Ultracold quantum gases and functional
renormalization

Stefan Florchinger (Heidelberg)

ERG 2010, Corfu, 18/09/2010



Collaborations

@ Based on work done in Heidelberg in collaboration with:
S. Diehl, H. Gies, S. Moroz, J. M. Pawlowski, M. M. Scherer,
R. Schmidt, C. Wetterich
@ Related work was done in
@ Frankfurt: L. Bartosch, A. Ferraz, S. Ledowski, N. Hasselmann
and P. Kopietz

@ Manchester: M. C. Birse, B. Krippa, J. A. McGovern and
N. R. Walet

o Paris: N. Dupuis and K. Sengupta



Outline

© Introduction
@ How to construct a truncation
© How to derive flow equations

Q How to solve flow equations

© Conclusions



Introduction



Why are Ultracold quantum gases interesting?

(7

Ultracold gases in the bulk are simple systems!
@ for example: Fermi surface is usually a sphere.

Both fermions and bosons can be studied.

(4

(7

Interactions can be tuned to arbitrary values.

(7

Lower dimensional systems can be realized.

Very nice model system to test methods of quantum and statistical
field theory!



Lagrangians

We use a local field theory to describe the microscopic model.
Examples:

© Bose gas with pointlike interaction

* = 1 *
L= (&—ﬁw—u)mj&: (¥*0).
© Fermions in the BCS-BEC-Crossover
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These are effective theories on the length scale of the Bohr radius
or van-der-Waals length.



Single component Bose gas

@ For repulsive interaction A, > 0 stable, shows Bose-Einstein
Condensation at small temperatures.

@ For attractive interaction A, < 0 unstable.



Two component Fermi gas

@ Two spin (or hyperfine-spin) components ; and )s.

@ For equal mass My, = My,, density ny, = ny, etc. SU(2)
spin symmetry

s-wave interaction measured by scattering length a.
Repulsive microscopic interaction: Landau Fermi liquid.

Attractive interaction leads to many interesting effects!
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Scattering length can be tuned experimentally with Feshbach
resonances.

=)

o

&

Scattering length (1000 a )
o

=)

600 800 1000 1200
Magnetic field (G)



BCS-BEC Crossover

BEC = > BCS
¢ o
‘%
©
diatomic molecules strongly interacting pairs Cooper pairs

@ Small negative scattering length a — 0_
o Formation of Cooper pairs in momentum space
@ BCS-theory valid
o superfluid at small temperatures
@ order parameter ¢ ~ Y119
@ Small positive scattering length ¢ — 0+
@ Formation of dimers or molecules in position space
@ Bosonic mean field theory valid
o superfluid at small temperatures
@ order parameter ¢ ~ Y114
@ Between both limits: Continuous BCS-BEC Crossover
@ scattering length becomes large: strong interaction
o superfluid, order parameter ¢ ~ 1119 at small T



How to construct a truncation



General ideas

@ Make an ansatz for flowing action in terms of some expansion

©

Include all terms that are allowed by symmetries

©

Truncate expansion at finite order

N

Tilg] = ) ci(k) Oilg]

i=1

(7

Improve truncation by including more terms



Symmetries of nonrelativistic field theories
@ Global U(1) (particle number conservation)

ok
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@ Translations and Rotations
@ Galilean boost transformations

. i(Mfz t—Mz‘;‘:?:')
p(t, ) —e

o(t, & — vt)

@ Energy shift symmetry

o(t, ) = e2Fl(t, ), p— p+ AE

@ Possibly conformal symmetries



Derwative expansion

For many purposes derivative expansion is a suitable
approximation. For example for a Bose gas
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@ the effective potential U contains no derivatives - describes
homogeneous fields

@ the coefficients Z;, V; and the effective potential U are
k-dependent

@ at higher order the Z; and V; are functions of p = ¢*¢



Hubbard-Stratonovich transformation 1

@ Sometimes it is useful to employ auxiliary fields to rewrite the
effective action.

@ Add bosonic auxiliary field with Gaussian action to the
BCS-BEC crossover model

5= / S U0, — by s+ Ay Gloruln
Z =1
( %wlm 4Mv2+m2>

(0 0) (o )

@ For h — oo, m2 — 0o with 25 +)\¢—0theterms

~ wlwlewQ cancel.



Hubbard-Stratonovich transformation 2

@ One is left with a Yukawa-type theory

S= [ 00— ¥ - i — bl vrva + ulule)

+cp*(87—ﬁ62+m2)cp

@ One can now use a truncation in terms of a derivative
expansion

Iy = #ngqp(@T - % — p+ Ay ) — h(@*Pribs + i)

T,T

+ " (ZpOr — Aprnr) o+ U(0*0)

@ The coefficients Z,, Amy,, Z,, Ay, h, and the effective
potential U are now k-dependent.



Choice of cutoff 1

The cutoff term

ASy, = / ©* (p)Ri.(p)o(p)
p

should

@ be an infrared cutoff lim Ry (p) ~ k2
p—0

@ fall off for large momenta pliﬁngo Ri(p) — 0
@ respect symmetries

@ allow to perform loop integrations
@ be simple
)

be “optimal” (cf. Litim, Pawlowski)



Choice of cutoff 2

@ Example for nonrelativistic bosons (Litim)

Ri(p) = Zo(k* = p*)0(k* — %)

@ Example for nonrelativistic fermions

Riu(p) = Zy(sign(x)k* — 2)0(k* — |)

withx:ﬁQ—p%
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How to derwwe flow equations



General ideas

@ start from exact flow equation (Wetterich 1993)

O 'k[p] = %STV (F;(f) (6] + Rk>_1 Ok Ry

@ plug in the truncation

Tk[¢] = Z ci(k) O[]

=1

@ project both sides onto the operators O;[¢]

@ obtain ordinary (sometimes partial) differential equations for
“running couplings”

Ok ci = PBi(cr, ..., ens k)



Loop expressions

@ useful to rewrite flow equation

OTelo] = 5,%5% In <r§f) 6] + Rk)

@ projecting the right hand side by taking functional derivatives
gives one-loop expressions

@ performing the cutoff derivative k. leads to IR and UV finite
expressions



The effective potential

o for constant fields p(x) = \/p,1 =0

Tk Z/Tka(P)

5

@ flow equation is partial differential equation, for BCS-BEC
Crossover
d U, pUY Z
8lnk;Uk( ) n‘PpU]:I(IO)_'_k +2 (k§7pk2 75;777(,0714(:)

d+2 ¢ h2p ptAm
—k ( p’ ) wak%niﬁ)

@ threshold functions sB,sr depend on cutoff Ry

@ 7, =— alnk and 7y = — 5, are anomalous dimensions



How to solve flow equations



General ideas

ordinary differential equations can be solved numerically

UV values at k£ = A determined from few-body physics

o
o

@ consider first vacuum limit 7" — 0, u — 0

@ “couplings” at kK = 0 can be related to few-body observables
o

flow deviates from vacuum solution for k2 < T, i

theory space

\/



Few-body physics

©

for 4 =T = 0 one can easily perform analytic continuation to
real time

formalism should be equivalent to quantum mechanics

flow equations simplify substantially

often analytic solutions can be found

interesting physics: universal bound states, Efimov effect, ...
more details: talks by M. Birse, S. Moroz, B. Krippa

& & © 6 ¢ ¢

one finds a useful hierarchy of flow equations



Few-body hierarchy 1

(7’1.7) ()0])

@ use vertex expansion (e.g. for Bose gas, I', ' [p] ~ ¢

Tele] = TVl + TV ] + T2 ] + ..

+ T Lol + T VL) + T2l +

+...
@ U(1) symmetry implies

Tele] = T + T3V 0] + TED ] + ..

° FI(C"’") contains information about 2n-point function Ga,

n

n



Few-body hierarchy 2

Theorem: The flow equation for G,,, depends only on the functions
G with j < m and the propagator G5 is not renormalized.

@ the n-particle problem can be solved without solving the
n + 1-particle problem
@ the flow equations can be integrated
@ solve two-body problem
o then three-body problem, ...

@ sketch of proof:

contributions from
O = o
G; with j<m

The loop vanishes since all poles are in one half-plane.



Fermion self energy corrections
(Floerchinger, Scherer and Wetterich, PRA 81, 063619 (2010))

@ Flow of fermion wavefunction renormalization Z,,
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Dispersion relation and gap at zero temperature

@ Dispersion relation w = +

w/Er
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@ Single particle gap
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Unitarity (akp = o00) u/Er A/Ep

Carlson et al. 0.43 0.54
Perali et al. 0.46 0.53
Haussmann et al. 0.36 0.46
Diehl et al. 0.55 0.60
Bartosch et al. 0.32 0.61
present work 0.51 0.46



The effective potential

@ Taylor expansion around the minimum pg
* * 1 *
Ur(¢*p) == p+m* @ o+ A ("p)*  for po=0,

* 1 *
Ur(p"@) = —p+ ;A (# © — po)? for po > 0.



The effective potential

@ Taylor expansion around the minimum pg
* * ]- *
Ur(¢*p) == p+m* @ o+ A ("p)*  for po=0,
* 1 *
Ur(¢"¢) = = p+ 52 ("0 = po)” for po > 0.

@ Symmetry breaking:




The effective potential

@ Taylor expansion around the minimum pg

* * 1 *
Uk(¢"¢) = —p+m? "o+ A (¢"p)®  for
* 1 *
Uk(¢*p) ==p+ 52 ("0 = p0)” for
@ Typical flow:

In po
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Phase diagram

@ information on phase diagram is contained in form of the
effective potential Ui (p, u,T) at k =0

@ solution for different T, u, ... gives phase diagram

@ very nice generalization of Landau’s theory!



Phase diagram

@ information on phase diagram is contained in form of the
effective potential Ui (p, u,T) at k =0

@ solution for different T, u, ... gives phase diagram

very nice generalization of Landau’s theory!

@ example: BCS-BEC Crossover
(Floerchinger, Scherer and Wetterich, PRA 81, 063619 (2010))
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Phase diagram

@ information on phase diagram is contained in form of the
effective potential Ui (p, u,T) at k =0

@ solution for different T, u, ... gives phase diagram

very nice generalization of Landau’s theory!

@ example: Superfluid Bose gas in d = 2
(Floerchinger and Wetterich, PRA 79, 013601 (2009))

T./n
30

25
20

15

I I I I I
0.0 0.2 0.4 0.6 0.8 10



Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))



Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))
@ entropy density s = —g—g,
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Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))

@ entropy density s = —g—g,

¢/(n®13) @ energy density
e=—p+Ts+ un,

= 7/n?/?
- T/



Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))

@ entropy density s = —g—g,

@ energy density
e=—p+Ts+ un,
@ specific heat ¢,,
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Thermodynamic observables

From grand canonical potential
dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))

@ entropy density s = —g—g,
s @ energy density
e=—p+Ts+ un,
A “ @ specific heat c¢,,
ﬁﬂﬂ* o ‘ @ isoth. compressibility «,

et

o kB N w & o o N

L S
e I




Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))

@ entropy density s = —g—g,

@ energy density
e=—p+Ts+ un,

@ specific heat ¢,,

@ isoth. compressibility xp,

@ adiab. compressibility kg,
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Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))

@ entropy density s = —g—g,
Y @ energy density
e=—p+Ts+ un,
@ specific heat ¢,,
@ isoth. compressibility xp,
@ adiab. compressibility kg,
@ velocity of sound |,




Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))

@ entropy density s = —g—g,

2/3

A/ energy density

T e=—p+Ts+ un,
specific heat ¢,,

isoth. compressibility 7,

adiab. compressibility kg,

~-.
.
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velocity of sound I,
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Thermodynamic observables

From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))
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@ entropy density s = —g—g,

@ energy density
e=—p+Ts+ un,

@ specific heat ¢,,

@ isoth. compressibility xp,

@ adiab. compressibility kg,

@ velocity of sound |,

@ velocity of sound II,

@ correlation length.



Occupation numbers
Usually density can be written as

n:émm

with Occupation number n(p). Example: Homogeneous Bose gas
n(p) = ne 8 (B) + nr(p).

Occupation numbers are measured in time-of-flight experiments.

Picture from W. Ketterle, MIT.



Flow equations for occupation numbers

@ Use momentum-dependent chemical potential u = u(p)

S = /@*(p) [ipo + P — u(D)] ¢(p) + ...

@ Obtain occupation numbers from

@ Flow equations for n(p) can be derived (Wetterich 2008).
@ Example: Bose gas in d = 2 with finite size.

p% nr(p) p? nr(p) p? ny(p)

T>T.,, ne=0 T <Te, ne/n=04 T << Te, ne/n=0.9



Fermi gases with different physics

@ 1 component Fermi gas - no s-wave interaction
@ 2 component Fermi gas - BCS-BEC crossover
@ 3 component Fermi gas - 77



Fermi gases with different physics

@ 1 component Fermi gas - no s-wave interaction
@ 2 component Fermi gas - BCS-BEC crossover

@ 3 component Fermi gas - 77
o Three-body problem: Efimov effect

(Efimov, Phys. Lett. 33B, 563 (1970),
Review: Braaten and Hammer, Phys. Rep. 428, 259 (2006))



Fermi gases with different physics

@ 1 component Fermi gas - no s-wave interaction
@ 2 component Fermi gas - BCS-BEC crossover
@ 3 component Fermi gas - 77
o Three-body problem: Efimov effect
(Efimov, Phys. Lett. 33B, 563 (1970),
Review: Braaten and Hammer, Phys. Rep. 428, 259 (2006))
@ On the lattice: Trion formation

(Rapp, Zarand, Honerkamp, and Hofstetter, PRL 98, 160405 (2007),
Rapp, Hofstetter and Zarand, PRB 77, 144520 (2008).)



Three component Fermi gas

@ For equal masses, densities etc. global SU(3) symmetry

(] Yn
o | —u |, weSU@3).
Y3 3

Similar to flavor symmetry in the Standard model!
@ For small scattering length |a| — 0

@ BCS (a < 0) or BEC (a > 0) superfluidity at small T.
o order parameter is conjugate triplet 3 under SU(3)

Y1 a3
o= 1w2 | ~ | V391 ].
3 P12

o SU(3) symmetry is broken spontaneously for ¢ # 0.
@ What happens for large |a|?



Simple truncation for fermions with three components

- 1=
Iy = /1#*(87 — V% — )+ ¢ (0r — §V2 +m?)p

1.
+x*(0r — gvz +m3)x

theip(@ibite + h.e) 4 gloabix + h.c.).

@ Units are such that A= kg =2M =1

@ Wavefunction renormalization for 9, ¢ and y is implicit.
@ ', contains terms for
o fermion field Y = (Y1,12,93)

@ bosonic field © = (1,2, 03) ~ (Y23, Y311, P11)2)
o trion field X ~ Y123

Y :‘Pi A X 9
NN



“Refermionization”

@ Trion field is introduced via a generalized
Hubbard-Stratonovich transformation

/,
\\ :

@ Fermion-boson coupling is regenerated by the flow
P

8k = Uk

N

@ Express this again by trion exchange
(Gies and Wetterich, PRD 65, 065001 (2002),
Floerchinger and Wetterich, PLB 680, 371 (2009).)



Binding energies

@ Vacuum limit T'— 0, n — 0.
E[meV]
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©

Binding energy per atom for

@ molecule or dimer ¢ (dashed line)
@ trion or trimer x (solid line)

(7

For large scattering length a trion is energetically favorable!

Three-body bound state even for a < 0.

©

There is actually a whole tower of bound states
(Efimov effect, talk by S. Moroz).



Quantum phase diagram

BCS Trion BEC

o $

4‘ ° 3

@ BCS-Trion-BEC transition
(Floerchinger, Schmidt, Moroz and Wetterich, PRA 79, 013603 (2009)).
@ a — 0_: Cooper pairs, SU(3) x U(1) — SU(2) x U(1).
e a — 04: BEC of molecules, SU(3) x U(1) — SU(2) x U(1).
@ a — too: Trion phase, SU(3) unbroken.
@ Quantum phase transitions

@ from BCS to Trion phase
@ from Trion to BEC phase.



Conclusions



Conclusions

@ Functional renormalization is a useful method to describe
ultracold quantum gases.

@ Quantitative precision seems reachable.

@ Unified description of

@ Bosons and Fermions,
o Weak and strong coupling,
o Few-Body and Many-Body physics.



Efimov effect
=VIul/A
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©

Self-similarity in energy spectrum.
Efimov trimers become more and more shallow. At a = ¢

Bpi=e 2/ E,.

(7

©

Simple truncation: sg =~ 0.82.
Advanced truncation: sy = 1.006 (exact result)
(Moroz, Floerchinger, Schmidt and Wetterich, PRA 79, 042705 (2009).)

©



Renormalization group limit cycle

@ For y =0 and a=! = 0 flow equations for rescaled couplings
kg @\ _(7/25  —13/25\ [ §*
ok \mi) — \36/25 7/25 mi)’

@ Solution is log-periodic in scale.

67 In(k/A)

@ Every zero-crossing of ﬁzi corresponds to a new bound state.

@ For p1 # 0 or a=! # 0 limit cycle scaling stops at some scale
k. Only finite number of Efimov trimers.



Contact to experiments

@ Model can be generalized to case without SU(3) symmetry
(Floerchinger, Schmidt and Wetterich, PRA A 79, 053633 (2009)).

@ Hyperfine states of SLi have large scattering lengths.
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Magnetic Field B [G]

@ Binding energies might be measured using RF-spectroscopy.

@ Lifetime is quite short ~ 10ns.



Three-

body loss rate

@ Three-body loss rate measured experimentally (Ottenstein et al.,
PRL 101, 203202 (2008); Huckans et al., PRL 102, 165302 (2009))

* trion

. 10~ 2!
A/ trion decay products
= 10722
0\
\ . - 23
% effective boson E 10

(N
//‘\\ > 10-24 L
atoms
10725
0

& & 6 6 ¢

100 200 300 400 500
B[G]

Trion may decay into deeper bound molecule states

Calculate B-field dependence of loss process above.

600

Left resonance (position and width) fixes model parameters.

Form of curve for large B is prediction.

Similar results obtained by other methods
(Braaten, Hammer, Kang and Platter, PRL 103, 073202 (2009);

Naidon and Ueda, PRL 103, 073203 (2009).)
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