Ultracold fermions with three components: Cooper-pairs, molecules and trions

Stefan Flörchinger (CERN)

work done in Heidelberg in collaboration with

Richard Schmidt, Sergej Moroz and Christof Wetterich supported by DFG Research Group FOR 723, EMMI

FIAS-EMMI Day Frankfurt, 11 January 2010

Cold atoms in a laser trap

- typical density
 - particle number $N=10^6$
 - $\bullet \ \ {\rm cloud\ volume}\ V=10^{-9}\ {\rm cm}^3$
 - interparticle distance $d=0.1~\mu\mathrm{m}$
- typical temperature
 - $\bullet \ \ {\rm temperature} \ T = 10^{-6} K$
 - \bullet thermal de-Broglie length $\lambda_T=1~\mu\mathrm{m}$
- typical interaction parameters
 - interaction range $\lambda_{\text{vdW}} = 10^{-4} \ \mu\text{m}$
 - scattering length $a=(0...\infty)~\mu\mathrm{m}$

$Theoretical\ challenge$

- quantum effects are important
- many particles / nonzero density
- nonzero temperature
- large interaction strength
- possibly non-equilibrium dynamics
- similar problems as in QCD matter: Heavy ion collisions, Neutron stars, ...
- advantage for cold quantum gases: very well controlled, experiments on a table-top

Complexity problem with strong interaction

- Strong interactions lead to strong effects. Qualitative features of a theory can change!
- Physical properties can become universal! Microscopic details become irrelevant.
- Strong interaction effects lead to fast Equilibration: Dynamics can be described by Close-to-Equilibrium methods.

Fermi gases with different physics

- 1 component Fermi gas no s-wave interaction
- 2 component Fermi gas BCS-BEC crossover
- 3 component Fermi gas ??

Fermi gases with different physics

- 1 component Fermi gas no s-wave interaction
- 2 component Fermi gas BCS-BEC crossover
- 3 component Fermi gas ??
 - Three-body problem: Efimov effect

(Efimov, Phys. Lett. 33B, 563 (1970),

Review: Braaten and Hammer, Phys. Rep. 428, 259 (2006))

Fermi gases with different physics

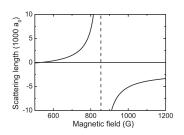
- 1 component Fermi gas no s-wave interaction
- 2 component Fermi gas BCS-BEC crossover
- 3 component Fermi gas ??
 - Three-body problem: Efimov effect (Efimov, Phys. Lett. 33B, 563 (1970), Review: Braaten and Hammer, Phys. Rep. 428, 259 (2006))
 - On the lattice: Trion formation
 (Rapp, Zarand, Honerkamp, and Hofstetter, PRL 98, 160405 (2007),
 Rapp, Hofstetter and Zarand, PRB 77, 144520 (2008).)

Single component Fermi gas

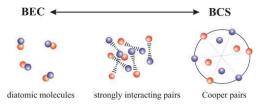
- ullet Most properties of dilute ultracold quantum gases are dominated by s-wave interactions.
- For identical fermions (only one spin component)
 wavefunction has to be antisymmetric in position space.
- s-wave interaction suppressed by Pauli blocking.
- Behaves like ideal Fermi gas in many respects.

Two component Fermi gas

- ullet Two spin (or hyperfine-spin) components ψ_1 and ψ_2 .
- For equal mass $M_{\psi_1}=M_{\psi_2}$, density $n_{\psi_1}=n_{\psi_2}$ etc. SU(2) spin symmetry
- s-wave interaction measured by scattering length a.
- Repulsive microscopic interaction: Landau Fermi liquid.
- Attractive interaction leads to many interesting effects!
- Scattering length can be tuned experimentally with Feshbach resonances.



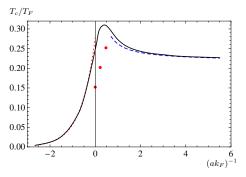
BCS-BEC Crossover



- Small negative scattering length $a \to 0_-$
 - Formation of Cooper pairs in momentum space
 - BCS-theory valid
 - superfluid at small temperatures
 - order parameter $\varphi \sim \psi_1 \psi_2$
- Small positive scattering length $a \to 0_+$
 - Formation of dimers or molecules in position space
 - Bosonic mean field theory valid
 - superfluid at small temperatures
 - order parameter $\varphi \sim \psi_1 \psi_2$
- Between both limits: Continuous BCS-BEC Crossover
 - scattering length becomes large: strong interaction
 - superfluid, order parameter $\varphi \sim \psi_1 \psi_2$ at small T

Phase diagram BCS-BEC Crossover

- Crossover best parameterized by $c^{-1} = (ak_F)^{-1}$.
- Different methods give phase diagram
- Result of renormalization group study:



(Floerchinger, Scherer and Wetterich, PRA 81, 063619 (2010).)

More complicated phase diagram with population imbalance

Three component Fermi gas

For equal masses, densities etc. global SU(3) symmetry

$$\begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \to u \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}, \quad u \in \mathsf{SU}(3).$$

Similar to flavor symmetry in the Standard model!

- For small scattering length $|a| \to 0$
 - BCS (a < 0) or BEC (a > 0) superfluidity at small T.
 - order parameter is conjugate triplet $\bar{\mathbf{3}}$ under SU(3)

$$\varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \end{pmatrix} \sim \begin{pmatrix} \psi_2 \psi_3 \\ \psi_3 \psi_1 \\ \psi_1 \psi_2 \end{pmatrix}.$$

- SU(3) symmetry is broken spontaneously for $\varphi \neq 0$.
- What happens for large |a|?

• There are many different phenomena.

- There are many different phenomena.
- We look for a unified description.

- There are many different phenomena.
- We look for a unified description.
- We look for an intuitive description.

- There are many different phenomena.
- We look for a unified description.
- We look for an intuitive description.
- Einstein: Everything should be made as simple as possible.

- There are many different phenomena.
- We look for a unified description.
- We look for an intuitive description.
- Einstein: Everything should be made as simple as possible.

FIELD THEORY.

- There are many different phenomena.
- We look for a unified description.
- We look for an intuitive description.
- Einstein: Everything should be made as simple as possible. But not simpler.

FIELD THEORY.

- There are many different phenomena.
- We look for a unified description.
- We look for an intuitive description.
- Einstein: Everything should be made as simple as possible. But not simpler.

QUANTUM FIELD THEORY.

Classical field theory

- Describes electro-magnetic fields, waves, ... $(\hbar \to 0)$.
- Crucial object: classical action

$$S[\phi] = \int dt \int d^dx \, \mathcal{L}(\phi, \partial_t \phi, \vec{\nabla} \phi, \dots)$$

- Classical field equations from $\frac{\delta S}{\delta \phi}=0.$
- ullet Symmetries of S lead to conserved currents.
- All physical observables are easily obtained from S.

Quantum field theory

- Describes electrons, atoms, quarks, gluons, protons,...
 ...and cold quantum gases
- Crucial object: quantum effective action

$$\Gamma[\phi] = \int dt \int d^dx \ U(\phi) + \dots$$

- ullet Quantum field equations from ${\delta\Gamma\over\delta\phi}=0$
- ullet Symmetries of Γ lead to conserved currents
- ullet All physical observables are easily obtained from Γ
- ullet Γ is generating functional of 1-PI Feynman diagrams and depends on external parameters like T, μ , or \vec{B}

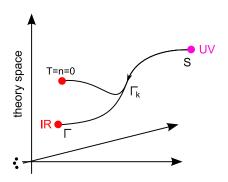
The renormalization group

- very important in modern understanding of quantum field theory
- describes how (effective) theories evolve to other (effective) theories at smaller energy/momentum scales
- makes a simple, efficient and intuitive description of complex phenomena possible

How do we obtain the quantum effective action $\Gamma[\phi]$?

Idea of functional renormalization: $\Gamma[\phi] \to \Gamma_k[\phi]$

- ullet is additional infrared cutoff parameter.
- $\Gamma_k[\phi] \to \Gamma[\phi]$ for $k \to 0$.
- $\Gamma_k[\phi] \to S[\phi]$ for $k \to \infty$.
- Dependence on T, μ or \vec{B} trivial for $k \to \infty$.



How the flowing action flows

Simple and exact flow equation (WETTERICH 1993)

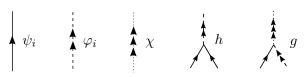
$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \mathrm{STr} \, \left(\Gamma_k^{(2)}[\phi] + R_k \right)^{-1} \partial_k R_k.$$

- Differential equation for a functional.
- For most cases not solvable exactly.
- Approximate solutions can be found from Truncations.
 - Ansatz for Γ_k with a finite number of parameters.
 - Derive ordinary differential equations for this parameters or couplings from the flow equation for Γ_k .
 - Solve these equations numerically.

Simple truncation for fermions with three components

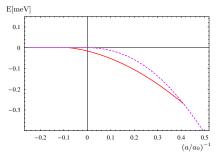
$$\Gamma_k = \int_x \psi^{\dagger} (\partial_{\tau} - \vec{\nabla}^2 - \mu) \psi + \varphi^{\dagger} (\partial_{\tau} - \frac{1}{2} \vec{\nabla}^2 + m_{\varphi}^2) \varphi$$
$$+ \chi^* (\partial_{\tau} - \frac{1}{3} \vec{\nabla}^2 + m_{\chi}^2) \chi$$
$$+ h \; \epsilon_{ijk} (\varphi_i^* \psi_j \psi_k + h.c.) + g(\varphi_i \psi_i^* \chi + h.c.).$$

- Units are such that $\hbar = k_B = 2M = 1$
- Wavefunction renormalization for ψ , φ and χ is implicit.
- \bullet Γ_k contains terms for
 - fermion field $\psi = (\psi_1, \psi_2, \psi_3)$
 - $\bullet \ \ \text{bosonic field} \qquad \varphi = (\varphi_1, \varphi_2, \varphi_3) \sim (\psi_2 \psi_3, \psi_3 \psi_1, \psi_1 \psi_2)$
 - trion field $\chi \sim \psi_1 \psi_2 \psi_3$



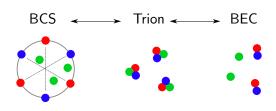
Binding energies

• Vacuum limit $T \to 0$, $n \to 0$.



- Binding energy per atom for
 - molecule or dimer φ (dashed line)
 - trion or trimer χ (solid line)
- ullet For large scattering length a trion is energetically favorable!
- Three-body bound state even for a < 0.

Quantum phase diagram

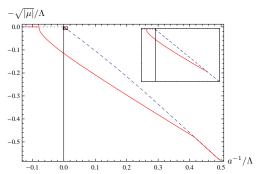


BCS-Trion-BEC transition

(Floerchinger, Schmidt, Moroz and Wetterich, PRA 79, 013603 (2009)).

- $a \to 0_-$: Cooper pairs, $SU(3) \times U(1) \to SU(2) \times U(1)$.
- $a \to 0_+$: BEC of molecules, $SU(3) \times U(1) \to SU(2) \times U(1)$.
- $a \to \pm \infty$: Trion phase, SU(3) unbroken.
- Quantum phase transitions
 - from BCS to Trion phase
 - from Trion to BEC phase.

Efimov effect



- Self-similarity in energy spectrum.
- ullet Efimov trimers become more and more shallow. At $a=\infty$

$$E_{n+1} = e^{-2\pi/s_0} E_n.$$

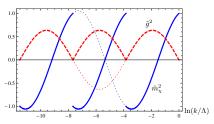
- Simple truncation: $s_0 \approx 0.82$.
- Advanced truncation: $s_0 \approx 1.006$ (exact result) (Moroz, Floerchinger, Schmidt and Wetterich, PRA **79**, 042705 (2009).)

Renormalization group limit cycle

• For $\mu=0$ and $a^{-1}=0$ flow equations for rescaled couplings

$$k\frac{\partial}{\partial k}\begin{pmatrix} \tilde{g}^2\\ \tilde{m}_\chi^2 \end{pmatrix} = \begin{pmatrix} 7/25 & -13/25\\ 36/25 & 7/25 \end{pmatrix}\begin{pmatrix} \tilde{g}^2\\ \tilde{m}_\chi^2 \end{pmatrix}.$$

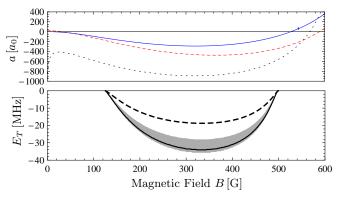
Solution is log-periodic in scale.



- Every zero-crossing of \tilde{m}_{χ}^2 corresponds to a new bound state.
- For $\mu \neq 0$ or $a^{-1} \neq 0$ limit cycle scaling stops at some scale k. Only finite number of Efimov trimers.

Contact to experiments

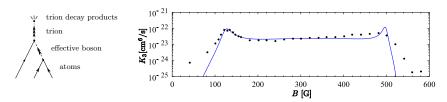
- Model can be generalized to case without SU(3) symmetry (Floerchinger, Schmidt and Wetterich, PRA A 79, 053633 (2009)).
- Hyperfine states of ⁶Li have large scattering lengths.



- Binding energies might be measured using RF-spectroscopy.
- Lifetime is quite short $\sim 10 \text{ns}$.

Three-body loss rate

 Three-body loss rate measured experimentally (Ottenstein et al., PRL 101, 203202 (2008); Huckans et al., PRL 102, 165302 (2009))



- Trion may decay into deeper bound molecule states
- Calculate B-field dependence of loss process above.
- Left resonance (position and width) fixes model parameters.
- Form of curve for large B is prediction.
- Similar results obtained by other methods (Braaten, Hammer, Kang and Platter, PRL 103, 073202 (2009);
 Naidon and Ueda, PRL 103, 073203 (2009).)

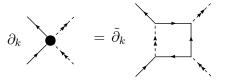
Conclusions

- Physics of ultracold fermions with three components quite interesting.
- Few-body physics (Efimov effect) well described by functional renormalization.
- Many-body physics shows parallels to QCD
 - BCS "Color" superfluidity for small negative a.
 - Trion "Hadron" phase for large |a|.
 - BEC "Color" superfluidity for small positive a.
- Very nice playground for renormalization group methods.
- Experimental tests seem possible.

"Refermionization"

• Trion field is introduced via a generalized Hubbard-Stratonovich transformation

Fermion-boson coupling is regenerated by the flow



 Express this again by trion exchange (Gies and Wetterich, PRD 65, 065001 (2002),
 Floerchinger and Wetterich, PLB 680, 371 (2009).)

For many purposes *derivative expansions* are suitable approximations. For example we use for the BCS-BEC Crossover

$$\Gamma_{k} = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger} (\partial_{\tau} - \vec{\nabla}^{2} - \mu) \psi + \varphi^{*} (Z_{\varphi} \partial_{\tau} - A_{\varphi} \frac{1}{2} \vec{\nabla}^{2}) \varphi \right.$$
$$\left. - h(\varphi^{*} \psi_{1} \psi_{2} + h.c.) + \frac{1}{2} \lambda_{\psi} (\psi^{\dagger} \psi)^{2} + U_{k} (\varphi^{*} \varphi, \mu) \right\}$$

For many purposes *derivative expansions* are suitable approximations. For example we use for the BCS-BEC Crossover

$$\Gamma_k = \int_{\tau, \vec{x}} \left\{ \psi^{\dagger} (\partial_{\tau} - \vec{\nabla}^2 - \mu) \psi + \varphi^* (Z_{\varphi} \partial_{\tau} - A_{\varphi} \frac{1}{2} \vec{\nabla}^2) \varphi \right.$$
$$\left. - h(\varphi^* \psi_1 \psi_2 + h.c.) + \frac{1}{2} \lambda_{\psi} (\psi^{\dagger} \psi)^2 + U_k (\varphi^* \varphi, \mu) \right\}$$

• The coefficients Z_{φ} , A_{φ} , λ_{ψ} , h and the effective potential U_k are scale-dependent.

For many purposes $derivative\ expansions$ are suitable approximations. For example we use for the BCS-BEC Crossover

$$\Gamma_k = \int_{\tau, \vec{x}} \left\{ \psi^{\dagger} (\partial_{\tau} - \vec{\nabla}^2 - \mu) \psi + \varphi^* (Z_{\varphi} \partial_{\tau} - A_{\varphi} \frac{1}{2} \vec{\nabla}^2) \varphi \right.$$
$$\left. - h(\varphi^* \psi_1 \psi_2 + h.c.) + \frac{1}{2} \lambda_{\psi} (\psi^{\dagger} \psi)^2 + U_k (\varphi^* \varphi, \mu) \right\}$$

- The coefficients Z_{φ} , A_{φ} , λ_{ψ} , h and the effective potential U_k are scale-dependent.
- ullet The effective potential U_k contains no derivatives describes homogeneous fields.

For many purposes $derivative\ expansions$ are suitable approximations. For example we use for the BCS-BEC Crossover

$$\Gamma_k = \int_{\tau, \vec{x}} \left\{ \psi^{\dagger} (\partial_{\tau} - \vec{\nabla}^2 - \mu) \psi + \varphi^* (Z_{\varphi} \partial_{\tau} - A_{\varphi} \frac{1}{2} \vec{\nabla}^2) \varphi \right.$$
$$\left. - h(\varphi^* \psi_1 \psi_2 + h.c.) + \frac{1}{2} \lambda_{\psi} (\psi^{\dagger} \psi)^2 + U_k (\varphi^* \varphi, \mu) \right\}$$

- The coefficients Z_{φ} , A_{φ} , λ_{ψ} , h and the effective potential U_k are scale-dependent.
- ullet The effective potential U_k contains no derivatives describes homogeneous fields.
- Wave-function renormalization and self-energy corrections for fermions can be included as well.

The effective potential

ullet We use a Taylor expansion around the minimum ho_0

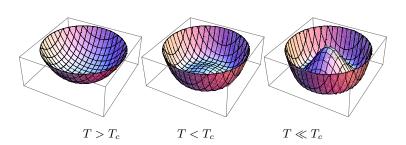
$$U_k(\varphi^*\varphi) = -p + m^2 (\varphi^*\varphi - \rho_0) + \frac{1}{2}\lambda (\varphi^*\varphi - \rho_0)^2.$$

The effective potential

ullet We use a Taylor expansion around the minimum ho_0

$$U_k(\varphi^*\varphi) = -p + m^2 (\varphi^*\varphi - \rho_0) + \frac{1}{2}\lambda (\varphi^*\varphi - \rho_0)^2.$$

• Symmetry breaking:



The effective potential

ullet We use a Taylor expansion around the minimum ho_0

$$U_k(\varphi^*\varphi) = -p + m^2 (\varphi^*\varphi - \rho_0) + \frac{1}{2}\lambda (\varphi^*\varphi - \rho_0)^2.$$

Typical flow:

