Isotropization from Color Field Condensate in heavy ion collisions

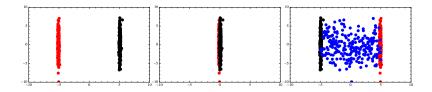
Stefan Flörchinger (CERN)

RBRC Workshop on "The Approach to Equilibrium in Strongly Interacting Matter", BNL, April 2, 2014.

based on:

S. Floerchinger and C. Wetterich, *Isotropization from Color Field Condensate in heavy ion collisions*, [JHEP 03 (2014) 121].

Heavy Ion Collisions



- ions are strongly Lorentz-contracted
- some medium is produced after collision
- medium expands in longitudinal direction and gets diluted

Evolution in time

- Non-equilibrium evolution at early times
 - initial state at from QCD? Color Glass Condensate? ...
 - thermalization via strong interactions, plasma instabilities, particle production, ...
- Local thermal and chemical equilibrium
 - strong interactions lead to short thermalization times
 - evolution from relativistic fluid dynamics
 - expansion, dilution, cool-down
- Chemical freeze-out
 - for small temperatures one has mesons and baryons
 - inelastic collision rates become small
 - particle species do not change any more
- Thermal freeze-out
 - · elastic collision rates become small
 - particles stop interacting
 - particle momenta do not change any more

The puzzle of thermalization / isotropization

- Hydrodynamic description works well when started at $\tau_0 \approx 0.5 \, \mathrm{fm/c}$.
- Perturbative time-scale for thermalization is much longer [Baier, Mueller, Schiff, Son (2001)].
- Effective hydrodynamic description for some quantities may also be possible without local equilibrium and detailed balance.
- Some quantities e.g. pressure may thermalize faster than others: "Prethermalization" [Berges, Borsanyi, Wetterich (2004)].
- In praxis hydro description does assume early local equilibrium and it works rather well with that.
- There must be some nontrivial mechanism of thermalization / isotropization to be understood.
- Another puzzle is: How does entropy and particle production work?

Could macroscopic / classical fields be the solution?

- Field expectation value or "classical field" has influence on quasi-particle excitations and leads to
 - modified vertices
 - modified dispersion relations / self energies
- That could lead to higher scattering rates and faster thermalization.
- Dynamical evolution of classical fields itself might also contribute to isotropization.
- Classical fields can also induce instabilities / particle production.

Large occupation numbers versus condensate

- In thermodynamic limit (stationary, infinite volume) a classical field corresponds to large occupation number of zero-mode: a condensate.
- For realistic heavy-ion collision one may have
 - non-equilibrium situation
 - finite size
 - finite number of gluons.
- Distinction between condensate and large occupation numbers for a few modes is not so clear.
- Nevertheless, condensate picture may be easiest way to capture important features of situation with large occupation numbers.
- Gluon condensate were also discussed in kinetic theory framework.
 [Blaizot, Gelis, Liao, McLerran, Venugopalan, Epelbaum, Berges,
 Schlichting, Sexty, Kurkela, Moore,...]

Is a homogeneous and isotropic color field possible?

- Expectation value for vector field $\langle {\bf A}_\mu \rangle$ breaks rotation invariance except for $\mu=0$ component.
- But A_0 is gauge degree of freedom.
- ullet One can choose Weyl or temporal gauge, ${f A_0}={f 0}.$
- Seems to suggest that homogeneous and isotropic color field is not possible.

Modified rotation symmetry

- One can combine rotations with gauge transformations into a modified rotation transformation [Reuter, Wetterich (1994)].
- Group theoretic: embed $SU(2) \in SU(3)$.
- Gauge singlets rotate in the normal way.
- There are two inequivalent embeddings of this type. For one of them Lie algebra of SU(2) spanned by Gell-Mann matrices $\lambda_2, \lambda_5, \lambda_7$.
- Contains a singlet

$$(A_j)_{mn} = \sigma \ \epsilon_{jmn}$$

ullet More general, temporal part ${f A}_0$ transforms like

$$8 = 5 + 3$$
,

and spatial part \mathbf{A}_j like

$$24 = 7 + 2 \times 5 + 2 \times 3 + 1.$$

Field configurations with cylindrical symmetry

- There is only one candidate for isotropic condensate σ , i.e. a singlet under three-dimensional rotations.
- For cylindrical symmetry, i.e. reduced symmetry under
 - rotations in the transverse plane of x_1, x_2 ,
 - \bullet rotations of 180° around x_1 or x_2 axis,

one has two more condensate candidates, $\tilde{\gamma}^A$ and $\tilde{\gamma}^B$.

 \bullet For space parity transformations $\mathsf{P}(A_0,A_j)=(A_0,-A_j)$ one has

$$\mathsf{P}\,\sigma = -\sigma, \qquad \mathsf{P}\,\tilde{\gamma}^\mathsf{A} = -\tilde{\gamma}^\mathsf{A}, \qquad \mathsf{P}\,\tilde{\gamma}^\mathsf{B} = -\tilde{\gamma}^\mathsf{B}.$$

ullet For color charge conjugation ${\sf C}\,{f A}_\mu = -{f A}_\mu^*$ one has

$$\mathsf{C}\,\sigma = \sigma, \qquad \mathsf{C}\,\tilde{\gamma}^\mathsf{A} = -\tilde{\gamma}^\mathsf{A}, \qquad \mathsf{C}\,\tilde{\gamma}^\mathsf{B} = \tilde{\gamma}^\mathsf{B}.$$

and accordingly for CP

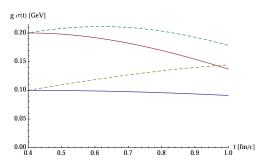
$$\mathsf{CP}\,\sigma = -\sigma, \qquad \mathsf{CP}\,\tilde{\gamma}^\mathsf{A} = \tilde{\gamma}^\mathsf{A}, \qquad \mathsf{CP}\,\tilde{\gamma}^\mathsf{B} = -\tilde{\gamma}^\mathsf{B}.$$

Time evolution of condensates 1

- Time evolution of condensate in general quite complicated due to quantum effects.
- Qualitative guiding from classical Yang-Mills equations.
- ullet For isotropic and homogeneous condensate σ

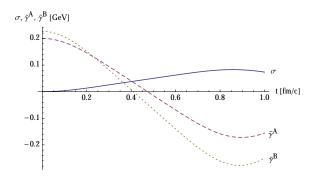
$$\partial_t^2 \sigma = -2g^2 \sigma^3.$$

Anharmonic oscillator, solution in terms of Jacobi elliptic functions.



Time evolution of condensate 2

- Isotropic and cylindric condensates have coupled evolution equations.
- Can be easily solved numerically.
- Isotropic condensate σ can be generated from $\tilde{\gamma}^A$, $\tilde{\gamma}^B$. For example:



Energy-momentum tensor due to condensates

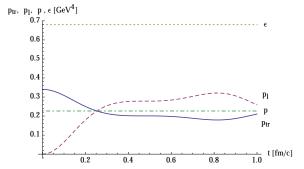
• Energy-momentum tensor due to condensates

$$T^{\mu\nu} = 2\mathrm{tr}\; \mathbf{F}^{\rho\mu} \mathbf{F}_{\rho}^{\;\;\nu} - \frac{1}{2} g^{\mu\nu}\; \mathrm{tr}\; \mathbf{F}^{\alpha\beta} \mathbf{F}_{\alpha\beta}.$$

• Assume that energy and momentum are dominated by this.

$$T^{\mu\nu} = \operatorname{diag}(\epsilon, p_{tr}, p_{tr}, p_l).$$

For same example as above:



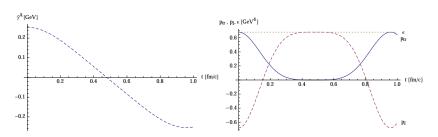
Condensates can contribute to quick isotropization!

CP-even cylindrical condensate

- \bullet Initial condition with only $\tilde{\gamma}^A$ is CP symmetric.
- ullet CP-breaking isotropic condensate σ not generated.
- Initial energy momentum tensor of the form

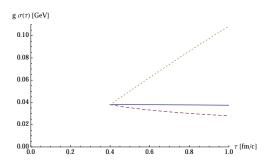
$$T^{\mu\nu} = \operatorname{diag}(\epsilon, p_{tr}, p_{tr}, p_l) = \operatorname{diag}(\epsilon, \epsilon, \epsilon, -\epsilon).$$

 \bullet Leads to oscillations between p_{tr} and p_l



$Longitudinal\ expansion$

- In realistic heavy ion collision the time evolution is modified by several effects, in particular by longitudinal expansion.
- Condensates will be diluted.
- That will probably hinder oscillations.
- Compare here only different scenarios for time evolution to $1/\tau^{1/3}$ dilution.



Excitations

- Consider now excitations of other field modes in the presence of isotropic condensate σ .
- Classify them according to the transformation behavior under modified rotations.
- ullet Investigate in particular dispersion relations for excitations in the presence of isotropic condensate σ

Decomposition of gauge field 1

Write spatial and temporal parts of gauge field

$$(A_{j})_{mn} = \kappa_{jmn} + \gamma_{mk}^{A} \epsilon_{kjn} + \gamma_{nk}^{A} \epsilon_{kjm} + i \gamma_{jk}^{B} \epsilon_{kmn}$$
$$+ (\beta_{m}^{A} + i \beta_{m}^{B}) \delta_{jn} + (\beta_{n}^{A} - i \beta_{n}^{B}) \delta_{jm} - \frac{2}{3} \beta_{j}^{A} \delta_{mn} + i \sigma \epsilon_{jmn}$$
$$(A_{0})_{mn} = \gamma_{mn}^{C} + i \beta_{l}^{C} \epsilon_{lmn}$$

with

- \bullet κ_{jmn} is real, completely symmetric, three-dimensional tensor of rank three, traceless with respect to all contractions,
- $\gamma^A_{jk}, \, \gamma^B_{jk}$ and γ^C_{jk} are real, symmetric and traceless three-dimensional tensors.
- β_m^A , β_m^B and β_m^C are real, three-dimensional vectors.

In summary

$$24 = 7 + 2 \times 5 + 2 \times 3 + 1,$$

 $8 = 5 + 3.$

Decomposition of gauge field 2

To analyze dispersion relations it is useful to decompose further

vectors

$$\beta_m = \partial_m \beta + \hat{\beta}_m$$

- β is a real scalar,
- $\hat{\beta}_m$ is a real, divergence-less vector.
- tensors of rank two

$$\gamma_{mn} = \hat{\gamma}_{mn} + \partial_m \hat{\gamma}_n + \partial_n \hat{\gamma}_m + (\partial_m \partial_n - \frac{1}{3} \delta_{mn} \partial_j^2) \gamma$$

- ullet $\hat{\gamma}_{mn}$ is real, traceless and divergence-less tensor
- $\hat{\gamma}_m$ is real, divergence-less vector
- ullet γ is a real scalar.
- and tensors of rank three

$$\kappa_{jmn} = \hat{\kappa}_{jmn} + \partial_j \hat{\kappa}_{mn} + \partial_m \hat{\kappa}_{jn} + \partial_n \hat{\kappa}_{jm} + \dots$$

Decomposition of gauge field 3

- Discrete symmetries C and P classify fields further.
- Fields in different representations du not mix on linear level.
- Gauge fixing to Weyl gauge implies $\mathbf{A}_0 = 0$ or $\gamma_{mn}^C = \beta_m^C = 0$.
- At this point we are left with
 - C-even scalars $\sigma, \beta^B, \gamma^B$
 - C-odd scalars $\beta^{A}, \gamma^{A}, \kappa$
 - C-even vectors $\hat{\beta}_m^B, \hat{\gamma}_m^B$
 - C-odd vectors $\hat{eta}_m^A, \hat{\gamma}_m^A, \hat{\kappa}_m$
 - ullet C-even rank-two tensors $\hat{\gamma}^B_{mn}$
 - C-odd rank-two tensors $\hat{\gamma}_{mn}^{A}, \hat{\kappa}_{mn}$
 - ullet C-odd rank-three tensor $\hat{\gamma}_{jmn}$

which makes 24 real degrees of freedom.

• To reduce to 16 d.o.f. one needs the Gauss constraint.

$Constraint\ equations$

Variation of action with respect to A_0 yields the Gauss constraint

$$\partial_j(E_j)_{mn} - ig(A_j)_{mk}(E_j)_{kn} + ig(E_j)_{mk}(A_j)_{kn} = D_j(E_j)_{mn} = 0.$$

Linearize this around constant background σ and decomposed further

tensor constraint

$$\begin{split} &\partial_0 \left[\partial_j \, \kappa_{jmn} + \epsilon_{kjn} (\partial_j \gamma_{mk}^A) + \epsilon_{kjm} (\partial_j \gamma_{nk}^A) \right. \\ &\left. + \partial_m \beta_n^A + \partial_n \beta_m^A - \frac{2}{3} \partial_j \beta_j^A \, \delta_{mn} - 6 \, g \sigma \, \gamma_{mn}^A \right] = 0, \end{split}$$

vector constraint

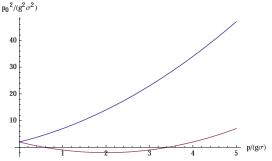
$$\partial_0 \left[\partial_k \gamma_{jk}^B + \epsilon_{jmn} \partial_n \beta_m^B + \partial_j \delta \sigma - 2 g \sigma \beta_j^B \right] = 0.$$

Instabilities and particle production

One can now determine the dispersion relations for independent excitation modes. For example, for symmetric tensor of rank three $\hat{\kappa}_{jmn}$

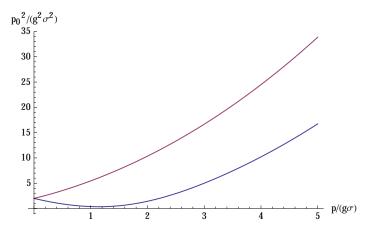
$$p_0^2 = \vec{p}^2 + 2g^2\sigma^2 \pm 4pg\sigma,$$

- One mode gapped with $\Delta = \sqrt{2g^2\sigma^2}$.
- Other mode has Nielsen-Olesen instability for intermediate momenta.
- Particles will be produced in that momentum regime.
- Time scale for particle production $au_{\rm pp} pprox 1/\sqrt{g^2\sigma^2} pprox 1\,{\rm fm/c}.$



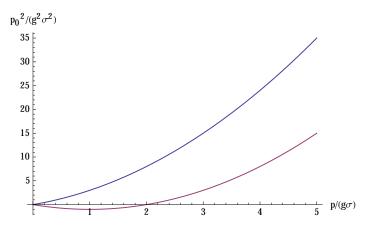
Dispersion relations 1

C-odd tensors of rank two



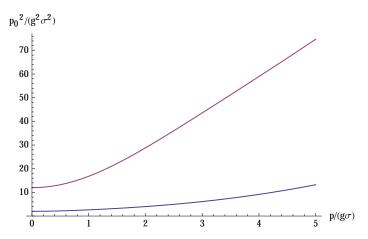
$Dispersion\ relations\ 2$

C-even tensors of rank two



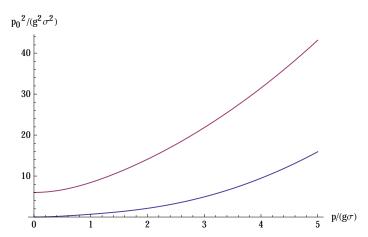
$Dispersion\ relations\ \mathcal{Z}$

C-odd scalars



Dispersion relations 4

C-even scalars



Conclusions

- Color field condensate may be simple qualitative description for state with high gluon occupation numbers.
- Modified rotation symmetry (involving a gauge transformation) provides powerful ordering principle.
- Collective dynamics provides efficient mechanism for approximate isotropization.
- Nielsen-Olesen type instabilities can trigger decay of color field condensate into quasi-particle excitations.
- Particle production from decay of isotropic condensate can be approximately isotropic, as well.

BACKUP

Alternative embedding of $SU(2) \in SU(3)$

- Lie algebra of SU(2) spanned by Gell-Mann matrices $\lambda_1, \lambda_2, \lambda_3$.
- Contains singlets
 - in spatial part

$$(A_j)_{mn} = \sigma(\lambda_j)_{mn}.$$

• in temporal part

$$(A_0)_{mn} = \sigma'(\lambda_8)_{mn}$$

- More general decomposition of gauge field according to
 - temporal part $8 = 3 + 2 \times 2 + 1$,
 - spatial part $24 = 5 + 2 \times 4 + 2 \times 3 + 2 \times 2 + 1$.

Parametric resonances

- Here we considered excitations around constant background σ .
- For oscillating condensate one has additional parametric resonance phenomenon leading to an additional instability band [Berges et al, PRD 85, 034507 (2012)].
- Parametric resonance instability subleading compared to Nielsen-Olesen instability.