Ultracold quantum gases and functional renormalization

Stefan Flörchinger (Heidelberg)

Frankfurt, 25. Juni 2010

• Ultracold gases in the bulk are simple systems!

- Ultracold gases in the bulk are simple systems!
 - for example: Fermi surface is usually a sphere.

- Ultracold gases in the bulk are simple systems!
 - for example: Fermi surface is usually a sphere.
- Both fermions and bosons can be studied.

- Ultracold gases in the bulk are simple systems!
 - for example: Fermi surface is usually a sphere.
- Both fermions and bosons can be studied.
- Interactions can be tuned to arbitrary values.

- Ultracold gases in the bulk are simple systems!
 - for example: Fermi surface is usually a sphere.
- Both fermions and bosons can be studied.
- Interactions can be tuned to arbitrary values.
- Lower dimensional systems can be realized.

- Ultracold gases in the bulk are simple systems!
 - for example: Fermi surface is usually a sphere.
- Both fermions and bosons can be studied.
- Interactions can be tuned to arbitrary values.
- Lower dimensional systems can be realized.

Very nice model system to test methods of quantum and statistical *field theory*!

Quantum field theory

- Describes also electrons, atoms, quarks, gluons, protons,...
- Crucial object: quantum effective action

$$\Gamma[\phi] = S[\phi] + \frac{1}{2} \operatorname{Tr} \ln S^{(2)} + \dots$$
$$= \int dt \int d^d x \ U(\phi) + \dots$$

- Quantum field equations from $\frac{\delta\Gamma}{\delta\phi}=0$.
- ullet Symmetries of Γ lead to conserved currents.
- ullet All physical observables are easily obtained from $\Gamma.$
- Γ is generating functional of 1-PI Feynman diagrams and depends on external parameters like T, μ , or \vec{B} .

How do we obtain the quantum effective action $\Gamma[\phi]$?

Idea of functional renormalization: $\Gamma[\phi] \to \Gamma_k[\phi]$

- ullet is additional infrared cutoff parameter.
- $\Gamma_k[\phi] \to \Gamma[\phi]$ for $k \to 0$.
- $\Gamma_k[\phi] \to S[\phi]$ for $k \to \infty$.
- Dependence on T, μ or \vec{B} trivial for $k \to \infty$.

$\Gamma[\phi]$ and the grand canonical ensemble

Functional integral representation of the partition function

$$Z = e^{-\beta\Omega_G} = \operatorname{Tr} e^{-\beta(H - \mu N)} = \int D\chi \, e^{-S[\chi]}.$$

Generalization with $J=\frac{\delta}{\delta\phi}\Gamma_k[\phi]$

$$e^{-\Gamma_k[\phi]} = \int D\chi \, e^{-S[\phi+\chi] + J\chi - \frac{1}{2}\chi \, R_k \, \chi}.$$

- \bullet R_k is an infrared cutoff function
 - suppresses all fluctuations $R_k \to \infty$ for $k \to \infty$.
 - is removed $R_k \to 0$ for $k \to 0$.
- $\Gamma_k[\phi]$ is the average action or flowing action.
- Grand canonical potential is obtained from $\beta\Omega_G=\Gamma_k[\phi]$ for k=0 and J=0.

How the flowing action flows

Simple and exact flow equation (Wetterich 1993)

$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \mathrm{STr} \, \left(\Gamma_k^{(2)}[\phi] + R_k \right)^{-1} \partial_k R_k.$$

- Differential equation for a functional.
- For most cases not solvable exactly.
- Approximate solutions can be found from Truncations.
 - Ansatz for Γ_k with a finite number of parameters.
 - Derive ordinary differential equations for this parameters or couplings from the flow equation for Γ_k .
 - Solve these equations numerically.

Lagrangians

We use a local field theory to describe the microscopic model. Examples:

Bose gas with pointlike interaction

$$\mathcal{L} = \varphi^* \left(\partial_\tau - \vec{\nabla}^2 - \mu \right) \varphi + \frac{1}{2} \lambda \left(\varphi^* \varphi \right)^2.$$

Fermions in the BCS-BEC-Crossover

$$\mathcal{L} = \psi^{\dagger}(\partial_{\tau} - \vec{\nabla}^2 - \mu)\psi + \varphi^*(\partial_{\tau} - \frac{1}{2}\vec{\nabla}^2 - 2\mu + \nu)\varphi$$
$$-h(\varphi^*\psi_1\psi_2 + h.c.).$$

These are effective theories on the length scale of the Bohr radius or van-der-Waals length.

Symmetries of nonrelativistic field theories

- U(1) for particle number conservation.
- Translations and Rotations.
- Galilean boost transformations.
- Possibly conformal symmetries.
- U(1) and Galilean invariance are broken spontaneously by a Bose-Einstein condensate.
- Galilean invariance is broken explicitely for T > 0.

Two component Fermi gas

- Two spin (or hyperfine-spin) components ψ_1 and ψ_2 .
- For equal mass $M_{\psi_1}=M_{\psi_2}$, density $n_{\psi_1}=n_{\psi_2}$ etc. SU(2) spin symmetry
- s-wave interaction measured by scattering length a.
- Repulsive microscopic interaction: Landau Fermi liquid.
- Attractive interaction leads to many interesting effects!
- Scattering length can be tuned experimentally with Feshbach resonances.

BCS-BEC Crossover

- ullet Small negative scattering length $a o 0_-$
 - Formation of Cooper pairs in momentum space
 - BCS-theory valid
 - superfluid at small temperatures
 - order parameter $\varphi \sim \psi_1 \psi_2$
- Small positive scattering length $a \to 0_+$
 - Formation of dimers or molecules in position space
 - Bosonic mean field theory valid
 - superfluid at small temperatures
 - order parameter $\varphi \sim \psi_1 \psi_2$
- Between both limits: Continuous BCS-BEC Crossover
 - scattering length becomes large: strong interaction
 - ullet superfluid, order parameter $arphi\sim\psi_1\psi_2$ at small T

Truncations

For many purposes *derivative expansions* are suitable approximations. For example we use for the BCS-BEC Crossover

$$\Gamma_{k} = \int_{\tau, \vec{x}} \left\{ \psi^{\dagger} (Z_{\psi} \partial_{\tau} - Z_{\psi} \vec{\nabla}^{2} - \mu + \Delta m_{\psi}) \psi \right.$$
$$+ \varphi^{*} (Z_{\varphi} \partial_{\tau} - A_{\varphi} \frac{1}{2} \vec{\nabla}^{2}) \varphi$$
$$- h(\varphi^{*} \psi_{1} \psi_{2} + h.c.) + \frac{1}{2} \lambda_{\psi} (\psi^{\dagger} \psi)^{2} + U_{k} (\varphi^{*} \varphi, \mu) \right\}$$

Truncations

For many purposes *derivative expansions* are suitable approximations. For example we use for the BCS-BEC Crossover

$$\Gamma_{k} = \int_{\tau,\vec{x}} \left\{ \psi^{\dagger} (Z_{\psi} \partial_{\tau} - Z_{\psi} \vec{\nabla}^{2} - \mu + \Delta m_{\psi}) \psi \right.$$
$$+ \varphi^{*} (Z_{\varphi} \partial_{\tau} - A_{\varphi} \frac{1}{2} \vec{\nabla}^{2}) \varphi$$
$$- h(\varphi^{*} \psi_{1} \psi_{2} + h.c.) + \frac{1}{2} \lambda_{\psi} (\psi^{\dagger} \psi)^{2} + U_{k} (\varphi^{*} \varphi, \mu) \right\}$$

• The coefficients Z_{φ} , A_{φ} , λ_{ψ} , h, Z_{ψ} , Δm_{ψ} and the effective potential U_k are scale-dependent.

Truncations

For many purposes $derivative\ expansions$ are suitable approximations. For example we use for the BCS-BEC Crossover

$$\Gamma_{k} = \int_{\tau, \vec{x}} \left\{ \psi^{\dagger} (Z_{\psi} \partial_{\tau} - Z_{\psi} \vec{\nabla}^{2} - \mu + \Delta m_{\psi}) \psi \right.$$
$$\left. + \varphi^{*} (Z_{\varphi} \partial_{\tau} - A_{\varphi} \frac{1}{2} \vec{\nabla}^{2}) \varphi \right.$$
$$\left. - h(\varphi^{*} \psi_{1} \psi_{2} + h.c.) + \frac{1}{2} \lambda_{\psi} (\psi^{\dagger} \psi)^{2} + U_{k} (\varphi^{*} \varphi, \mu) \right\}$$

- The coefficients Z_{φ} , A_{φ} , λ_{ψ} , h, Z_{ψ} , Δm_{ψ} and the effective potential U_k are scale-dependent.
- ullet The effective potential U_k contains no derivatives describes homogeneous fields.

Fermion self energy corrections

(Floerchinger, Scherer and Wetterich, PRA 81, 063619 (2010))

ullet Flow of fermion wavefunction renormalization Z_{ψ}

 $\begin{array}{l} \text{solid: } (ak_F)^{-1}=0,\\ \text{long-dashed: } (ak_F)^{-1}=-1,\\ \text{short-dashed: } (ak_F)^{-1}=1 \end{array}$

• At the macroscopic scale k=0

Dispersion relation and gap at zero temperature

• Dispersion relation $\omega = \pm \sqrt{\Delta^2 + (ar q^2 - r_F^2)^2}$

 $\begin{array}{l} \text{solid: } (ak_F)^{-1}=0,\\ \text{long-dashed: } (ak_F)^{-1}=-1,\\ \text{short-dashed: } (ak_F)^{-1}=1 \end{array}$

Single particle gap

Unitarity $(ak_F=\infty)$	μ/E_F	Δ/E_F
Carlson et al.	0.43	0.54
Perali <i>et al.</i>	0.46	0.53
Haussmann et al.	0.36	0.46
Diehl <i>et al.</i>	0.55	0.60
Bartosch et al.	0.32	0.61
present work	0.51	0.46

The effective potential

ullet We use a Taylor expansion around the minimum ho_0

$$U_k(\varphi^*\varphi) = -p + m^2 (\varphi^*\varphi - \rho_0) + \frac{1}{2}\lambda (\varphi^*\varphi - \rho_0)^2.$$

The effective potential

ullet We use a Taylor expansion around the minimum ho_0

$$U_k(\varphi^*\varphi) = -p + m^2 (\varphi^*\varphi - \rho_0) + \frac{1}{2}\lambda (\varphi^*\varphi - \rho_0)^2.$$

• Symmetry breaking:

The effective potential

ullet We use a Taylor expansion around the minimum ho_0

$$U_k(\varphi^*\varphi) = -p + m^2 (\varphi^*\varphi - \rho_0) + \frac{1}{2}\lambda (\varphi^*\varphi - \rho_0)^2.$$

Typical flow:

• Information on phase diagram is contained in form of the effective potential $U(\rho,\mu,T)$ at macroscopic scale.

- Information on phase diagram is contained in form of the effective potential $U(\rho,\mu,T)$ at macroscopic scale.
- Very nice generalization of Landau's theory!

- Information on phase diagram is contained in form of the effective potential $U(\rho,\mu,T)$ at macroscopic scale.
- Very nice generalization of Landau's theory!
- Example: BCS-BEC Crossover (Floerchinger, Scherer and Wetterich, PRA 81, 063619 (2010).)

- Information on phase diagram is contained in form of the effective potential $U(\rho,\mu,T)$ at macroscopic scale.
- Very nice generalization of Landau's theory!
- Example: Superfluid Bose gas in d=2 (Floerchinger and Wetterich, PRA 79, 013601 (2009)).

Superfluid order in two dimensions

Bose gas with truncation

$$\Gamma_k = \int_{\tau, \vec{x}} \left\{ \varphi^* (Z \partial_\tau - V \partial_\tau^2 - A \vec{\nabla}^2) \varphi + U(\varphi^* \varphi) \right\}$$

- Mermin-Wagner theorem: No true long range order at T>0 in d=2.
- This implies: $n_c = \bar{\rho}_0 \to 0$ for $k \to 0$.

density n (solid), superfluid density ρ_0 (dashed), condensate density $\bar{\rho}_0$ (dotted),

Solving the flow equation - Thermodynamic observables From grand canonical potential

$$dU = -dp = -s \, dT - n \, d\mu$$

From grand canonical potential

$$dU = -dp = -s dT - n d\mu$$

take derivatives e. g. for Bose gas in d=3 (Floerchinger and Wetterich, PRA 79, 063602 (2009))

• entropy density $s = -\frac{\partial U}{\partial T}$,

From grand canonical potential

$$dU = -dp = -s \, dT - n \, d\mu$$

- entropy density $s = -\frac{\partial U}{\partial T}$,
- energy density $\epsilon = -p + Ts + \mu n$,

From grand canonical potential

$$dU = -dp = -s dT - n d\mu$$

- entropy density $s = -\frac{\partial U}{\partial T}$,
- energy density $\epsilon = -p + Ts + \mu n,$
- ullet specific heat c_v ,

From grand canonical potential

$$dU = -dp = -s dT - n d\mu$$

- entropy density $s = -\frac{\partial U}{\partial T}$,
- energy density $\epsilon = -p + Ts + \mu n,$
- ullet specific heat c_v ,
- ullet isoth. compressibility κ_T ,

From grand canonical potential

$$dU = -dp = -s dT - n d\mu$$

- entropy density $s = -\frac{\partial U}{\partial T}$,
- energy density $\epsilon = -p + Ts + \mu n,$
- ullet specific heat c_v ,
- isoth. compressibility κ_T ,
- ullet adiab. compressibility κ_S ,

From grand canonical potential

$$dU = -dp = -s \, dT - n \, d\mu$$

- entropy density $s = -\frac{\partial U}{\partial T}$,
- energy density $\epsilon = -p + Ts + \mu n,$
- specific heat c_v ,
- isoth. compressibility κ_T ,
- ullet adiab. compressibility κ_S ,
- velocity of sound I,

From grand canonical potential

$$dU = -dp = -s \, dT - n \, d\mu$$

- entropy density $s = -\frac{\partial U}{\partial T}$,
- energy density $\epsilon = -p + Ts + \mu n$,
- ullet specific heat c_v ,
- isoth. compressibility κ_T ,
- ullet adiab. compressibility κ_S ,
- velocity of sound I,
- velocity of sound II,

Solving the flow equation - Thermodynamic observables From grand canonical potential

$$dU = -dp = -s \, dT - n \, d\mu$$

take derivatives e. g. for Bose gas in d=3 (Floerchinger and Wetterich, PRA 79, 063602 (2009))

- entropy density $s=-\frac{\partial U}{\partial T}$,
- energy density $\epsilon = -p + Ts + \mu n,$
- ullet specific heat c_v ,
- ullet isoth. compressibility κ_T ,
- ullet adiab. compressibility κ_S ,
- velocity of sound I,
- velocity of sound II,
- correlation length.

Fermi gases with different physics

- 1 component Fermi gas no s-wave interaction
- 2 component Fermi gas BCS-BEC crossover
- 3 component Fermi gas ??

Fermi gases with different physics

- 1 component Fermi gas no s-wave interaction
- 2 component Fermi gas BCS-BEC crossover
- 3 component Fermi gas ??
 - Three-body problem: Efimov effect

(Efimov, Phys. Lett. 33B, 563 (1970),

Review: Braaten and Hammer, Phys. Rep. 428, 259 (2006))

Fermi gases with different physics

- 1 component Fermi gas no s-wave interaction
- 2 component Fermi gas BCS-BEC crossover
- 3 component Fermi gas ??
 - Three-body problem: Efimov effect (Efimov, Phys. Lett. 33B, 563 (1970), Review: Braaten and Hammer, Phys. Rep. 428, 259 (2006))
 - On the lattice: Trion formation
 (Rapp, Zarand, Honerkamp, and Hofstetter, PRL 98, 160405 (2007),
 Rapp, Hofstetter and Zarand, PRB 77, 144520 (2008).)

Three component Fermi gas

For equal masses, densities etc. global SU(3) symmetry

$$\begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \to u \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}, \quad u \in SU(3).$$

Similar to flavor symmetry in the Standard model!

- ullet For small scattering length |a| o 0
 - BCS (a < 0) or BEC (a > 0) superfluidity at small T.
 - order parameter is conjugate triplet $\bar{\mathbf{3}}$ under SU(3)

$$\varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \end{pmatrix} \sim \begin{pmatrix} \psi_2 \psi_3 \\ \psi_3 \psi_1 \\ \psi_1 \psi_2 \end{pmatrix}.$$

- SU(3) symmetry is broken spontaneously for $\varphi \neq 0$.
- What happens for large |a|?

Simple truncation for fermions with three components

$$\Gamma_k = \int_x \psi^{\dagger} (\partial_{\tau} - \vec{\nabla}^2 - \mu) \psi + \varphi^{\dagger} (\partial_{\tau} - \frac{1}{2} \vec{\nabla}^2 + m_{\varphi}^2) \varphi$$
$$+ \chi^* (\partial_{\tau} - \frac{1}{3} \vec{\nabla}^2 + m_{\chi}^2) \chi$$
$$+ h \epsilon_{ijk} (\varphi_i^* \psi_j \psi_k + h.c.) + g(\varphi_i \psi_i^* \chi + h.c.).$$

- Units are such that $\hbar = k_B = 2M = 1$
- Wavefunction renormalization for ψ , φ and χ is implicit.
- Γ_k contains terms for
 - fermion field $\psi = (\psi_1, \psi_2, \psi_3)$
 - $\bullet \ \ \text{bosonic field} \qquad \varphi = (\varphi_1, \varphi_2, \varphi_3) \sim (\psi_2 \psi_3, \psi_3 \psi_1, \psi_1 \psi_2)$
 - trion field $\chi \sim \psi_1 \psi_2 \psi_3$

"Refermionization"

 Trion field is introduced via a generalized Hubbard-Stratonovich transformation

Fermion-boson coupling is regenerated by the flow

 Express this again by trion exchange (Gies and Wetterich, PRD 65, 065001 (2002),
 Floerchinger and Wetterich, PLB 680, 371 (2009).)

$Binding\ energies$

• Vacuum limit $T \to 0$, $n \to 0$.

- Binding energy per atom for
 - ullet molecule or dimer arphi (dashed line)
 - trion or trimer χ (solid line)
- For large scattering length a trion is energetically favorable!
- Three-body bound state even for a < 0.

Quantum phase diagram

BCS-Trion-BEC transition

(Floerchinger, Schmidt, Moroz and Wetterich, PRA 79, 013603 (2009)).

- $a \to 0_-$: Cooper pairs, $SU(3) \times U(1) \to SU(2) \times U(1)$.
- $a \to 0_+$: BEC of molecules, $SU(3) \times U(1) \to SU(2) \times U(1)$.
- $a \to \pm \infty$: Trion phase, SU(3) unbroken.
- Quantum phase transitions
 - from BCS to Trion phase
 - from Trion to BEC phase.

Efimov effect

- Self-similarity in energy spectrum.
- ullet Efimov trimers become more and more shallow. At $a=\infty$

$$E_{n+1} = e^{-2\pi/s_0} E_n.$$

- Simple truncation: $s_0 \approx 0.82$.
- Advanced truncation: $s_0 \approx 1.006$ (exact result) (Moroz, Floerchinger, Schmidt and Wetterich, PRA **79**, 042705 (2009).)

Renormalization group limit cycle

• For $\mu=0$ and $a^{-1}=0$ flow equations for rescaled couplings

$$k\frac{\partial}{\partial k}\begin{pmatrix} \tilde{g}^2 \\ \tilde{m}_\chi^2 \end{pmatrix} = \begin{pmatrix} 7/25 & -13/25 \\ 36/25 & 7/25 \end{pmatrix} \begin{pmatrix} \tilde{g}^2 \\ \tilde{m}_\chi^2 \end{pmatrix}.$$

Solution is log-periodic in scale.

- Every zero-crossing of \tilde{m}_{χ}^2 corresponds to a new bound state.
- For $\mu \neq 0$ or $a^{-1} \neq 0$ limit cycle scaling stops at some scale k. Only finite number of Efimov trimers.

Contact to experiments

- Model can be generalized to case without SU(3) symmetry (Floerchinger, Schmidt and Wetterich, PRA A 79, 053633 (2009)).
- Hyperfine states of ⁶Li have large scattering lengths.

- Binding energies might be measured using RF-spectroscopy.
- Lifetime is quite short $\sim 10 \text{ns}$.

Three-body loss rate

 Three-body loss rate measured experimentally (Ottenstein et al., PRL 101, 203202 (2008); Huckans et al., PRL 102, 165302 (2009))

- Trion may decay into deeper bound molecule states
- Calculate *B*-field dependence of loss process above.
- Left resonance (position and width) fixes model parameters.
- Form of curve for large B is prediction.
- Similar results obtained by other methods (Braaten, Hammer, Kang and Platter, PRL 103, 073202 (2009);
 Naidon and Ueda, PRL 103, 073203 (2009).)

Conclusions

- Functional renormalization is a useful method to describe ultracold quantum gases.
- Quantitative precision seems reachable.
- Unified description of
 - Bosons and Fermions,
 - Weak and strong coupling,
 - Few-Body and Many-Body physics.