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Ultracold gases in the bulk are simple systems!
@ for example: Fermi surface is usually a sphere.
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(7

Lower dimensional systems can be realized.

Very nice model system to test methods of quantum and statistical
field theory!



Quantum field theory

@ Describes also electrons, atoms, quarks, gluons, protons,...

@ Crucial object: quantum effective action

L[¢] = S[¢] + Trln S@ 4

/dt/dde

@ Quantum field equations from g—l(; =0.

@ Symmetries of I' lead to conserved currents.
@ All physical observables are easily obtained from TI'.

@ [' is generating functional of 1-Pl Feynman diagrams and
depends on external parameters like T', i, or B.



How do we obtain the quantum effective action I'[¢]?

Idea of functional renormalization: I'[¢] — I';[¢]
@ k is additional infrared cutoff parameter.
e I'y[p] — T'[¢] for k — 0.
e I'y[p] — S[¢] for k — oc.
@ Dependence on T, i or B trivial for k — occ.
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['[¢] and the grand canonical ensemble

Functional integral representation of the partition function
7 =B _ Ty o~ BH—-uN) _ / Dy =5,
Generalization with J = 52T [¢)]

e~ Tkl®] :/DX6—3[¢+X]+Jx—§kaX_

@ Ry is an infrared cutoff function

@ suppresses all fluctuations Ry — oo for k — oo.
@ is removed Ry — 0 for k — 0.

@ ['y[¢] is the average action or flowing action.

@ Grand canonical potential is obtained from
BQq = T[] for k=0 and J = 0.



How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

ouThle] = 5STr (106 + i) 0P

@ Differential equation for a functional.

@ For most cases not solvable exactly.
@ Approximate solutions can be found from Truncations.
o Ansatz for I';, with a finite number of parameters.
@ Derive ordinary differential equations for this parameters or

couplings from the flow equation for I'.
@ Solve these equations numerically.



Lagrangians

We use a local field theory to describe the microscopic model.
Examples:

© Bose gas with pointlike interaction

L= (87—62—;1)@—%%)\(@*@)2.

© Fermions in the BCS-BEC-Crossover

- » 1o
L= YN0 =V = o+ ¢ (0 — 5V -2+ )
—h(go*z/qwg + h.c.).

These are effective theories on the length scale of the Bohr radius
or van-der-Waals length.



Symmetries of nonrelativistic field theories

U(1) for particle number conservation.
Translations and Rotations.
Galilean boost transformations.

Possibly conformal symmetries.

6 &6 6 6 ¢

U(1) and Galilean invariance are broken spontaneously by a
Bose-Einstein condensate.

Galilean invariance is broken explicitely for T' > 0.



Two component Fermi gas

@ Two spin (or hyperfine-spin) components ; and )s.

@ For equal mass My, = My,, density ny, = ny, etc. SU(2)
spin symmetry

s-wave interaction measured by scattering length a.
Repulsive microscopic interaction: Landau Fermi liquid.

Attractive interaction leads to many interesting effects!

& & o ¢

Scattering length can be tuned experimentally with Feshbach
resonances.
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BCS-BEC Crossover

BEC = > BCS
¢ o
‘%
©
diatomic molecules strongly interacting pairs Cooper pairs

@ Small negative scattering length a — 0_
o Formation of Cooper pairs in momentum space
@ BCS-theory valid
o superfluid at small temperatures
@ order parameter ¢ ~ Y119
@ Small positive scattering length ¢ — 0+
@ Formation of dimers or molecules in position space
@ Bosonic mean field theory valid
o superfluid at small temperatures
@ order parameter ¢ ~ Y114
@ Between both limits: Continuous BCS-BEC Crossover
@ scattering length becomes large: strong interaction
o superfluid, order parameter ¢ ~ 1119 at small T



Truncations

For many purposes derivative expansions are suitable
approximations. For example we use for the BCS-BEC Crossover

r, = /4 {M(ZwaT — ZyV? — i Amy)p
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Truncations

For many purposes derivative expansions are suitable
approximations. For example we use for the BCS-BEC Crossover

', = /# {1/}T(Z¢ar — Z¢62 —u+ Amq/))/l/)

* lo
+QO (ZLP&- — A¢§V2)¢

—h(¢" 12 + hc) + %M(W ¥)* + Uk(¢™, u)}

@ The coefficients Z,, Ay, Ay, h, Zy, Amy and the effective
potential Uy are scale-dependent.

@ The effective potential Uy contains no derivatives - describes
homogeneous fields.



Fermion self energy corrections

(Floerchinger, Scherer and Wetterich, PRA 81, 063619 (2010))

@ Flow of fermion wavefunction renormalization Z,
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Dispersion relation and gap at zero temperature

@ Dispersion relation w = i\/A2 +(¢? — r2F)2
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The effective potential

@ We use a Taylor expansion around the minimum pg
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The effective potential

@ We use a Taylor expansion around the minimum pg
* * 1 *
Ur(¢*p) = —p+m* (9"¢ = po) + 52 (970 — po)*.

o Typical flow:
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Solving the flow equation - Phase diagram

@ Information on phase diagram is contained in form of the
effective potential U(p, u, T') at macroscopic scale.
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@ Example: BCS-BEC Crossover
(Floerchinger, Scherer and Wetterich, PRA 81, 063619 (2010).)
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Solving the flow equation - Phase diagram

@ Information on phase diagram is contained in form of the
effective potential U(p, u, T') at macroscopic scale.

@ Very nice generalization of Landau's theory!

@ Example: Superfluid Bose gas in d = 2
(Floerchinger and Wetterich, PRA 79, 013601 (2009)).
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Superfluid order in two dimensions

@ Bose gas with truncation

Ty = / (20, — Vo2 - AV + U("0) }

T

@ Mermin-Wagner theorem: No true long range order at 7' > 0
ind=2.

@ This implies: n. = pg — 0 for k — 0.

density n (solid),

superfluid density po (dashed),

,;;‘{7'/" condensate density po (dotted),
05

In(k)



Solving the flow equation - Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))
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From grand canonical potential

dU = —dp = —sdT — ndp
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Solving the flow equation - Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))

@ entropy density s = —g—g,
s @ energy density
e=—p+Ts+ un,
A “ @ specific heat c¢,,
Tﬁﬂw—ﬁ'*‘*’”/ o ‘ @ isoth. compressibility «,
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Solving the flow equation - Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
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Solving the flow equation - Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))

@ entropy density s = —g—g,
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A/ energy density

T e=—p+Ts+ un,
specific heat ¢,,

isoth. compressibility 7,

adiab. compressibility kg,
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Solving the flow equation - Thermodynamic observables
From grand canonical potential

dU = —dp = —sdT — ndp

take derivatives e. g. for Bose gas in d = 3
(Floerchinger and Wetterich, PRA 79, 063602 (2009))

@ entropy density s = —g—g,
n'l? @ energy density
“I " e =—p+Ts+ un,
o ‘\;\‘ @ specific heat ¢,,
00} // “‘ \‘ @ isoth. compressibility s,
w0l e \ ‘\‘ @ adiab. compressibility kg,
‘l \ @ velocity of sound |,
0 ‘ .

. ] T/rz2/3
8 @ velocity of sound II,

@ correlation length.
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Fermi gases with different physics

@ 1 component Fermi gas - no s-wave interaction
@ 2 component Fermi gas - BCS-BEC crossover
@ 3 component Fermi gas - 77
o Three-body problem: Efimov effect
(Efimov, Phys. Lett. 33B, 563 (1970),
Review: Braaten and Hammer, Phys. Rep. 428, 259 (2006))
@ On the lattice: Trion formation

(Rapp, Zarand, Honerkamp, and Hofstetter, PRL 98, 160405 (2007),
Rapp, Hofstetter and Zarand, PRB 77, 144520 (2008).)



Three component Fermi gas

@ For equal masses, densities etc. global SU(3) symmetry

(] Yn
o | —u |, weSU@3).
Y3 3

Similar to flavor symmetry in the Standard model!
@ For small scattering length |a| — 0

@ BCS (a < 0) or BEC (a > 0) superfluidity at small T.
o order parameter is conjugate triplet 3 under SU(3)

Y1 a3
o= 1w2 | ~ | V391 ].
3 P12

o SU(3) symmetry is broken spontaneously for ¢ # 0.
@ What happens for large |a|?



Simple truncation for fermions with three components

- 1=
Iy = /1#*(87 — V% — )+ ¢ (0r — §V2 +m?)p

1.
+x*(0r — gvz +m3)x

theip(@ibite + h.e) 4 gloabix + h.c.).

@ Units are such that A= kg =2M =1

@ Wavefunction renormalization for 9, ¢ and y is implicit.
@ ', contains terms for
o fermion field Y = (Y1,12,93)

@ bosonic field © = (1,2, 03) ~ (Y23, Y311, P11)2)
o trion field X ~ Y123

Y :‘Pi A X 9
NN



“Refermionization”

@ Trion field is introduced via a generalized
Hubbard-Stratonovich transformation

/,
\\ :

@ Fermion-boson coupling is regenerated by the flow
P

8k = Uk

N

@ Express this again by trion exchange
(Gies and Wetterich, PRD 65, 065001 (2002),
Floerchinger and Wetterich, PLB 680, 371 (2009).)



Binding energies

@ Vacuum limit T'— 0, n — 0.

E[meV]
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@ Binding energy per atom for

@ molecule or dimer ¢ (dashed line)
@ trion or trimer x (solid line)

@ For large scattering length a trion is energetically favorable!
@ Three-body bound state even for a < 0.



Quantum phase diagram

BCS Trion BEC

o $

4‘ ° 3

@ BCS-Trion-BEC transition
(Floerchinger, Schmidt, Moroz and Wetterich, PRA 79, 013603 (2009)).
@ a — 0_: Cooper pairs, SU(3) x U(1) — SU(2) x U(1).
e a — 04: BEC of molecules, SU(3) x U(1) — SU(2) x U(1).
@ a — too: Trion phase, SU(3) unbroken.
@ Quantum phase transitions

@ from BCS to Trion phase
@ from Trion to BEC phase.



Efimov effect
=VIul/A
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Self-similarity in energy spectrum.
Efimov trimers become more and more shallow. At a = ¢

Bpi=e 2/ E,.

(7

©

Simple truncation: sg =~ 0.82.
Advanced truncation: sy = 1.006 (exact result)
(Moroz, Floerchinger, Schmidt and Wetterich, PRA 79, 042705 (2009).)

©



Renormalization group limit cycle

@ For y =0 and a=! = 0 flow equations for rescaled couplings
kg @\ _(7/25  —13/25\ [ §*
ok \mi) — \36/25 7/25 mi)’

@ Solution is log-periodic in scale.

67 In(k/A)

@ Every zero-crossing of ﬁzi corresponds to a new bound state.

@ For p1 # 0 or a=! # 0 limit cycle scaling stops at some scale
k. Only finite number of Efimov trimers.



Contact to experiments

@ Model can be generalized to case without SU(3) symmetry
(Floerchinger, Schmidt and Wetterich, PRA A 79, 053633 (2009)).

@ Hyperfine states of SLi have large scattering lengths.
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@ Binding energies might be measured using RF-spectroscopy.

@ Lifetime is quite short ~ 10ns.



Three-

body loss rate

@ Three-body loss rate measured experimentally (Ottenstein et al.,
PRL 101, 203202 (2008); Huckans et al., PRL 102, 165302 (2009))

* trion

. 10~ 2!
A/ trion decay products
= 10722
0\
\ . - 23
% effective boson E 10

(N
//‘\\ > 10-24 L
atoms
10725
0

& & 6 6 ¢

100 200 300 400 500
B[G]

Trion may decay into deeper bound molecule states

Calculate B-field dependence of loss process above.

600

Left resonance (position and width) fixes model parameters.

Form of curve for large B is prediction.

Similar results obtained by other methods
(Braaten, Hammer, Kang and Platter, PRL 103, 073202 (2009);

Naidon and Ueda, PRL 103, 073203 (2009).)



Conclusions

@ Functional renormalization is a useful method to describe
ultracold quantum gases.

@ Quantitative precision seems reachable.

@ Unified description of

@ Bosons and Fermions,
o Weak and strong coupling,
o Few-Body and Many-Body physics.



