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Introduction



Heavy Ion Collisions
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ions are strongly Lorentz-contracted

some medium is produced after collision

medium expands in longitudinal direction and gets diluted



Evolution in time

Non-equilibrium evolution at early times

initial state at from QCD? Color Glass Condensate? ...
thermalization via strong interactions, plasma instabilities, particle
production, ...

Local thermal and chemical equilibrium

strong interactions lead to short thermalization times
evolution from relativistic fluid dynamics
expansion, dilution, cool-down

Chemical freeze-out

for small temperatures one has mesons and baryons
inelastic collision rates become small
particle species do not change any more

Thermal freeze-out

elastic collision rates become small
particles stop interacting
particle momenta do not change any more



Fluid dynamic regime

Assumes strong interaction effects leading to local equilibrium.

Fluid dynamic variables

thermodynamic variables: e.g. T (x), µ(x),
fluid velocity uµ(x),
shear stress tensor πµν(x),
bulk viscous pressure πBulk(x).

Can be formulated as derivative expansion for Tµν .

Hydrodynamics is universal: many details of microscopic theory not
important.

Some macroscopic properties are important:

ideal hydro: needs equation of state p = p(T, µ), n = n(T, µ) from
thermodynamics
first order hydro: needs also transport coefficients like shear viscosity
η = η(T, µ) and bulk viscosity ζ(T, µ) from linear response theory
second order hydro: needs also relaxation times τShear, τBulk etc.



Experimental proof for fluctuations: v3 and v5

(ALICE 2011, similar pictures also from CMS, ATLAS, Phenix)

One can expand two-point correlation function

C(∆φ) ∼ 1 +
∞∑
n=2

2 vn cos(n∆φ)

.Without fluctuations one would expect from mirror symmetry

v3 = v5 = . . . = 0.



Event-by-event fluctuations

Argument for v3 = v5 = 0 is based on smooth and symmetric energy
density distribution.

Deviations from this can come from event-by-event fluctuations.

One example is Glauber model
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The initial transverse density distribution fluctuates event-by-event
and this leads to sizeable v3 and v5.

More generally also other initial hydro fields may fluctuate: fluid
velocity, shear stress, baryon number density etc.



What fluctuations are interesting and why?

Initial hydro fluctuations: Event-by-event perturbations around
the average of hydrodynamical fields at time τ0:

energy density ε
fluid velocity uµ

shear stress πµν

more general also: baryon number density nB ,
electric charge density, electromagnetic fields, ...

measure for deviations from equilibrium

contain interesting information from early times

governed by universal evolution equations

can be used to constrain thermodynamic and transport properties



Similarities to cosmic microwave background

fluctuation spectrum contains info from early times

many numbers can be measured and compared to theory

can lead to detailed understanding of evolution and properties

could trigger precision era in heavy ion physics



A program to understand fluctuations

1 Initial fluctuations at initialization time of hydro should be
characterized and quantified completely.

2 Fluctuations have to be propagated through the hydrodynamical
regime.

3 Contribution of different fluctuations to the particle spectra must be
understood and quantified.

4 Fluctuations generated from non-hydro sources (such as jets) have
to be taken into account.



Background-fluctuation splitting

Background or average over many events is described by smooth
fields

w0 = 〈w〉
uµ0 = 〈uµ〉

Fluctuations are added on top

w = w0 + w1

uµ = uµ0 + uµ1

For background one may assume Bjorken boost and azimuthal
rotation invariance

w0 = w0(τ, r)

uµ0 = (uτ0(τ, r), ur0(τ, r), 0, 0)



Characterization of initial conditions



Characterization of transverse density 1

Fluctuations in initial transverse enthalpy density w(r, φ) can be
characterized in terms of eccentricities εn,m and angles ψn,m
[Ollitrault, Teaney, Yan, Luzum, and others]

εn,m e
imψn,m =

∫
dr
∫ 2π

0
dϕ rn+1 eimϕ w(r, ϕ)∫

dr
∫ 2π

0
dϕ rn+1 w(r, ϕ)

w(r, φ) completely determined by set of all εn,m and ψn,m

closely related method is based on cumulants [Teaney, Yan]

no positive transverse density can be associated to small set of
cumulants (beyond Gaussian order) such that higher order
cumulants vanish

generalization to velocity and shear fluctuations not known



Characterization of transverse density 2

Characterization based on Bessel-Fourier expansion [Coleman-Smith,

Petersen & Wolpert, 2012]

w(r, φ) =
∑
m,n

Am,n e
imφ Jm(λm,n

r
r0

)

Characterization based on Bessel-Fourier expansion and background
density [Floerchinger & Wiedemann, 2013]

w(r, φ) = wBG(r) + wBG(r)

mmax∑
m=−mmax

lmax∑
l=1

w̃
(m)
l eimφ Jm(k

(m)
l r)

w(r, φ) completely determined by set of all w̃
(m)
l

higher l correspond to smaller spatial resolution

single or few coefficients w̃
(m)
l lead to positive density

single modes can be propagated in hydro

works similar for vectors (velocity) and tensors (shear stress)



Transverse density from Glauber model



Distribution of weights

From Monte-Carlo Glauber model. Some examples:
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Velocity fluctuation

Initial velocity fluctuations at τ0 ≈ 0.5 fm/c are conceivable.

Characterization similar as for density fluctuations. Two
polarizations

ur = urBG +
1√
2

(ũ− + ũ+)

uφ =
i√
2 r

(ũ− − ũ+),

with

ũ−(r, φ) =
∑
m,l

ũ
−(m)
l eimφ Jm−1

(
k
(m)
l r

)
ũ+(r, φ) =

∑
m,l

ũ
+(m)
l eimφ Jm+1

(
k
(m)
l r

)
.

Would be interesting to search for them in experimental data.



Event ensembles
Event ensembles can be characterized in terms of functional
probability distribution pτ0 [w, uµ, πµν , . . .].

Simplest case is Gaussian form

pτ0 ∼ exp

[
− 1

2

mmax∑
m=−mmax

lmax∑
l1,l2=1

T
(m)
l1l2

w̃
(m)∗
l1

w̃
(m)
l2

]

Fully determined by correlator

(T (m))−1l1l2 = 〈w̃(m)
l1

w̃
(m)∗
l2
〉
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Hydrodynamic evolution



Perturbative expansion

Write the hydrodynamic fields h = (w, uµ, πµν , πBulk, . . .)

at initial time τ0 as

h = h0 + ε h1

with h0 the Background and ε h1 the fluctuation part

at some later time τ > τ0 as

h = h0 + ε h1 + ε2h2 + ε3h3 + . . .

Solve for time evolution in this scheme

h0 is a solution of the full non-linear hydro equations but with
higher symmetry: azimuthal rotation and Bjorken boost invariance

h1 is a solution of the linearized hydro equations around h0, can be
solved mode-by-mode

h2 can be obtained by from interactions between modes etc.



Background evolution

System of coupled 1 + 1 dimensional non-linear partial differential
equations for

enthalpy density w(τ, r) or temperature T (τ, r)

fluid velocity uτ (τ, r), ur(τ, r)

two independent components of shear stress πµν(τ, r)

Can be easily solved numerically
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Evolving fluctuation modes

Linearized hydro equations are system of coupled 3 + 1 dimensional,
linear partial differential equations. Use Fourier expansion

hj(τ, r, φ, η) =
∑
m

∫
dkη
2π

h
(m)
j (τ, r, kη) ei(mφ+kηη).

This gives 1 + 1 dimensional linear partial differential equations that can
be solved again numerically for initial conditions corresponding to each
Bessel-Fourier mode.



Mode interactions

Non-linear terms in the evolution equations for fluctuating fields lead
to mode interaction terms of quadratic and higher order in the initial
fluctuation fields.

One can determine these terms from an iterative solution but that
has not been fully worked out yet.

The whole picture can be tested with complete numerical solution of
the full hydro equations.



Scaling tests
Start with single enthalpy density mode (m = 2, l = 1) on top of
background

w(τ0, r, φ) = wBG(τ0, r)
[
1 + 2 w̃

(2)
1 J2(k

(2)
1 r) cos(2φ)

]
.

Evolve this with hydro solver ECHO-QGP [Del Zanna et al., EPJC 73,

2524 (2013)] and determine Fourier component

w̃(2)(τ, r) = w(2)(τ, r)/wBG(τ, r).
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Scaling tests at first order

Compare enthalpy w̃(2)(τ, r) at fixed τ for different initial weights
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Scaling tests at second order

From symmetry considerations one expects that modes with m = 0 and

m = 4 receive mainly quadratic contributions ∼
(
w̃

(2)
1

)2
.
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Scaling tests at third order

From symmetry considerations one expects that modes m = 6 receive

mainly cubic contributions ∼
(
w̃

(2)
1

)3
.
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Hydrodynamic response to initial enthalpy density perturbations
perturbative.

Non-linearities can be understood order-by-order and lead to
characteristic “overtones”.

Results motivate a more thorough development of hydrodynamic
perturbation theory.



Kinetic freeze-out



Freeze-out surface
Background and fluctuations are propagated until Tfo = 120 MeV is
reached.
Distribution functions are determined and free streaming is assumed
for later times [Cooper & Frye].
Background-fluctuation splitting and expansion in powers of
perturbations can be used also at freeze-out.
Freeze-out surface is azimuthally symmetric as background
[Floerchinger, Wiedemann 2013].
Generalization to kinetic hadronic scattering and decay phase
possible.
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Contribution of modes to “single event spectrum”

Particle spectrum (or its logarithm) can be expanded in contribution from
different modes. To linear order:

ln

(
dN single event

pT dpT dφdy

)
= lnS0(pT )︸ ︷︷ ︸

from background

+
∑
m,l

w̃
(m)
l eimφθ

(m)
l (pT )︸ ︷︷ ︸

from fluctuations

Each mode has it’s own angle w̃
(m)
l = |w̃(m)

l | eimψ
(m)
l .

pT -dependence of different modes described by θ
(m)
l (pT ).

To quadratic order this gets supplemented by∑
m1,m2,l1,l2

w̃
(m1)
l1

w̃
(m2)
l2

ei(m1+m2)φ κ
(m1,m2)
l1,l2

(pT ).

The non-linearities encoded in κ
(m1,m2)
l1,l2

(pT ) arise both from hydro
evolution and from kinetic freeze-out itself.



Harmonic flow coefficients

Double differential harmonic flow coefficient to lowest order

v2m{2}(paT , pbT ) =

lmax∑
l1,l2=1

θ
(m)
l1

(paT ) θ
(m)
l2

(pbT ) 〈w̃(m)
l1

w̃
(m)∗
l2
〉

intuitive matrix expression

in general no factorization

higher order corrections important for non-central collisions



One-particle spectrum

S(pT ) = dN/(2πpT dpT dηdφ)
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Harmonic flow coefficients for central collisions

Elliptic flow for charged particles
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Harmonic flow coefficients for central collisions

Triangular flow for charged particles
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Harmonic flow coefficients for central collisions

Flow coefficient v4 for charged particles
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Harmonic flow coefficients for central collisions

Flow coefficient v5 for charged particles
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Harmonic flow coefficients, central, particle identified
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Summary and Conclusions



Conclusions

Mode-by-mode perturbative hydrodynamic picture allows to
determine response to initial density perturbations.

Hydrodynamic evolution can be disentangled from initial state
model.

First study for enthalpy density fluctuations in Glauber model

yields good description of vm(pT ) for central collisions,
shows that fluctuations up to lmax ≈ 5 can be resolved.

Fluctuations to be studied:
transverse plane rapidity direction

enthalpy density / entropy X -
fluid velocity - -
shear stress - -
baryon number density - -
electromagnetic fields - -
electric charge density - -
chiral order parameter - -



Backup



Scaling tests embedded in realistic event

Embed mode (m = 2, l = 1) into realistic fluctuating event and compare
to embedding into pure background.
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Scaling tests with several initial modes

Start with linear combination of (m = 2, l = 2) and (m = 3, l = 1)
modes and test scaling for m = 1 and m = 5 response.
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Generalized Glauber model

Fluctuations due to nucleon positions: used so far

ε(τ,x, y) =

Npart∑
i=1

εw(τ,x− xi, y), uµ = (1, 0, 0, 0)

can be generalized to include also velocity fluctuations

Tµν(τ,x, y) =

Npart∑
i=1

Tµνw (τ,x− xi, y)

More generally describe primordial fluid fields by

expectation values 〈ε(τ0,x, y)〉, 〈uµ(τ0,x, y)〉, 〈nB(τ0,x, y)〉
correlation functions 〈ε(τ0,x, y) ε(τ0,x′, y′)〉, etc.

Origin of this fluctuations is initial state physics and
early-time, non-equilibrium dynamics.



Velocity fluctuations
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also the velocity field will fluctuate at the initialization time τ0
take here transverse velocity for every participant to be Gaussian
distributed with width 0.1c

vorticity |∂1u2 − ∂2u1| and divergence |∂1u1 + ∂2u
2|


