Ultracold quantum gases

Stefan Flörchinger (CERN)

HGSFP Winter School Obergurgl, 18 January 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

I. INTRODUCTION

Why are ultracold quantum gases interesting?

- As a phenomenon of nature
 - How does matter behave at very low temperatures?
 - However: Only metastable state. True ground state is solid. (Exception ³He, ⁴He.)
- As a quantum physics laboratory (due to good experimental control)
 - quantum information, Bell's inequalities, quantum computation
 - simulation of condensed matter physics (optical lattices)
 - simulation of fundamental physics like QCD matter

Of course, only some features can be simulated. Nevertheless helpful to test some ideas, concepts, methods.

Typical numbers

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

density

- particle number $N = 10^6$
- $\bullet~{\rm cloud}~{\rm volume}~V=10^{-9}~{\rm cm}^3$
- interparticle distance $d = 0.1 \ \mu m$
- temperature
 - temperature $T = 10^{-6}K$
 - thermal de-Broglie length $\lambda_T = 1 \ \mu m$
- interaction
 - interaction range $\lambda_{\rm vdW} = 10^{-4}~\mu{\rm m}$
 - scattering length $a = (0...\infty) \ \mu \mathrm{m}$

Universality

• effective range is small

 $d \gg \lambda_{\rm vdW}, \quad \lambda_T \gg \lambda_{\rm vdW}$

- interaction strength can be large, as well
- many properties are independent of detailed form of interaction potential
- universal physics described in terms of a few parameters
 - dimensionless scattering length

 $c = a n^{1/3}$

• dimensionless temperature

$$\tilde{T} = \frac{2Mk_BT}{n^{2/3}}$$

(日)、(型)、(E)、(E)、(E)、(O)()

(日) (四) (日) (日) (日) (日)

- There are many different phenomena.
- We look for a unified description.
- We look for an intuitive description.

- There are many different phenomena.
- We look for a unified description.
- We look for an intuitive description.
- Einstein: Everything should be made as simple as possible.

イロト イポト イヨト イヨト

- There are many different phenomena.
- We look for a unified description.
- We look for an intuitive description.
- Einstein: Everything should be made as simple as possible.

FIELD THEORY.

◆□> ◆圖> ◆国> ◆国> 三国

- There are many different phenomena.
- We look for a unified description.
- We look for an intuitive description.
- Einstein: Everything should be made as simple as possible. But not simpler.

FIELD THEORY.

◆□> ◆□> ◆豆> ◆豆> □目

- There are many different phenomena.
- We look for a unified description.
- We look for an intuitive description.
- Einstein: Everything should be made as simple as possible. But not simpler.

QUANTUM FIELD THEORY.

Classical field theory

- Describes electro-magnetic fields, waves, ... $(\hbar \rightarrow 0)$.
- Crucial object: classical action

$$S[\phi] = \int dt \int d^d x \ \mathcal{L}(\phi, \partial_t \phi, \vec{\nabla} \phi, \dots)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

- Classical field equations from $\frac{\delta S}{\delta \phi} = 0$.
- \bullet Symmetries of S lead to conserved currents.
- All physical observables are easily obtained from S.

Quantum field theory

- Describes electrons, atoms, quarks, gluons, protons,... ...and cold quantum gases
- Crucial object: quantum effective action

$$\Gamma[\phi] = \int dt \int d^d x \ U(\phi) + \dots$$

- Quantum field equations from $\frac{\delta\Gamma}{\delta\phi} = 0$
- \bullet Symmetries of Γ lead to conserved currents
- \bullet All physical observables are easily obtained from Γ
- Γ is generating functional of 1-PI Feynman diagrams and depends on external parameters like $T,\mu,$ or \vec{B}
- \bullet for interacting theories Γ is hard to calculate

How does non-relativistic QFT look like?

Lagrange density for Bose gas with pointlike interaction

$$-\mathcal{L} = \varphi^* \left(-i\frac{\partial}{\partial t} - \frac{\vec{\nabla}^2}{2M} \right) \varphi + \frac{1}{2}\lambda(\varphi^*\varphi)^2$$

• $\varphi = \varphi(t, \vec{x})$ is a complex scalar field

- dispersion relation is non-relativistic
- local contact interaction $\sim \lambda$

This describes a classical field theory that can be quantized, e.g. by canonical quantization or by the functional integral formalism.

II. BASIC CONCEPTS OF THERMAL QUANTUM FIELD THEORY

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Blackboard part

- Grand canonical potential
- Functional integral representation
- Imaginary time and Matsubara formalism
- Schwinger functional, Effective action, Flowing action

(日)、(型)、(E)、(E)、(E)、(O)()

II. BOSE-EINSTEIN CONDENSATION

$Blackboard \ part$

- Effective potential
- Spontaneous symmetry breaking

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Superfluidity
- Phase transitions

IV. QUANTUM FLUCTUATIONS AND THE RENORMALIZATION GROUP

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

$Blackboard \ part$

- Renormalization group equation
- Vacuum limit and few-body observables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Feynman diagrams
- Triviality problem

V. The superfluid Bose gas in two dimensions

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Finite size as an infrared cutoff

- Renormalization group can be used for quantum systems at non-zero density and temperature
- Sometimes physics is better described by flowing action $\Gamma_k[\phi]$ with k = 1/l instead of quantum effective action $\Gamma[\phi] = \Gamma_{k=0}[\phi]$
- For finite volume $V\approx l^3$ there are no quantum fluctuations with k<1/l to include

RG evolution of different quantities Interaction strength

- \bullet goes to zero for $k \to 0$
- shows that scale of experiments is important
- for experiments effectively

$$\lambda = \lambda(1/l)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Kosterlitz-Thouless phase transition

- \bullet for increasing system size $k=1/l\rightarrow 0$
 - T = 0 ρ_0 and $\bar{\rho}_0$ remain non-zero • $0 < T < T_c$ $\bar{\rho}_0 \rightarrow 0$ and ρ_0 remains non-zero • $T > T_c$ $\bar{\rho}_0 = 0$ and $\rho_0 = 0$ for scales $k < k_c$
- $\bullet\,$ superfluid density non-zero for $T < T_c$
- \bullet condensate density goes to zero for T>0
- needed to fulfill Mermin-Wagner theorem: No long range order in d = 2 for T > 0
- experiments at finite k=1/l can find non-zero condensate density $\bar{\rho}_0>0$

VI. FERMIONS

<□ > < @ > < E > < E > E - のQ @

Functional integral for fermions

- some alkali gases such as ⁶Li are fermions
- functional integral can be extended to fermions
- integrals over (anti-commuting) Grassmann numbers is needed

Fermi gases with different physics

- 1 component Fermi gas no s-wave interaction (due to Pauli blocking)
- 2 component Fermi gas BCS-BEC crossover well studied, will be discussed below
- 3 component Fermi gas BCS-Trion-BEC transition current research, will also be discussed

(日)、(型)、(E)、(E)、(E)、(O)()

VII. BCS-BEC CROSSOVER

Feshbach resonances

allow to tune scattering length in a wide range

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$Blackboard \ part$

• Microscopic model and Hubbard-Stratonovich transformation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Scattering physics and bound states
- BCS limit
- BEC limit

Crossover

Gap at temperature T = 0 from RG study

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○

Unitarity point and universality

the point with $(ak_F)^{-1} = 0$ (divergent scattering length a) is particular interesting

scattering physics is governed by unitarity of S-matrix

- $\bullet\,$ no scale except temperature T and density n
- example for non-relativistic conformal field theory

Summary of BCS-BEC Crossover

- Small negative scattering length $a \rightarrow 0_-$
 - Formation of Cooper pairs in momentum space
 - BCS-theory valid
 - superfluid at small temperatures
 - order parameter $arphi \sim \psi_1 \psi_2$
- Small positive scattering length $a \rightarrow 0_+$
 - Formation of dimers or molecules in position space
 - Bosonic mean field theory valid
 - superfluid at small temperatures
 - order parameter $arphi \sim \psi_1 \psi_2$
- Between both limits: Continuous BCS-BEC Crossover
 - scattering length becomes large: strong interaction
 - superfluid, order parameter $arphi \sim \psi_1 \psi_2$ at small T

Phase diagram

◆□> ◆□> ◆□> ◆□> ◆□> ◆□> ◆□>

VIII. THREE COMPONENT FERMIONS

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Three component Fermi gas

• For equal masses, densities etc. global SU(3) symmetry

$$egin{pmatrix} \psi_1 \ \psi_2 \ \psi_3 \end{pmatrix} o u egin{pmatrix} \psi_1 \ \psi_2 \ \psi_3 \end{pmatrix}, \quad u \in \mathsf{SU}(3).$$

Similar to flavor symmetry in the Standard model!

- \bullet For small scattering length $|a| \to 0$
 - BCS (a < 0) or BEC (a > 0) superfluidity at small T.
 - order parameter is conjugate triplet $\bar{\mathbf{3}}$ under SU(3)

$$\varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \end{pmatrix} \sim \begin{pmatrix} \psi_2 \psi_3 \\ \psi_3 \psi_1 \\ \psi_1 \psi_2 \end{pmatrix}.$$

(日)、(型)、(E)、(E)、(E)、(O)()

- SU(3) symmetry is broken spontaneously for $\varphi \neq 0$.
- What happens for large |a|?

Simple truncation for fermions with three components

$$\Gamma_k = \int_x \psi^{\dagger} (\partial_{\tau} - \vec{\nabla}^2 - \mu) \psi + \varphi^{\dagger} (\partial_{\tau} - \frac{1}{2} \vec{\nabla}^2 + m_{\varphi}^2) \varphi$$

$$+ \chi^* (\partial_{\tau} - \frac{1}{3} \vec{\nabla}^2 + m_{\chi}^2) \chi$$

$$+ h \ \epsilon_{ijk} (\varphi_i^* \psi_j \psi_k + h.c.) + g(\varphi_i \psi_i^* \chi + h.c.).$$

- Units are such that $\hbar = k_B = 2M = 1$
- Wavefunction renormalization for ψ , φ and χ is implicit.
- Γ_k contains terms for

"Refermionization"

• Trion field is introduced via a generalized Hubbard-Stratonovich transformation

• Fermion-boson coupling is regenerated by the flow

 Express this again by trion exchange (Gies and Wetterich, PRD 65, 065001 (2002), Floerchinger and Wetterich, PLB 680, 371 (2009).)

Binding energies

- Binding energy per atom for
 - molecule or dimer φ (dashed line)
 - trion or trimer χ (solid line)
- For large scattering length *a* trion is energetically favorable!
- Three-body bound state even for a < 0.

Quantum phase diagram

• BCS-Trion-BEC transition

(Floerchinger, Schmidt, Moroz and Wetterich, PRA 79, 013603 (2009)).

- $a \to 0_-$: Cooper pairs, $SU(3) \times U(1) \to SU(2) \times U(1)$.
- $a \to 0_+$: BEC of molecules, $SU(3) \times U(1) \to SU(2) \times U(1)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- $a \to \pm \infty$: Trion phase, SU(3) unbroken.
- Quantum phase transitions
 - from BCS to Trion phase
 - from Trion to BEC phase.

Efimov effect

- Self-similarity in energy spectrum.
- Efimov trimers become more and more shallow. At $a=\infty$

$$E_{n+1} = e^{-2\pi/s_0} E_n.$$

- Simple truncation: $s_0 \approx 0.82$.
- Advanced truncation: $s_0 \approx 1.006$ (exact result) (Moroz, Floerchinger, Schmidt and Wetterich, PRA **79**, 042705 (2009).)

Renormalization group limit cycle

• For $\mu = 0$ and $a^{-1} = 0$ flow equations for rescaled couplings

$$k\frac{\partial}{\partial k} \begin{pmatrix} \tilde{g}^2\\ \tilde{m}_{\chi}^2 \end{pmatrix} = \begin{pmatrix} 7/25 & -13/25\\ 36/25 & 7/25 \end{pmatrix} \begin{pmatrix} \tilde{g}^2\\ \tilde{m}_{\chi}^2 \end{pmatrix}.$$

• Solution is log-periodic in scale.

- Every zero-crossing of \tilde{m}_{χ}^2 corresponds to a new bound state.
- For µ ≠ 0 or a⁻¹ ≠ 0 limit cycle scaling stops at some scale k. Only finite number of Efimov trimers.

Contact to experiments

- Model can be generalized to case without SU(3) symmetry (Floerchinger, Schmidt and Wetterich, PRA A **79**, 053633 (2009)).
- Hyperfine states of ⁶Li have large scattering lengths.

- Binding energies might be measured using RF-spectroscopy.
- Lifetime is quite short ~ 10 ns.

Three-body loss rate

• Three-body loss rate measured experimentally (Ottenstein et al., PRL **101**, 203202 (2008); Huckans et al., PRL **102**, 165302 (2009))

- Trion may decay into deeper bound molecule states
- Calculate B-field dependence of loss process above.
- Left resonance (position and width) fixes model parameters.

- Form of curve for large B is prediction.
- Similar results obtained by other methods (Braaten, Hammer, Kang and Platter, PRL 103, 073202 (2009); Naidon and Ueda, PRL 103, 073203 (2009).)

THANK YOU VERY MUCH FOR YOUR ATTENTION!

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ