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Introduction



Motivation

@ Formation of bound states was one of the first problems
discussed in quantum mechanics
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@ Bound state formation is much more difficult to treat in
Quantum field theory.

o Bethe-Salpeter equation can be used to sum Ladder diagrams
but it is difficult to go beyond.

@ Look for an alternative approach!



Flow equations and Bound states

o Wetterich's flow equation was used by Ellwanger to study
bound states in the Wick-Cutkosky model.
(U. Ellwanger, Z. Phys. C 62, 503 (1994).)

o Wegner's flow equation for Hamiltonians was used to
investigate bound states in two dimensions
(S. D. Glazek and K. G. Wilson, PRD 57, 3558 (1998).)

o Partial bosonization and k-dependent, non-linear field
transformations were used for the NJL-model
(H. Gies and C. Wetterich, PRD 65, 065001 (2002).)



Quantum field theory

@ Describes also electrons, atoms, quarks, gluons, protons,...

o Crucial object: quantum effective action

I'[¢] = S[¢] + %TrlnS(Q) -

@ Quantum field equations from % = 0.

@ All physical observables are easily obtained from I'.
o Few body physics
o scattering amplitudes, renormalized masses, charges, ...
e binding energies
e Many-body properties

o Phase diagram
o Thermodynamic observables: pressure, density,...
@ Response functions

o I is generating functional of 1-Pl Feynman diagrams.



How do we obtain the quantum effective action I'[¢]?

Idea of functional renormalization: I'[¢] — I';[¢]
@ k is additional infrared cutoff parameter.
o I'y[¢p] — T'[¢] for k — 0.
o I'y[¢] — S[¢] for k — oc.
@ Dependence on T,y or B trivial for k — co.
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How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

OL'k[¢] = %STr (F;(f) [¢] + Rk)_l Ok Ry,

o Differential equation for a functional.

@ For most cases not solvable exactly.
o Approximate solutions can be found from Truncations.
o Ansatz for 'y, with a finite number of parameters.
o Derive ordinary differential equations for this parameters or

couplings from the flow equation for I'.
e Solve these equations numerically.



Truncations

@ Derivative expansion

Iy = /90*(—Zkau3“)90+ Ur(e®0) + ...

@ Vertex expansion

Ty :/90*(Q)Pk(Q)SD(Q)
q

+ / A1, 1) (1) (a2) " (as) (an) + ...

e Momentum dependence of vertices is crucial!

o Key problem for the whole method!



Problems with momentum dependence

Numerical schemes to resolve the momentum dependence face
various problems

e Symmetries / Ward identities
o Numerical effort
o Singularities
@ Spontaneous symmetry breaking
@ Analytic continuation to real frequencies
@ Unitarity and Causality
@ Physical interpretation
Idea followed here: Learn from Nature!



Bound states



Four point function in QFED

e 4
e Exact four point function in QED \/

Electron Protow

@ Two very different contributions

e Photon exchange >, % <

e Bound state formation

o Different physics with different description but both included
in exact four-point function.



Perturbative QED point of view

basic process > — <
gets renormalized by >//< > - </ > Q <

leads for example to
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e Bound state formation is non-perturbative

Bethe-Salpeter equation allows to resum parts of this



Quantum mechanics point of view 1

o Integrate photon out, take non-relativistic limit
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@ Schrodinger equation

Hy = Ei

@ Hamiltonian

@ Solution gives series of bound states

Hwnlm = nwnlm
wnlm = Rnl(T)YVlm(QF)



Quantum mechanics point of view 2

@ Four point function
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@ Limits are

e Only instantaneous interactions
o No radiation corrections
o Not Lorentz invariant



Unified treatment

Should describe both
@ Perturbative QED (High energies / momenta)
e Bound states (Small energy / momenta)
Basic ideas

@ Introduce auxiliary fields for the orbitals

e simple description of bound states
o efficient treatment of singular momentum structure

@ Keep photon exchange picture for interaction

o retardation effects
e radiation corrections
e simple scattering theory for large energies

@ On large scale only photon exchange
e introduce orbitals gradually during flow

Can be done with flowing bosonization.



Flowing bosonization

o Start with QED + auxiliary fields for bound states

BN

Electrown Probon Puoton Bound state

o Auxiliary fields decouple at the microscopic scale hy = 0.

o Need one auxiliary field for every orbital j = (n,l,m).
e For instantaneous photon (¢ — o0):

o Yukawa vertex depends on relative velocity of electron and
proton

hj = h; (p/me — q/mp)

o Propagator matrix depends on center of mass momentum

Gjj =Gjy(p+4q).



Flowing bosonization with exact flow equation 1

o Exact flow equation
1 (2) -1 -1
Okl =5 STH(LY + i)™ (Ok By — Ry (0,Q ) Ri)
1
-5 @Qhry.

(S. Floerchinger and C. Wetterich, PLB 680, 371 (2009).)

o Derived from k-dependent Hubbard-Stratonovich
transformation.

° F,(Cl) is functional derivative with respect to the composite
field.

e 0,Q ! can be chosen arbitrary.



Flowing bosonization with exact flow equation 2

@ Flow of four point function can be absorbed by convenient
choice of 9,Q~".
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@ This modifies flow of coupling h and bound state propagator
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Flowing bosonization with exact flow equation 3

@ For non-relativistic particles with instantaneous interaction
one can solve the flow equations. Equivalence to Schrodinger
equation can be shown (S. Floerchinger, Eur. Phys. J. C 69, 119 (2010)).

o For k = 0 the effective four-point function has two main
contributions

a

e Fundamental fields and composite fields are treated equal.
@ This allows to treat

o Interactions between composite fields
e Spontaneous symmetry breaking
e Bound states of composite fields



Analytic continuation



Why analytic continuation

@ Physical propagating degrees of freedom are characterized by
a pole or cut in the correlation function.

@ A pole in the propagator corresponds to a stable particle, a
cut corresponds to a resonance.

@ Many technical methods e.g. to perform Matsubara
summations use the analytic structures and at the end one
needs the residue at a pole or the integral along a cut.

o Idea: Concentrate on the singular structures and describe
them by as few parameters as possible.



Physics takes place in Minkowsk: space

o Many singular structures can only be properly seen in
Minkowski space. (In Euclidean space there are some at p'= 0
for massless particles or at Fermi surfaces.)

o Numerical approaches have difficulties with singularities and
try to avoid them as far as possible (and therefore usually
work in Euclidean space).

o But: Singularities in correlation functions are physical and
very important. We should not be afraid of them!

@ Functional renormalization as a semi-analytic method has the
potential to cope well with singularities but is mainly used in
Euclidean space so far.

o Idea followed here: Derive flow equations directly for real time
properties by using analytic continuation.



Different strategies for analytic continuation

o 1. Extend formalism to Minkowski space functional integral
o 2. Keep on working with Matsubara space functional integral,
use analytic continuation at k = 0.

@ 3. Keep on working with Matsubara space functional integral,
use analytic continuation of flow equations.



Strateqy 1: Fxtend formalism to Minkowsk: space

@ some technical problems

o factors i appear at various places
o —p3 + p? is not positive definite: what is IR and what is UV?
o not obvious how to choose Ry (p) such that

lim T'x[¢] = S[¢]

k—o00

o needs Schwinger-Keldysh closed time contour

e technically involved formalism
e averaging over initial density matrix sometimes difficult

@ can be used also in far-from-equilibrium situations



Strategy 2: Work with functional integral in Matsubara
space and use analytic continuation at k =0

can be done with numerical techniques: Padé approximants

numerical effort rather large

knowledge about spectral properties does not improve RG
running

only linear response properties accessible



Strategy 3: Work with functional integral in Matsubara
space and use analytic continuation of flow equations

@ no numerical methods needed for analytical continuation

truncations with only a few parameters that parameterize
efficiently the quasi-particle properties can be used

(]

flow equations for real-time properties

space-time symmetries can be preserved

only linear response properties accessible

Follow this strategy here!



Analytic structure of the effective action

Consider the Quantum effective action

rig) = [ 76~ WL,
The propagator

T®(p,p') = 2m)% D (p—p') G 1(p)

has the Kallen-Lehmann spectral representation
R 2 1
G(p) = /0 dp” p(p )m-
This holds both for
o Euclidean space: p? = p? + p?

@ Minkowski space: p? = —pg + p?



Propagator in Minkowski space

Consider pg € C as complex. Close to real pg axis one has

@ From spectral representation

P(p) = G(p)' = Pi(p§ — 1) — i s(po) P2(p§ — P°)
with
s(po) = sign(Re po) sign(Im po)
and real functions P; and Ps.

@ Nonzero P, leads to a branch cut in the propagator:
The imaginary part of P(p) jumps at the real py axis.

@ Physical implication of non-zero P; is non-zero decay width of
quasi-particles (finite life-time).



Analytic continuation setup

@ Keep on working with Euclidean space functional integral.

Definition of I'y, and flow equation remains unchanged,

O Tr[0] = %Tr(F,(f) (6] + Ri) 0 Re.

Choose cutoff function Ry with correct properties for
Euclidean argument p? > 0

o Ri(p?) — oo for k — oo (implies T'x[¢] — S[¢])

o Rp(p*) =0 fork— 0 (implies I'x[¢] — T[¢)])

o Ri(p?) >0, Ri(p?) — 0 for p? > k?

Flow equations for n-point functions

F](Cn) (plv ceey pn)

are analytically continued towards the real frequency axis.

e Truncation uses expansion around real py (Minkowski space).



Derwative expansion in Minkowsk: space

o Consider a point p2 — p* = m? where P;(m?) = 0.

@ One can expand around this point

Pi= (i P md) 4

Leads to Breit-Wigner form of propagator (with v = mI')

G )_l—pg—i—ﬁQ—FmQ—i—is(po)mI‘
P 2+ P+ m2)? mi?

A few flowing parameters describe efficiently the singular
structure of the propagator.



Choosing a regqulator

The analytic properties of correlation functions at £ > 0
depend on the choice of Ry(p).

One would like to perform loop integrations analytically as far
as possible to facilitate analytic continuation.

Useful are the following choices
1

2052 _ 2052\ 2 ’
1+C1( pi;p)+02<7pz;p> +...

Ry (po,p) = Zk*

Allows to do the Matsubara summations analytically for
truncation based on derivative expansion.



Truncation for relativistic scalar O(N) theory

N

1o e

Fk’ = /t_‘ { Z §¢J P¢(Zat, —ZV) ¢]
s T j=1

p Py(idy, —iV) p+ Uk(ﬁ)}
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with p = % > j=1 ¢§
e Goldstone propagator massless, expanded around py — p? = 0

qu(po,ﬁ) ~ Z¢ (—p(z) +152)

o Radial mode is massive, expanded around pg —p? =m?

Py (po, D) + poPs(po, p) + Uy, + 2pUy,!
~ Zo 2y [(—p + 7 4+ md) — is(po) 7}



Flow of the effective potential

1 (N —1)
8tU’“(p)‘/JZZ/ {—’2 2 ;1
po=iwn,5 \P° — Py +U" + ZRk

1 1
+ - — O Ry,
Zy [(0%2 — pB) —is(po)y?] + U’ + 2pU" + Z%)Rk } Zg

@ Summation over Matsubara frequencies pg = i27T'n can be
done using contour integrals.

@ Radial mode has non-zero decay width since it can decay into
Goldstone excitations.

@ Use Taylor expansion for numerical calculations

1
Ur(p) = Uk(pok) +mi(p — pog) + (P = pok)’



Flow of the interaction strength Ay

Ak
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Flow of the minimum of the effective potential pg
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Flow of the propagator

@ Goldstone mode propagator characterized by anomalous
dimension

1 _
Ne = —Z)k:ak2¢

o Radial mode propagator

1

G = :
Z1 [(—p% + 9%) — is(po)VE] + 2Mpd

o flow equation for Z; is evaluated in the standard way
o flow equation for 47 is evaluated from discontinuity at
po = mq £ i€



Anomalous dimension 1y
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Flow of the coefficient Z;
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@ black solid line: evaluation at pyg = mq

@ red dashed line: evaluation at pg =0



Flow of the discontinuity coefficient ~?
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@ black solid line: evaluation at pyg = mq

@ red dashed line: evaluation at pg =0



Conclusions



Conclusions

o Functional renormalization is powerful method for
non-perturbative QFT studies.

@ Analytic continuation allows to access directly physical
information in real time.

o Together with k-dependent Hubbard-Stratonovich
transformation this will allow for efficient truncations with few
parameters taking all singular structures into account.

@ Bound states can be treated as well.
@ Allows unified treatment of fundamental and composite fields.

@ Looking forward to many applications!



