ+ g ω0

spatial components of vector field ωj = 0

scalar field σ 6= 0
leads to effective nucleon mass mnucl = hσ

pseudoscalar field π0 = π+ = π− = 0

Thermodynamic and chiral properties from quantum effective potential

U(σ, ω0)



Effective potential

Calculation of U(σ, ω0) from microscopic model is in general difficult
Simplifications from two points:

explicit breaking of chiral symmetry comes only from linear term

U(σ, ω0) = U(ρ, ω0)−m2
πfπσ, ρ = σ2/2

with chiral invariant potential U(ρ, ω0)

at T = 0 and µ = µc many properties of U are known from nuclear
droplet model. Write therefore

U(σ, ω0; T, µ) = U(σ, ω0; 0, µc) + ∆

where the difference ∆ is much easier to compute than the full
potential U



Effective potential (2)

Most important medium modification of U is from nucleon fluctuations

U(σ, ω0;T, µ) =Uvac(σ, ω0)− 4 pFG(T, µ+ gω0, hσ)

+ boson fluctuations,

For the vacuum part use Taylor expansion around minimum

Uvac(σ, ω0) =
m2

π

2 (σ2 − f2π) + λ
8 (σ2 − f2π)2

+ γ3
3f2

π
(σ2 − f2π)3 + γ4

4f4
π

(σ2 − f2π)4

−m2
πfπ (σ − fπ)− 1

2m
2
ωω

2
0 .

Fermionic fluctuation part has factor 4 from spin + isospin degeneracy
and

pFG(T, µ,m) =

∫
d3p

(2π)3
~p2

3
√
~p2+m2

[
1

e
1
T

(
√
~p2+m2−µ) + 1

+
1

e
1
T

(
√
~p2+m2+µ) + 1

]
.

Bosonic fluctuations can be included by solving functional
renormalization group equations [done by Drews, Hell, Klein & Weise (2013)]



Fixing parameters

In vacuum T = 0, µ = 0 the field equations

∂

∂σ
U(σ, ω0) =

∂

∂ω0
U(σ, ω0) = 0

have the solution
σ = fπ, ω0 = 0.

Linear coefficient in π2 determines the pion mass mπ

Nucleon mass is given by mN = hfπ which gives h = 10

Quadratic coefficient in σ gives m2
σ = m2

π + λf2π



First order quantum phase transition
At vanishing temperature T = 0 one has a first-order phase
transition at some value µc
Solve field equation for ω0:

∂

∂ω0
U(σ, ω0) = 0 → U(σ) = U(σ, ω0,min)

Effective potential U(σ) for T = 0:
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Fixing parameters (2)

Directly at µ = µc one has two minima:

usual vacuum minimum at σ = fπ = 93 MeV
nuclear matter minimum at σ = σnucl

The baryon density and vector field condensate have values

n = 0, ω0 = 0 at σ = fπ
n = nnucl, ω0 = ω0,nucl at σ = σnucl

From experimental values for

nuclear binding energy εbind = −16.3 MeV,
nuclear saturation density nnucl = 0.153/fm3

Landau mass mL = µc + gω0,nucl = 0.80mN

one can determine

the vector Yukawa coupling g = 9.5,
the critical chemical potential µc = mN + εbind = 922.7 MeV
and the condensates σnucl = 69.8 MeV, ω0,nucl = −18 MeV.



Fixing parameters (3)

Two of the remaining parameters λ, γ3, γ4 get fixed by the
constraints for a first order phase transition at µc

U(σnucl, ω0,nucl) = U(fπ, 0)

and
∂

∂σ
U(σnucl, ω0,nucl) = 0.

The last parameter can be fixed from other properties of normal
nuclear matter.

The choice λ = 50, γ3 = 3, γ4 = 50 gives

vacuum mass of σ-meson mσ = 670 MeV
compressibility module K = 9n

∂n/∂µ
= 300 MeV

surface tension of nuclear droplet
Σ =

∫ fπ
σnucl

√
2U(σ)dσ = 42000 MeV3.

in reasonable agreement with the experimentally established values.



The liquid-gas phase transition

Phase transition can be followed also at T > 0. For µ = µc(T )
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T = {0, 5, 10, 15, 20}MeV.

For increasing temperature

U(σ) at minima becomes more negative: pressure p increases

potential barrier gets smaller: droplet surface tension Σ decreases



First order line and critical end point

The first order phase transition line ends in a critical end point at
some temperature T∗ and chemical potential µ∗

The form of the transition line is somewhat changed by the effect of
bosonic fluctuations
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[Drews, Hell, Klein, Weise, PRD 88, 096011 (2013)]



Chiral order parameter
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Left: T = {0, 10, 20, 30, 40, 50, 60, 70, 80}MeV. Right: Contour plot for σ0/fπ .

σ0 decreases for larger chemical potential and temperature

Effective nucleon mass mN,eff = hσ0 gets smaller

First order phase transition becomes quickly rather smooth crossover



Baryon number density
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First order phase transition becomes quickly rather smooth crossover



Chiral order parameter as a function of density
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T = 0 (solid), T = 50 MeV (dashed).

Chiral order parameter σ0 decreases with baryon density

Temperature dependence rather small



Chemical freeze out

Is there any sign of a phase transition in the region of chemical
freeze-out at large µ?

Consider for example the region around highest baryon density
µch = 760± 23 MeV, Tch = 56+9.6

−2.0 MeV
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Left: Chiral condensate σ0 for µ = 750 MeV. The dot marks chemical freeze-out.

Right: Baryon number density (solid) and pion number density (dashed).



Chemical freeze-out (2)

Freeze-out at large µ does not seem to be related to phase transition
or rapid crossover.

Baryon number density does seem to change quickly there, however.

Chemical freeze-out at constant number density does make physical
sense when rates for strangeness exchange processes depend strongly
on density.

------
--

--

-- --

--

--
--

0 5 10 15 20
sNN @GeVD0.00

0.05

0.10

0.15

Number density @fm-3D

Baryon density due to protons, neutrons and Delta baryons in statistical model.



Chemical freeze-out (3)

At small collision energy or high baryon chemical potential chemical
freeze-out takes place at constant baryon number density!
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Red line: First order liquid-gas phase transition.

Black line: Constant baryon number density nBaryons = 0.15nnucl.



Conclusions

“Chemical freeze-out = Phase transition” is too simple

No sign of any phase transition or rapid crossover in the region of
chemical freeze-out for low-energy experiments

Chemical freeze-out seems still related to thermodynamic properties
of QCD: nBaryons = 0.15nnucl

Chiral nucleon-meson model gives rather detailed and realistic
description of nuclear matter as well as thermodynamic properties of
QCD at intermediate µ and low temperatures

Would also be interesting to determine transport properties i.e.
viscosities and conductivities

Bottom-up approach to QCD phase diagram might be explored
further, could also be extended to smaller chemical potential



BACKUP



Parametrization in T -µ-plane is dangerous
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Parametrization of freeze-out curve seems reasonable with respect to
temperature and chemical potential...



Parametrization in T -µ-plane is dangerous (2)
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...but is quite far from data points for baryon density.


