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What is functional renormalization?

Gives a formulation of quantum and statistical field theories.

Tool to solve difficult non-perturbative problems and answer
questions such as

What are the critical exponents at classical phase transitions?
What are the phases of the Hubbard model?
Is Gravity asymptotically safe?

But is it only a reformulation and a tool for special purposes
or is it more?

Here I want to argue: Functional RG is much more and can be
used to solve one of the biggest problems in modern physics!



The complexity problem

Arises in many ways in modern physics (and other sciences...):

Many degrees of freedom.

Fundamental or microscopic laws are known.

Consequences of the fundamental laws for the macroscopic or
collective behavior are not known.

Calculations are simply getting too complex.



What we aim for

Simple but precise macroscopic laws.

They should be derived from microscopic laws including values
for all relevant coupling constants.

Real theoretical understanding of complex phenomena and not
only numerical simulations.

A formalism that is sufficiently general to be used for a large
class of problems and is not based on specific a priori
knowledge from other approaches or experiments.



How to reduce the complex to the essential?

We have to loose information. But which one?

RG theory can provide information on this: Think about
classification of coupling constants into relevant, marginal and
irrelevant close to a Gaussian fixed point.

But: Exact functional RG equation alone does not yet solve
the complexity problem!

We need: Simple and efficient approximate solutions.

From experience: Quantum field theories at a particular scale
often well described in terms of some sort of quasi-particles:

May be composite particles or collective fields.
Different scales can be dominated by different collective fields.
Transition regions are more complicated.
A formalism that uses this could be rather helpful.

How to find the right composite fields?

How to describe them efficiently?



Singular structures matter

Physical propagating degrees of freedom are characterized by
a pole or cut in the correlation function.

A pole in the propagator corresponds to a stable particle, a
cut corresponds to a resonance.

Many technical methods e.g. to perform Matsubara
summations use the analytic structures and at the end one
needs the residue at a pole or the integral along a cut.

Idea: Concentrate on the singular structures and describe
them by as few parameters as possible.

Singular structures in vertex functions can be described
efficiently using scale-dependent Hubbard-Stratonovich
transformations.



Physics takes place in Minkowski space

Many singular structures can only be properly seen in
Minkowski space. (In Euclidean space there are some at ~p = 0
for massless particles or at Fermi surfaces.)

Numerical approaches have difficulties with singularities and
try to avoid them as far as possible (and therefore usually
work in Euclidean space).

But: Singularities in correlation functions are physical and
very important. We should not be afraid of them!

Functional renormalization as a semi-analytic method has the
potential to cope well with singularities but is mainly used in
Euclidean space so far.

Idea followed here: Derive flow equations directly for real time
properties by using analytic continuation.



Analytic structure of the effective action

Consider the Quantum effective action

Γ[φ] =

∫
x
Jφ−W [J ].

The propagator

Γ(2)(p, p′) = (2π)dδ(d)(p− p′) G−1(p)

has the Källen-Lehmann spectral representation

G(p) =

∫ ∞
0

dµ2 ρ(µ2)
1

p2 + µ2
.

This holds both for

Euclidean space: p2 = ~p2 + p2
4

Minkowski space: p2 = −p2
0 + ~p2



Propagator in Minkowski space

Consider p0 ∈ C as complex. Close to real p0 axis one has

From spectral representation

P (p) = G(p)−1 = P1(p2
0 − ~p2)− i s(p0)P2(p2

0 − ~p2)

with
s(p0) = sign(Re p0) sign(Im p0)

and real functions P1 and P2.

Nonzero P2 leads to a branch cut in the propagator:
The imaginary part of P (p) jumps at the real p0 axis.

Physical implication of non-zero P2 is non-zero decay width of
quasi-particles (finite life-time).



Analytic continuation setup

Keep on working with Euclidean space functional integral.

Definition of Γk and flow equation remains unchanged,

∂kΓk[φ] =
1

2
Tr(Γ

(2)
k [φ] +Rk)

−1∂kRk.

Choose cutoff function Rk with correct properties for
Euclidean argument p2 ≥ 0

Rk(p2)→∞ for k →∞ (implies Γk[φ]→ S[φ])
Rk(p2)→ 0 for k → 0 (implies Γk[φ]→ Γ[φ])
Rk(p2) ≥ 0, Rk(p2)→ 0 for p2 � k2

Flow equations for n-point functions

Γ
(n)
k (p1, ..., pn)

are analytically continued towards the real frequency axis.

Truncation uses expansion around real p0 (Minkowski space).



Derivative expansion in Minkowski space

Consider a point p2
0 − ~p2 = m2 where P1(m2) = 0.

One can expand around this point

P1 = Z(−p2
0 + ~p2 +m2) + · · ·

P2 = Zγ2 + · · ·

Leads to Breit-Wigner form of propagator (with γ2 = mΓ)

G(p) =
1

Z

−p2
0 + ~p2 +m2 + i s(p0)mΓ

(−p2
0 + ~p2 +m2)2 +m2Γ2

.

A few flowing parameters describe efficiently the singular
structure of the propagator.



Choosing a regulator

The analytic properties of correlation functions at k > 0
depend on the choice of Rk(p).

One would like to perform loop integrations analytically as far
as possible to facilitate analytic continuation.

Useful are the following choices

Rk(p0, ~p) = Zk2 1

1 + c1

(
−p20+~p2

k2

)
+ c2

(
−p20+~p2

k2

)2
+ . . .

.

Allows to do the Matsubara summations analytically for
truncation based on derivative expansion.



Truncation for relativistic scalar O(N) theory

Γk =

∫
t,~x

{
N∑
j=1

1

2
φ̄j P̄φ(i∂t,−i~∇) φ̄j

+
1

4
ρ̄ P̄ρ(i∂t,−i~∇) ρ̄+ Ūk(ρ̄)

}

with ρ̄ = 1
2

∑N
j=1 φ̄

2
j .

Goldstone propagator massless, expanded around p0 − ~p2 = 0

P̄φ(p0, ~p) ≈ Z̄φ (−p2
0 + ~p2)

Radial mode is massive, expanded around p2
0 − ~p2 = m2

1

P̄φ(p0, ~p) + ρ̄0P̄ρ(p0, ~p) + Ū ′k + 2ρ̄Ū ′′k

≈ Z̄φZ1

[
(−p2

0 + ~p2 +m2
1)− is(p0) γ2

1

]



Flow of the effective potential

∂tUk(ρ)
∣∣
ρ̄

=
1

2

∫
p0=iωn,~p

{
(N − 1)

~p2 − p2
0 + U ′ + 1

Z̄φ
Rk

+
1

Z1

[
(~p2 − p2

0)− i s(p0)γ2
1

]
+ U ′ + 2ρU ′′ + 1

Z̄φ
Rk

}
1

Z̄φ
∂tRk.

Summation over Matsubara frequencies p0 = i2πTn can be
done using contour integrals.

Radial mode has non-zero decay width since it can decay into
Goldstone excitations.

Use Taylor expansion for numerical calculations

Uk(ρ) = Uk(ρ0,k) +m2
k(ρ− ρ0,k) +

1

2
λk(ρ− ρ0,k)

2



Flow of the interaction strength λk
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Flow of the minimum of the effective potential ρ0,k
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Flow of the propagator

Goldstone mode propagator characterized by anomalous
dimension

ηφ = − 1

Z̄φ
k∂kZ̄φ

Radial mode propagator

G1 =
1

Z1

[
(−p2

0 + ~p2)− is(p0)γ2
1

]
+ 2λkρ

2
0

flow equation for Z1 is evaluated in the standard way
flow equation for γ21 is evaluated from discontinuity at
p0 = m1 ± iε



Anomalous dimension ηφ
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Flow of the coefficient Z1
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black solid line: evaluation at p0 = m1

red dashed line: evaluation at p0 = 0



Flow of the discontinuity coefficient γ2
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Conclusions

Analytic continuation of flow equations is now possible.

An improved derivative expansion in Minkowski space was
developed.

Many dynamical and linear response properties can now be
calculated from functional renormalization.

Together with k-dependent Hubbard-Stratonovich
transformation this will allow for efficient truncations with few
parameteres taking all singular structures into account.

Usefulness of formalism must be proven in applications.


